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SUMMARY

A family of thick plate quadrilateral elements is derived based on the Hybrid-Trefftz for-
mulation. Exact solutions of the governing equations are used inside the element together
with independent displacements and rotations on the boundary of the element. The ele-
ment stiffness equations are derived using a modified hybrid-stress variational principle
which enables all element matrices to be calculated using only boundary integrals. The
resulting elements enable the accurate analysis of both thick and thin plate to be per-
formed.

1. INTRODUCTION

Current research into the development of efficient thick plate elements has mostly
concentrated on the use of an underlying thick plate theory, usually Mindlin’s first-
order shear deformation theory [1]. The use of Mindlin’s theory allows independent
approximations for the transverse deflection and normal rotations. More importantly,
only Cp continuity is required for the shape functions, which can be easily achieved. In
this way, the development of C, continuous shape functions, demanded by thin plate
theory and difficult to achieve, is avoided. Moreover, the formulation is applicable to
both thick and thin plates.

Despite the simplicity of the approach, several problems can arise with thick plate
elements. First is the possibility of locking in the thin plate limit. This problem can
be eliminated by using either reduced or selective integration techniques, details of

which are given in e.g., [2,3]. However, reduced integration schemes may cause the

*Currently visiting the Texas Institute for Computational Mechanics, The University of Texas at
Austin, Austin, Texas 78712, U.S.A.



element stiffness matrix to be rank deficient, giving rise to the gencration of spurious
mechanisms. Methods of controlling such problems are the subject of current research,
and reviews of available techniques are given in [2-6]. A recent promising approach
involves the use of discrete shear constraints, e.g., [7-10].

In the context of thin plate analysis, Jirousek and Leon [11] introduced a Hybrid-
Trefftz procedure in which the internal element approximations satisfy the governing
equations of the problem. Inter-element continuity is achieved as in the standard
hybrid-stress method [12] by introducing independent boundary displacements which
are common to adjacent elements. The approach results in elements of high accuracy,
and the method has since been further refined and extended [13-15].

The aim of the present work is to extend the method to thick plate analysis.
Solutions of Mindlin’s equations have recently been used [16] to derive a modified
version of the thin plate ACM element [2] that is suitable for thick plate analysis.
While the element performs well and does not suffer from either locking problems or
spurious mechanisms, it is restricted to a rectangular shape, as was the original ACM
element. In this paper, the solutions used in [16] are extended to higher orders and
combined with the Hybrid-Trefftz formulation to produce a family of quadrilateral

thick plate elements.

2. GOVERNING EQUATIONS

The governing equations of Mindlin’s theory are summarized below using the notation
of Fig. 1. The deformation of the plate is described by the transverse displacement of
the middle surface, w, and the rotations about the z and y axes, namely 0, and 6,.

The generalized strains in the plate are given by

a/ox 0 0
e = | 0 oy |l%\_re lLa
" [a/ay a/af:]{""} e

_ [ oy6e _
€ = {a/ay}w-—O—Vw—B (1.b)
where ¢, is the bending strain vector and e, is the shear strain vector. In the thin

plate limit, €, = 0.
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Assuming a homogeneous, isotropic material, the constitutive rclationships are

{ M, } i [1 v 0

M={Mb=-=t_l,0 o |Lo=-DL0 (2a)

M, I=v) g ¢ (l—u)/2]

Q = {Q’}—th(Vw-O) (2.b)
- { & 1= ,

where E is Young’s modulus, v is Poisson’s ratio, G = E/2(1+4v) is the shear modulus,
t is the plate thickness and k is a correction factor to account for the non-uniform

distribution of the shear stresses across the depth of the plate. Commonly used values
of k are 5/6 and 72/12.

The static equilibrium equations for the plate are
Q=L"M (3.a)
vViIQ+p=0 (3.b)
The displacement form of the governing equations is obtained by combining (1)-(3),
giving
kGt (Vw—-0)+ DL6 = 0 (4.a)
—V'L'DLO+p = 0 (4.b)

For the development of solutions of Mindlin’s equations, it is convenient to express

the governing equations in an uncoupled form for w and 8, namely [17]

V2
V"w = % -— k—GI: (58.)
2
(__1‘2 v 1) (gg _ Dv*o,) - (5.5)
2
(1) (Z-0v,) -0 5

where D = Et3/12(1 — v?), V? is the Laplacian operator and V* = V?V? is the
biharmonic operator. The main point to note from (5) is that in the case when p = 0,
w is biharmonic as is the case in thin plate theory. This fact can be used to develop

solutions of (4) for the case when p = 0 that are valid for any value of ¢.
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3. SOLUTIONS OF MINDLIN'S EQUATIONS
3.1 Homogeneous Solutions

We first consider homogeneous solutions (i.e., with p = 0) of (4). Equation (5) shows
that w is biharmonic in this case. To derive a solution of (4) which is valid for both

thick and thin plates, we scek a solution of 6 in the form

0: = w.+Rf(z,y) (6.a)
0, = wy+Rfa(z,y) (6.b)

where R = D/kGt is the ratio of the flexural rigidity to the shear rigidity. In the thin
plate limit (R = 0), (6) correctly models the constraint 8 = Vw. Thus, no locking
will occur in the elements developed below.

