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Abstract. In this paper we present a novel approach to the development of a class of local three-
dimensional simplicial refinement strategies based on ideas that have been shown to be effective for
two-dimensional refinement. The algorithm presented here begins subdividing the two-dimensional
triangulation composed by the faces of the tetrahedra, and then subdividing each tetrahedron in a
compatible manner with the first step. The study of the complexity of the algorithm suggests another
improved version with a linear complexity with respect to the worst case that is also given. The
algorithm is fully atomatic and can be used to achieve local as well global refinements. Moreover,
these algorithms can be applied to any initial tetrahedral mesh without any preprocessing. Although
mathematical proofs are not provided here, the numerical results obtained seem to confirm that
the measure of degeneracy is bounded, and converges asymptotically to a fixed value. The idea
for extending a two-dimensional algorithm to a three-dimensional one may possibly be applied in a
general dimension n and with other refinement algorithms.
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1. Introduction. Local refinement is critical to the efficient approximate solu-
tion of partial differential equations in many practical applications. Adaptivity of the
mesh is particularly important in three-dimensional problems because the problem
size and computational cost grow very rapidly as the mesh size is reduced. For exam·
pIe, in certain space-time finite element formulations and in relativity applications,
4-space discretizations may be desired. Similarly, in Boltzmann applications involving
momentum space variables, discretizations in high dimensions may be needed.

As is well known, there are two main steps in local adaptive refinement [8]: the
refinement of a subset of elements based on local error indicators [1, 2, 13], and the
achievement of the conformity of the mesh [17, 25]. The elements that offer the sim-
plest choice in any dimension are the simplices: triangles in two dimensions, tetrahedra
in three dimensions and their analog in even higher dimensions. Many different re-
finements and improvement techniques for two- and three-dimensional triangulations
are now available.

For example, Bank and Sherman [3]subdivide a triangle into four similar triangles
by connecting the midpoints of the sides. The conformity of the mesh is made by
subdivision of elements adjacent to the irregular vertices (nodes) using so-called green
division. Bisection connects one of the vertices of the triangle to the midpoint of the
opposite side. Eg. Rivara [28, 29, 31] presents two algorithms: The 2T algorithm
is based on the longest edge bisection. In the 4T algorithm, the vertex opposite to
the longest edge is chosen in a first step, and then the newly formed vertex is used
to subdivide the initial triangle in four as shown in Figure 1. In these algorithms,
the angles of the triangles in a resulting locally refined grid are uniformly bounded
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away from 0 and 11'. Additional refinement is necessary to ensure the conformity of
the mesh, but this refinement is also by the longest edge in the Rivara algorithms.

(a) (b)

FIG. 1. -4 T divi&ion of Rivara

Another bisection method is the newest vertex bisection introduced by Mitchell
in [19]. The triangle edge to be bisected is determined without any computation.
Only four similarity classes of triangles and only eight distinct angles are created by
this method. Hence the important condition of being bounded away from 0 and 11'

is again satisfied. Additional refinement is also necessary in this algorithm to ensure
the conformity of the mesh.

In three dimensions there are two main approaches for subdividing a single tetra-
hedron: octasection and bisection. Octasection methods simultaneously create eight
descendants for each tetrahedron. For example Bey [7] first connects the edges of
each face triangle as in the two-dimensional Bank refinement, then cuts off four sub-
tetrahedra at the corners which are similar to the original one. Finally Bey's algorithm
cuts the interior octahedron into four more sub-tetrahedra. Concerning irregular re-
finement he only considers four patterns of the 64 possibilities, and performs a global
refinement in another case. This implies that a domino effect may occur in certain
situations and excessive refinement can propagate through the mesh.