To establish the unknown functions f; and f;, (6) is substituted into (4) and the

resulting differential equations are solved. This gives

fl(mvy) = Wyprr TWiayy (73.)
f2($,y) = w’yyy+wwzy (7b)

Thus, with f, and f; given by (7), any biharmonic function for w together with
rotations given by (6) is a solution of the homogenous form of (4).

Many biharmonic functions are known [18]. For finite element calculations, it is
convenient to use polynomial functions. Jirousek and Guex [14] have suggested the

following generating sequence:

Wy = rRezf (8.a)
Wy = rm 2t (8.b)
wrys = Re 2542 (8.c)
Wepa = Im z*+2 (8.d)

for k=0,1,2..., where 2 = z 4+ iy, r? = % + y? and Re and Im denote the real and
imaginary parts of a complex number.
The following points should be noted when using (8) to generate biharmonic poly-

nomials in conjunction with the element formulation given below; see also [14]:
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(1) For k =0, (8) only generates three solutions since (8.a) and (8.b) give the same

polynomial, namely z? + y2.

(2) Following from (1), geometrical invariance of the internal approximation is ob-

tained by using an odd number of solutions.

(3) The generated solutions from (8) lead to non-zero stresses, i.e., the rigid body
components w = 1, z and y are excluded. This is necessary to ensure that the

element flexibility matrix derived below is non-singular.

(4) To ensure good numerical conditioning of the element flexibility matrix, the
coordinates z and y should be scaled, e.g., by dividing by the square root of the

element area.

Thus, the use of (8) together with (6) generates solutions of the homogeneous
form of Mindlin’s equations. It should be noted, however, that only a small number
of the generated terms are used in the element formulation. No attempt is made to
generate macro type elements [19] which would enable a single element, in the limit,
to be used for the entire region. In this case the generated sequence is not suitable

since it is not complete.

3.2 Particular Solutions

A number of particular solutions for Mindlin’s plate theory may be found in standard

texts, e.g. [17]. For a uniform load, p, the following solution is used in this work

(2 +y* —16R)(z* + ¥*)p

= 64D (9-2)
z(z?+ y?)p

0: '_16—D__ (g.b)
_ oy +y¥)p

6, = ~TeD (9.c)

To treat general loading distributions, the point load solution [17] may be used to-
gether with suitable integration to model the actual loading distribution. A solution

to a bilinear loading distribution was derived in this way in [16].
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4. ELEMENT FORMULATION

The elements developed here are based on independent assumptions for the internal
displacements and boundary displacements. In principle, an arbitrary number of ele-
ments of polygonal shape and varying orders may be derived. The clements developed
here are all quadrilaterals with boundary aproximations varying up to a cubic order.

The clement formulation, which is common to all elements, is considered first. The
formulation follows the standard hybrid-stress approach [12] with some modifications
since displacement solutions, rather than stress solutions, are available inside the
element [14].

The internal element approximation is taken as
u=PB+u,=uz+u, (10)

where v = {w,0;,0,} is a vector of element displacements, P contains M Trefftz
solutions generated using (6) and (8), 3 is a vector of unknown parameters and u, is
a particular solution associated with the applied load on the element.

Using (1) and (2), the stresses inside the element can be obtained as
oc=TB+o0,=0p+0, (11)

where o = {M,Q}. Independent displacements, i, are introduced on the boundary

of the element as
2= Ngq (12)

where ¢ is a vector of element degrees of frecedom. The displacement vector @ is
common to adjacent elements with the shape functions IV only being defined on the
element boundary.

For the present problem, the hybrid-stress functional [12] is

Yl orpmigga_ £ AT o
n, = 2//10' Di'odA fsu o0,.dS + . ® 7,dS (13)
where
D o
D=7y thI] (14)



I'is a2 x 2 unit matrix, o, are the stress components at the boundary, 7, are the
specified stress components on part S, of the total element boundary, S, and A is

the arca of the element.
The area integral in (13) may be converted into a boundary integral as follows.

Using (11), the area integral can be written as
- [ o™Df'odA = = [ 6TD'opdA+ [ 01D} od
540 1 o —§L0ﬂ103 +/A¢1‘,,0'0A
1
+3 /A oT Do, dA (15)

The last term in (15) is a constant since it only depends on the applied loading. From

Clapyron’s theorem, we have

1 3 1

5 /A oID'opdd = 3 }(s ul 0 pndS (16.a)
T -1 — T

/A oID;'o,dA = fs uT o5ndS (16.b)

Substituting (15) and (16) into (13) gives
— 1 T T ~T -T
I, = 5 f;updpnd5'+fis_uo opndS fsu a’ndS-l-/S’u 7,dS + constant (17)

Using the form of TI,, given by (17) enables the element equations to be derived using
only boundary integrals. Thus, arbitrarily shaped polygonal elements may be derived
in a straightforward manner if required.

Substituting (10), (11) and (12) into (17) and ignoring the constant gives

M, = 56" HA+FTH, - f7Ga + "R (18)
where
H = fs P'T,dS (19.2)
H, = }(S TTu,dS (19.b)
G = }g TTNdS (19.c)
R = /S NT%.dS (19.d)
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T, is a matrix containing the stress component functions on the boundary and H
is the element flexibility matrix and is symmetric. Setting the first variation of II,,

with respect to B3 to zero gives
HB+H,-Gg=0 (20)
Since the parameters 3 arc local to cach clement, (20) can be solved to give
B=H"'Gq-H,) (21)
Substituting (21) into (18) and ignoring another constant gives

1
M,=-359"Kg+q'L (22)

where the element stiffness matrix and load vector are given by

K = G'H™'G (23.a)
L = R+GTH'H, (23.b)

The clement formulation is now in a standard stiffness form, and assembly and solu-
tion of the element equations follows the usual finite element procedure.

The global stiffness equations give directly the nodal displacements and rotations.
The internal variables 8 can then be found from (21). This enables the element
stresses to be calculated from (11). It should be noted that internal displacements
found from (10) will be in error by a rigid body component, since this component
was excluded from the approximation given in (10).

Several options are available to remedy this if internal displacements are required.
First, it is possible to use shape functions dcfined over the element that are consistent
with the boundary variation assumed for 4. This is perhaps the most straightforward
approach. Second [14), the internal displacement approximation can be augmented

with the missing rigid body component and expressed as

) +cx + cay
U=u+ C2 (24)
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where ¢;, ¢; and c3 arc unknown constants. These constants may be found by, e.g.,
using a least-squares procedure to match the nodal displacements calculated from
(24) with those calculated directly from the solution of the global equations.

The above outlines the general formulation followed and is applicable to all the
elements considered here. The specific details of the elements are now considered.

Figure 2 shows the element boundary approximations. The degrees of freedom at
the four corners are the displacement and two rotations. These twelve degrees of free-
dom enable a unique linear variation of w, 8, and 0, on the boundary of the element
to be achieved. To achieve quadratic and cubic variations on the boundary, extra
degrees of freedom are introduced at the midside nodes. Shape functions associated
with these degrees of freedom are conveniently taken as hierarchical [20] to enable
the order of boundary approximations to be easily varied. However, traditional shape
functions could also be used.

To ensure convergence to thin plate theory in the limit as the thickness approaches
zcro, the elements must be able to represent a quadratic variation in w and the
associated linear variations in 0, and 0,. Thus, the lowest order element considered
uscs the twelve corner degrees of freedom plus four degrees of freedom associated with
w at the midside nodes.

The elements are named according to the scheme Qab-c¢ where a is the order of
boundary approximation for w, b is the order of boundary approximation for 8, and
0, and c is the number of Trefftz solutions used. As the elements are hybrid-based,
it is necessary (but not sufficient) for the resulting stiffness matrix to have full rank
to use [12]

M > NDOF -3 (25)

where M is the number of Trefftz solutions used and NDOF is the number of element
degrees of freedom.

Table 1 summarizes the elements considered and their characteristics. As can be
seen from the table, using the minimum number of Trefftz terms from (25) doesn’t
always guarantee an element with full rank. However, full rank can always be achieved
by including more internal solutions as shown in the last column of the table. This

does involve a computational penalty since the size of matrix H in (21), which must
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be inverted numerically, increases.

The table also shows that not all the zero energy modes are commutable in a mesh.
Moreover, the numerical tests detailed below show that, providing the structure is
well supported, a global singularity doesn’t occur. For this reason, the numerical
.wsuits have concentrated on the use of the minimum number of Trefftz terms.

Element Q21-13, being the lowest order element, is of particular interest. This
element may be stabilized by using 17 Treffiz terms. An alternative procedure is to
use 15 Trefftz terms obtained by using the first 13 Trelftz terms from the gencrating
sequence plus terms 16 and 17 from the sequence. This leads to an element with
full rank which is denoted by Q21-15S. This procedure is slightly more efficient than
using 17 Trefftz terms since matrix H is smaller. The numerical results given below
show that there is little difference between elements Q21-13 and Q21-158. Clearly, the
same procedure could be used to develop stabilized versions of the other rank-deficient

elements if desired.