Methods based on bisection can also subdivide each tetrahedron in eight, but the
elemental stage consists in bisecting the tetrahedron in two. E. Bansch [5], presents
an algorithm based on the selection of an edge as a global refinement edge in each
tetrahedron, but imposes small perturbations of the coordinates of the nodes for
avoiding incompatibilities. The algorithm presented by Rivara and Levin [32] is based
on longest edge bisection. In this sense their algorithm is a generalization of the 2T
algorithm of Rivara. However, it is not known into how many tetrahedra each of
the original tetrahedron will be subdivided. Mathematical proofs about the non-
degeneracy of the grids created are needed, although experiments suggest this holds.
Also based on longest edge bisection is the algorithm by Muthukrishnan et al. [22],
although all the meshes created are conforming. A. Liu and B. Joe [16, 17], present
an algorithm (QLRB) similar to that of Bansch. They classify the tetrahedra in four
types and set up the types of edges depending on the type of tetrahedron. In this
way they avoid evaluating the length of the edges. In addition, a shape measure is
introduced. The number of similarity classes is proved to be bounded and therefore,
the meshes can not degenerate.

A recursive approach is proposed by I. Kossaczky [15]. This algorithm imposes
certain restrictions and preprocessing in the initial mesh. The 3D algorithm is equiv-
alent to that given in [5]. J. M. Maubach [18]develops an algorithm for n-simplicial
grids generated by reflection. Although the algorithm is valid in any dimension and
the number of similarity classes is bounded, it can not be applied for a general tetra-
hedral grid. An additional closure refinement is needed to avoid incompatibilities.
Recently, A. Mukherjee [21], has presented an algorithm equivalent to [5, 16], and
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proves the equivalence with [18].
Two new algorithms based on bisection will be developed in the present work [23,

24]. Although they show similar behavior to those cited above ([5,15,16,17,18,21])
the point of view is quite different and simpler since the three dimensional approach
is based on the two dimensional one applied to the skeleton of the triangulation. The
algorithm can be applied to any valid initial mesh without any restriction on the shape
of the tetrahedra, since it is based on a previous classification of the edges that is local
to each tetrahedron, and at the same time global for each triangular face of the mesh.
Moreover, these ideas can be extended to obtain local refinement algorithms in higher
dimensional spaces.

1.1. Notation and definitions. We introduce here some notations and defini-
tions that will be used in following sections.

DEFINITION 1.1 (m-simplex). Let V = {XO,X1, ... ,Xm} be a set of m+ 1
--+

points in Rn (1 ~ m ~ n) such that {XOXi: 1 ~ i ~ m} is a linearly independent
set of vectors in Rn• Then the closed convex hull of V denoted by S =< V >=<
Xo, XI"", Xm > is called an m-simplex in Rn, while the points Xo, ... ,Xm are
called vertices of S [14].

Note, that strictly speaking, it is not necessary to order the vertices of the simplex.
We consider only the simplex as a closed set defined as above. Other authors use the
order of the vertices [18].

DEFINITION 1.2 (Conforming simplex mesh). Let n be a bounded set in Rn with
o

non-empty interior, n# 0, and consider a partition of n into a set T = {tl, ... , tn}
o 0 0

of simplices. That is: (I) n = Uti; (II) ti n tj= 0 if i # j; (III) tii: 0; such that
any adjacent simplex elements share an entire face or edge or a common vertex, i.e.
(IV) there are no non-conforming nodes in T (see Figure 2). Under these conditions
we will say that T is a conforming simplex mesh for n, a conforming triangulation
in two dimensions, and in three dimensions a conforming tessellation or also as a 3D
conforming triangulation.

FIG. 2. Non-conforming node in 2 and in S dimen&ion&

DEFINITION 1.3 (Skeleton). Let n be a bounded set in Rn with non-empty
interior and T an n-simplicial mesh of n. The set skt(T) = {8(t;) : t; E r} will be
called skeleton or (n - I)-skeleton of T, where the boundary (8) is taken in the usual
topology of Rn [6]. For instance, the skeleton of a triangulation in three dimensions
is comprised of the faces of the tetrahedra, in two dimensions the skeleton is the set
of edges of the triangles, and in one dimension it is the set of the points (vertices)
which define the partition into segments.



4 A. PLAZA AND G. F. CAREY

The above definition of the skeleton can be applied in a recursive way. That is,
the set: skt(skt«r)) = {8(8(ti)) for t; E r} where the 8(8(t;)) must be found in the
topology of skt(r) inherited by inclusion in Rn. In fact, if r is an n-simplicial mesh,
skt(skt(r)) will be called the (n - 2)-skeleton of r, and so on. Note that this concept
is not related to the medial object or skeleton used in the literature [27, 12].