5. NUMERICAL STUDIES

A detailed numerical evaluation of the proposed elements is given below. Unless noted
otherwise, Poisson’s ratio was taken as 0.3 and a shear correction factor of 5/6 was

used.

Boundary conditions for thick plates are characterized as:

(1) Clamped Support (C): w=0,=0,=0

(2) Free Edge (F): M, =M, =Q,=0
(3) Soft Simple Support (SS1): w=M,=M,=0
(4) Hard Simple Support (S52): w=0=M, =

where the subscripts n and ¢ refer to the normal and tangential directions at the
plate boundary. In contrast to thin plate theory, where only the SS2 condition is
permissible, thick plate theory allows two possible specifications of a simple support.
The extra flexibility inherent in the SS1 condition proves beneficial where there is a
danger of excessive constraint being induced by the SS2 condition. An example of

this is the simply supported skew plate discussed below. Further discussion of this

aspect is given in [3].
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5.1 Patch Tests

Patch tests were performed on the elements using the mesh shown in Fig. 3. In all
cases, the tests were performed by specifying values of the degrees of freedom on the
exterior nodes consistent with the target stress state. The cssembled patch equations
were solved and internal displacements and stresses were compared with the exact
values.

For a constant bending and twist state, a solution of the form

w = qz*+ Ty + c;,y"' (26.a)
0. = 2¢1r+cyy (26.b)
0, = cz+2cy (26.c)

is required to be represented for arbitrary constants c;, c; and c3. This solution is
applicable for both thin and thick plates. All the elements passed this test exactly
for all values of plate thickness, t.

The constant shear strain test is somewhat different. As noted in [9], this is a
higher-order patch test for thin plate theory, i.c., it is not required to be satisfied
for convergence. The difficulty is that a constant state of shear cannot exist with-
out a corresponding linear variation in the moment field which is required from the
cquilibrium equations. Thus, this test is somewhat artificial.

To attempt to simulate a constant shear state, it is usual to impose a solution of

the form

w = ¢2z+cy (27.a)
0. = 0,=0 (27.b)

for arbitrary constants ¢, and c; on the patch. The exterior nodal variables are given
values consistent with (27) and all 0, and 0, variables throughout the patch are set
to zero.

Table 2 shows the results of such a test for varying values of ¢. It can be seen that
the displacement at the typical point (4,7) in Fig. 3 approaches the value required
by (27) as ¢ increases. In addition, the internal shear stress approaches the correct

constant value as ¢ increases.
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5.2 Simply Supported Plate

In this problem, a square simply supported (§52) plate of size a x a and thickness ¢
subjected to a uniform load p is considered. Taking symmetry into account, a quarter
~f the plate was analyzed using a uniform mesh of N x N elements. Results for the
central displacement and bending moment for a thick plate (a/t = 10) and a thin
plate (a/t = 100) are given in Tables 3-6.

It can be seen from the tables that all the elements yield converging results with
increasing N. The lowest-order element, Q12-13, together with its stabilized version,
Q21-15S, compare favourably with the higher-order elements. Element Q23-29, which
uses a higher-order approximation for the rotations than for the displacements is per-
haps the least convincing of the elements considered. It seems that the more natural
approximation of using either equal approximations for the displacement and rota-
tions or using an approximation one order higher for the displacement is preferable.

The tables, which concentrate on a single point in the mesh, don’t give a true
indication of the order of convergence of the elements. For this, it is preferable to
study the strain energy variation with incrcasing N as given in Tables 7 and 8. Note
that the tabulated values actually represent twice the strain energy as they were

calculated using
U= /A pwdA (28)
as was done in [10,21].

The energy ecrror versus N is shown in Figures 4 and 5, enabling asymptotic
energy convergence rates to be established. Also shown are the results for the DRM
element [10]. It can be seen that while elements Q21-13, Q21-15S and DRM all have
approximately the same convergence rate, elements Q21-13 and Q21-15S are more
accurate. Increasing the boundary approximation, and correspondingly the order of

internal approximations, results in better accuracy but not necessarily faster rates of

convergence.
To demonstrate the lack of locking problems with the proposed elements, the plate
was analyzed with a constant 8 x 8 mesh with increasing values of a/t. The results

given in Table 9 show that none of the elements lock. Indeed, it is permissible to put
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t = 0, while keeping D finite, without causing problems, as shown in the last line of
the table. All elements rapidly converge to this limiting value as a/t is increased.

The sensitivity of the elements to mesh distortions is shown in Table 10. In this
test a 2 X 2 mesh was used, with the central node being progressively moved from
its original position at (a/4,a/4) to a new position at (a(l + A)/4, a(1 + A)/4) for
varying values of the distortion parameter, A. The results show that all the elements
are relatively insensitive to mesh distortions. In particular, elements Q32-25 and
Q33-33 are very insensitive to mesh distortions.

The prediction of shear stresses has been a continuing problem with thick plate
clements, with some clements failing to give converging results [22,23]. It is typical
to use some smoothing process to obtain satisfactory shear stresses, and a number of
different schemes have been suggested [23-26).

For the present family, it was found that elements Q21-13, Q21-15S and Q32-
21, i.e., those clements that use a higher-order approximation for w than for 8,
and 0,, gave reliable values for shear stresses without any necd for smoothing. The
nodal values for the other elements became less reliable as the plate became thinner,
although they gave satisfactory results for thick plates. In this regard, element Q23-29
performed worst whereas element Q33-33 gave reasonable results for an aspect ratio
a/t =100.

Several smoothing options were tried, namcly:
(1) Calculating shears at the element centre only.

(2) Calculating shears at the 2 x 2 Gauss points and extrapolating using a bilinear

equation.

(3) Smoothing the nodal bending moment field and calculating the shears from
(3.a) assuming either a linear or quadratic variation of the moment field over

the element.

(4) Taking the average shears over the element as being representative for the whole

clement [27).
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Of the methods, method (3) was generally more accurate, although method (4)
was also reliable. Tables 11 and 12 give results for the maximum shear force, Q:,
which occurs at point (0,a/2). Where smoothing was used, the results quoted were
obtained using method (3).

Finally, the plate was analyzed under a central point load, P. Mindlin’s theory
predicts an infinite deflection at the centre of the plate. Hence, results are only
given for a thin plate using a/t = 100. The results given in Table 13 show that all
the elements are converging to a value slightly higher than the thin plate value as

expected.

5.3 Clamped Plate

A square clamped plate of sizc a x a and thickness ¢ subjected to either a uniform load
or a central point load was considered next. Again, using symmetry only a quarter of
the plate was analyzed using a uniform mesh of N x N elements. Results are given
in Tables 14-18 for both a thick and thin plate. All elements perform well.

5.4 Morley 30° Skew Plate

This problem [28] is a severe test case due to the singularity at the obtuse corners.
Figure 6 shows the geometry of the problem together with a typical mesh (N = 2).
To enable comparison with the results from [21], the shear correction factor was taken
as one. The simple supports were treated using the SS1 condition.

Table 19 gives results for the central deflection, and includes the results for the
DRM element for comparison. All elements appear to be converging to a higher value
than the thin plate solution. As noted in [21], the thin plate model is in error by
about 5% in terms of the average displacement with respect to a three-dimensional
solution using the SS1 condition. Multiplying the thin plate value by 1.05 gives a
value of 4.28 which is much closer to the results given in the table.

For this problem, the lower order elements perform better than the higher or-
der elements. The smoother approximation used for the higher order elements is

less able to cope with the singularity. However, better results could be achieved by
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using a non-uniform mesh or by adding special singularity solutions to the internal
approximations.

Table 20 gives the strain energy for the plate together with the three-dimensional
value given in [21]. Again, it can be seen that the lower order elements are performing

better. However, in view of the difficulty of the problem, the results are quite good.

5.5 Circular Plate with Central Hole

As a final example, a circular plate with a central hole, clamped on the outer boundary
and subjected to a uniform load is considered. Using symmetry, a quarter of the plate
was analyzed. Figure 7 shows the region considered together with a typical mesh
(N =2).

Tables 21 and 22 give results for the maximum displacement and moment. In this
problem, the geometric error is significant as shown in the results. The higher order
elements overconstrain the problem on the interpolated clamped boundary more than
the lower order elements. This problem can be alleviated by using curved elements

or the procedure suggested in [29)].

6. CONCLUSIONS

The Hybrid-Trefftz method has been extended to enable the analysis of thick plates
to be performed. Exact solutions of Mindlin’s equations have becn derived which
are used as the internal element approximations. Using varying orders of boundary
approximations enables a family of quadrilateral elements to be derived. The formu-
lation results in a standard stiffness formulation making the elements easily integrated
into a displacement-based finite element program. The numerical results presented
demonstrated the good accuracy achieved by the elements.

Extensions of the present work are possible. In particular, the procedure can be
used to develop triangular elements and clements with curved sides. The inclusion of
special functions to model singularity problems also seems desirable. These aspects

will be considered further.
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TABLE 1
Summary of elements
Element No. of zero  Type of zero Minimum no. of
energy modes energy mode®  Trefftz terms
for full rank

Q21-13 2 IN+1C 17
Q21-158 0 - 15
Q2221 0 - 21
Q32-25 3 3Nb 33
Q23-29 0 - 29
Q33-33 1 N 35

3 N = non-commutable with a mesh of two or more elements;
C = commutable.

b With a minimum 2 x 2 mesh; a 2 x 1 mesh has 1 zero energy mode.

TABLE 2
Displacement at point (4,7) in Fig. 3 for shear patch test
(aa =1, e; =0, exact value = 4.000)
t Q21-13 Q21-158 Q22-21 Q3225 Q23-29 Q33-33
0.1 2975 4.510 4364 4434 4351  4.358
1 3.155 4.277 4.147 4.188  4.140 4.167
10 3.968 3.998 3993 3995 3993 3997
100 4.000 4.000 4.000 4.000 4.000 4.000

TABLE 3

Central displacement for simply supported (SS2) plate subjected
to uniform load (a/t = 10, exact value = 4.2728,

multiplier = 10~3pa?/ D)

N Q21-13 Q21-155 Q22-21 Q32-25 Q23-29 Q33-33

43855 4.1774 4.2914 4.2678 4.2696 4.2634
4.3268 4.2685 4.2719 4.2727 4.2713 4.2725
4.2873 4.2734  4.2727 4.2728 4.2727 4.2728
42765 4.2731 4.2728 4.2728 4.2728 4.2728
42738 4.2729 4.2728 4.2728 4.2728 4.2728

O O W DN
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TABLE 4

Central moment for simply supported (SS2) plate subjected to
uniform load (a/t = 10, exact value = 4.7886, multiplier = 10~?pa?)
N Q21-13 Q21-158 Q22-21 Q32-25 Q23-29 Q33-33

1 4.7086 5.0900 5.3185 4.7608 5.6328 4.6202

2 4.7856 4.8597 4.8547 4.7885 4.8666 4.7821

4 4.7884 4.7939 4.7934 4.7887 4.7940 4.7883

8 4.7886 4.7890 4.7889 4.7886 4.7890 4.7886

16 4.7886 4.7887 4.7887 4.7886 4.7887 4.7886
TABLE 5

Central displacement for simply supported (SS2) plate subjected to
uniform load (a/t = 100, exact value = 4.0645, multiplier = 10~2pa*/ D)

N Q2113 Q21-155 Q2221 Q3225 Q23-29 Q33-33
1 4.1545 3.8994 3.9995 4.0504 3.9742 4.0675
2 41157 4.0245 4.0404 4.0643 4.0400 4.0648
4 40787 4.0554 4.0586 4.0645 4.0583 4.0645
8 40681 4.0620 4.0634 4.0645 4.0633 4.0645
16 4.0654 4.0643 4.0643 4.0645 4.0643 4.0645
TABLE 6

Central moment for simply supported (SS2) plate subjected to
uniform load (a/t = 100, exact value = 4.7886, multiplier = 10~?pa?)

N Q21-13 Q21-155 Q22-21 Q32-25 Q23-29 Q33-33
1 47201 5.3799 6.1246 4.7010 6.5882 4.2588
2 47873 51106 5.0749 4.7881 5.0698 4.7137
4 47886 4.8581 4.8522 4.7886 4.8540 4.7781
8 4.7887 4.8011 4.8003 4.7886 4.8013 4.7873
16 47886 4.7902 4.7901 4.7886  4.7902 4.7885
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TABLE 7

Strain energy per quarter plate for simply supported
(SS2) plate subjected to uniform load
(a/t = 10, exact value = 4.507307, multiplier = 10~*pa®/D)

N Q2113 Q2l-158

Q22-21

Q32-25

023-29

Q33-33

1 4.687513
4.566597
4.522423
4.511071
4.508246

OO N

4.335979
4.490108
4.505524
4.507061
4.507259

4.464171
4.498522
4.506469
4.507247
4.507303

4.466164
4.5031056
4.507011
4.507288
4.507306

4.466348
4.499811
4.506607
4.507258
4.507304

4.498563
4.506793
4.507280
4.507305
4.507307

TABLE 8
Strain energy per quarter plate for simply supported
(SS2) plate subjected to uniform load
(a/t = 100, exact value = 4.258787, multiplier = 10~*pa®/ D)

N Q21-13

Q21-158

Q2221

Q32-25

Q23-29

Q33-33

1 4.372908
2 4.310642
4.273256
4.262492
4.259718

D OO

4.086967
4.213955
4.247063
4.256472
4.258478

4.204351
4.228028
4.249651
4.256977
4.258562

4.222795
4.254861
4.258481
4.258766
4.258785

4.185119
4.223954
4.248921
4.256884
4.258554

4.242103
4.257252
4.258690
4.258782
4.258786

TABLE 9
Effect of varying a/t values on central displacement of
simply supported (SS2) plate subjected to uniform load

(N =8, thin plate value = 4.0624, multiplier = 10-3pa*/ D)

aft Q21-13 Q21-155 Q22-21 Q3225 Q2329 Q33-33
10 4.3855 4.17714 4.2914 4.2678 4.2696 4.2634
102 4.1545 3.8094 3.9995 4.0504 3.9742 4.0675
10° 4.0660 4.0598 4.0607 4.0624 4.0606 4.0624
10° 4.0660 4.0597 4.0607 4.0624 4.0605 4.0624
co  4.0660 4.0597 4.0607 4.0624 4.0605 4.0624
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TABLE 10

Percentage change in central displacement of simply supported
(5S2) plate subjected to uniform load for distorted mesh
relative to value for undistorted mesh (N = 2, aft = 10)

A Q21-13 Q21-15S Q22-21 (Q32-25 Q23-29 Q33-33
01 0.19 0.06 0.03 0.00% 0.04 0.00
02 0.44 0.33 0.11 0.01 0.14 0.00
03 081 0.83 0.25 0.01 0.31 0.00
0.4 1.36 1.61 0.46 0.02 0.57 0.01
0.5 2.19 2.72 0.77 0.03 0.94 0.01

8 «Zero” = less than 5 x 10~3

TABLE 11

Shear force Q. at point (0,a/2) for simply supported (5S2) plate subjected

to uniform load (a/t = 10, exact value = 3.3765, multiplier = 10~"pa)

N Q21-13* Q21-155* Q22-21® Q22-21° (Q32-25 Q23-29° Q23-20° Q33-33° Q33-33°
1 29483 1.8966 4.1625 2.5550 3.0914 5.1261 2.8402 4.0386 3.0950
2 33799 3.2240 43716 2.9843 3.3486 4.6245 3.2607 3.5537 3.2514
4 33717 3.3492 3.8346 3.1994 3.3707 3.8760 3.3653 3.4078 3.3429
8 3.3757 3.3724 3.5235 3.2909 3.3755 3.5293 3.3777 3.3811 3.3681

16 3.3764 3.3759 3.4175 3.3334 3.3764 3.4183 3.3775 3.3772 3.3744

g Nodal value
Smoothed value - quadratic

TABLE 12

Shear force Q, at point (0,a/2) for simply supported (SS2) plate subjected

to uniform load (a/t = 100, exact value = 3.3765, multiplier = 10~ pa)

N Q21-13® Q21-155% Q22-21° Q22-21° Q32-25% Q23-29° Q23-29° Q33-33° Q33-33°
T 27819 1.0077 1.8177 10803 2.7602 2.0505 24850 15856 3.0457
2 3.4051 29453 2.6891 2.9343 3.7543 2.6076 2.9545 2.3544 3.1710
4 33610 3.1642 3.0625 3.2364 3.6076 3.0169 3.2633 2.8072 3.3084
8 3.3719 3.2637 3.2182 3.3941 3.4354 3.2387 3.5514 3.0771 3.3593

16 3.3757 3.3451 3.2765 3.4111 3.3807 3.3071 3.5487 3.2236 3.3729

}“’ Nodal value
Smoothed value - linear |
€ Smoothed value - quadratic




TABLE 13

Central displacement for simply supported (S52) plate subjected
to point load (a/t = 100, thin plate value = 1.1160,

multiplier = Pa?/D)

N Q21-13 Q21-158 Q22-21 Q32-26 Q23-20  Q33-33

1 1.2782 1.1762 1.1917 1.1892 1.1631 1.1796
2 1.2135 1.1562 1.1564 1.1691 1.1498 1.1668

4 1.1806 1.1591 1.1592 1.1643 1.1577 1.1639

8 1.1692 1.1616 1.1622 1.1619 1.1619 1.1633

16 1.1660 1.1627 1.1631 1.1630 1.163] 1.1633
TABLE 14

Central displacement for clamped plate subjected to
uniform load (a/t = 10, multiplier = 10~3pa*/ D)

N Q21-13° Q21-155 Q2221 Q32-25 Q2329 Q33-33
1 1.4507 1.3899 1.5110 1.4984 1.4552 1.4892
2 15150 1.4740 1.4985 1.5079 1.4973 1.5076

4 1.5103 1.4987 1.5057 1.5067 1.5058 1.5069

8 1.5062 1.5032 1.5055 1.5056 1.5055 1.5056
16 1.5050 1.5043 1.5049 1.5049 1.5049 1.5050
TABLE 15

Central moment for clamped plate subjected to

uniform load (a/t = 10, multiplier = 10~?pa?)

N Q21-13 Q21-155 Q22-21 Q32-25 Q23-29 Q33-33
2.2358 2.4073 3.3266 2.2968 3.8653 2.0055
2.3295 24005 2.4331 23229 24526 2.3122
23251 23301 23294 23220 2.3307 2.3216
23214 23216 23214 23209 23215 2.3209
2.3203  2.3203 2.3203 2.3203 2.3203 2.3203

SO 00 W DN =




TABLE 16
Central displacement for clamped plate subjected to uniform load
(a/t = 100, thin plate value = 1.26, multiplier = 10~3pa*/D)

N Q21-13 Q21-15S Q2221 Q332-25 Q2329 Q3333

1 12098 1.1413 1.0598 1.2544 0.9604 1.2609

2 1.2524 1.1915 1.1822 1.2657 1.1782 1.2674
4 12638 1.2456 1.2456 1.2677 1.2443 1.2678
8 12674 1.2632 12637 1.2679 1.2635 1.2679
16 12679 12670 1.2674 1.2679 1.2673 1.2679
TABLE 17

Central moment for clamped plate subjected to uniform load
(a/t = 100, thin plate value = 2.31, multiplier = 10~?pa?)
N Q21-13 Q21-15S Q22-21 Q32-25 Q23-29 Q33-33

1 21793 2.4759 4.7655 2.1885 5.6018 1.1730

2 22775 2.5753  2.7197 22905 2.6978 2.1574

4 22856 2.3537 23826 2.2907 23852 2.2735

8 22001 23020 2.3077 22909 2.3092  2.2889

16 2.2909 2.2923 2.2930 2.2910 2.2932  2.2908
TABLE 18

Central displacement for clamped plate subjected to point
load (a/t = 100, thin plate value = 5.60, multiplicr = 10~*Pa?/ D)

N Q21-13 Q21-155 Q22-21 Q3225 Q2329  Q33-33

6.2305 5.7729 5.6264 5.8879 5.0978 5.8072
59717 5.4982 54713 5.6994 5.4027 5.6801
5.7757 5.5759  5.5754 5.6519  5.5587 5.6509
5.6954  5.6225 5.6288 5.6456  5.6259 5.6452
5.6701 5.6381 5.6424 5.6456 5.6422 5.6456

o 00 & N =
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TABLE 19
Central displacement for Morley skew plate
(a/t = 100, thin plate value = 4.08, multiplier = 10~*pa*/D)

N Q21-13 Q21-15S Q22-21 Q32-25 Q23-29 Q33-33 DRM

2 4.5206 4.1380 5.3930 4.8548 4.9782 5.0863 6.2674

4 44816 4.2381 4.5540 4.5964 4.5770 4.7561 4.5375

8 43913 4.2973 4.4832 4.5055 4.5240 4.5700 4.2546

16 4.2958 4.2582 4.4177 4.3868 4.3890 4.4180 4.2134
TABLE 20

Strain energy for Morley skew plate (a/t = 100, 3-D value [21] = 7.304074,

multiplier = 10~%pa®/ D)

N Q21-13 Q2I-15S Q22-21 Q3225 Q2329 Q33-33  DRM

2 8501009 7.266239 13.634564 12.292063 13.334414 14.057814 7.832500

4 17.792962 7.376286 8.200199 8.241384 8.324208 8.537150 7.058874

8 7.520923 7.380548 7.687949  7.723813  7.748876  7.825085 7.17826Y9

16 7.363927 7.309361 7.486250 7.505414 7.488175 7.552492 7.210302
TABLE 21

Maximum displacement for circular plate
(a/t = 100, thin plate value = 5.27, multiplier = 10~3pa*/D)

N Q21-13 Q21-155 Q22-21 Q32-25 Q23-29 Q33-33
2 54719 3.7191 3.7499 3.7197 3.7740 3.7706
4 5.1953 4.8366 4.8779 4.9606 4.8777 4.8805
8 5.2448 5.1606 5.1755 5.1758 5.1751  5.1757

16 5.2645 5.2447  5.2483 5.2483 5.2482  5.2482

24 5.2685 5.2601 5.2614 5.2614 5.2614  5.2614
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TABLE 22
Maximum moment for circular plate
(a/t =100, thin plate value = 8.00, multiplicr = 10~%pa?)

N Q2I-13 Q21-155 Q2221 Q3225 Q2329 Q33-33
2 8.3605 3.7331 1.9765 2.0237 1.2343 1.2739
4 8.0840 6.4614 4.9461 4.8779 4.2618 4.1726
8 8.0446 74315 6.5660 6.5080 6.2341 6.2012
16 8.0236 7.8033 7.3976 7.4184 7.3060 7.2948
24 8.0159 7.9085 7.6725 7.6840 7.6359 7.6295




Fig. 1  Sign convention
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Fig. 2  Geometry and degrecs of freedom for elements
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Fig. 5 Energy errors for simply supported plate subjected to uniform load
(a/t = 100)
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Fig. 6  Morley’s skew plate problem and typical mesh (N = 2)
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Fig. 7
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Circular plate with hole problem and typical mesh (N = 2)
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