DEFINITION1.4 (Edge bisection). Let 8 =< Xo, XI"", Xn > be an n-simplex
in Rn, with edge < Xk,Xk' > having midpoint A = (Xk + Xk,)/2. Then two new
simplices

SI =< Xo, , Xk-l' A, Xk+1," .Xk' Xn >
82 =< Xo, ,Xk, ... ,Xk'-I,A,Xk'+l, Xn >

may be formed such that the interiors are disjoint and S = SI U 82• This defines
a subdivision of S by edge bisection or a simple bisection [14, 28]. Frequently <
Xk, Xk' > is chosen as the longest edge of 8 [6, 32, 17]. Then it said that a generalized
bisection has been performed.

LEMMA 1.5. The bisection of an n-simplex S by the longest edge or by some
selected edge induces the bisection of all k-simplices in S that contain the selected
edge.

The goal here is to define a 3D refinement algorithm after a 2D refinement algo-
rithm has been applied to the skeleton of the 3D triangulation. Both of the algorithms
will be based on bisection. Moreover, both of them are based on a certain classifica-
tion of the edges defining the successive bisections. Note that from the last definition
and from the lemma, if we know the bisection edges, and the order in which they are
taken for subdividing the tetrahedron, the subdivision is already defined. In our case,
this order is based on the length of the edges.

1.2. The 2D case. The (non-recursive) 4T refinement algorithm of Rivara, to
refine a unique triangle t belonging to some initial triangulation r can be described
as follows [30, 32]:

INPUT: it, r}
Perform the longest edge bisection of t

(let P be the midpoint generated
and iI, t2 the triangles obtained)

While P is a non-conforming side midpoint of the neighbor triangle t· do
Perform the longest edge bisection of t·

(let Q be the point generated)
It P f. Q then join points P and Q

End while
For i= 1,2 do

Perform the bisection of ti by the common side of t and t;
(let P be the midpoint generated)

While P is a non-conforming side midpoint of the neighbor triangle t· do
Perform the longest edge bisection of t·

(let Q be the point generated)
If P # Q then join points P and Q

End while
End for.
OUTPUT: r·

In the present work we consider a version of the 4T algorithm proposed by L.
Ferragut [10]. This approach will be extended later to refine the skeleton of 3D
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a

p

FIG. 3. Refinement and conformity

triangulations. Although in the algorithm by Ferragut the evaluation ofthe refinement
condition and the conformity of the new mesh are two separate steps, other variants
of the algorithm can be considered [25], in which the conformity is assured locally at
the same time as the triangles are evaluated for refinement. This means that when
an element t must be refined, the conformity is assured by testing the neighboring
element of each edge in which a node is introduced. This version differs from Rivara's
approach in the following points: i) when the triangles are taken for evaluation of the
refinement condition, the edges in which a node is going to be introduced are marked.
ii) after the conformity has been ensured, each triangle is divided following a suitable
pattern.

The performance of the 4T algorithm of Rivara is indicated in Figure 3, in which
(a) is the original triangulation, (b) the longest edge bisection of t, (c) and (d) the
extension for conformity, and (e) the final triangulation in which sub-triangles tl and
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t2 have been subdivided.
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a

FIG. 4. Oriented graph repre&enting the clauification of the edges of a triangle, 2D me&h and
a&&ociated graph

The 4T algorithm has the advantage that the different possibilities for refining a
triangle depend only on determining the longest edge. Therefore, we can say that this
algorithm classifies the edges of each triangle in two types, the longest one, type 1,
and the other two edges, type 2. In this way, an oriented graph, such as that shown
in Figure 4 can be associated with each triangle. The arrows indicate the dependency
of the edges when refining to enforce conformity. Note that because an edge can be
the longest one in one triangle but not the longest edge in the neighboring triangle,
this classification is local to each triangle.

Now we show how the edges on each tetrahedron can be consistently classified
with the order of the edges of each triangular face. In this way, the refinement of the
skeleton by means of our 4T algorithm will be the trace of the 3D refinement obtained
by bisection, following the order of the edges chosen for subdivision.

2. Classification of the tetrahedra. Let us consider a generic tetrahedron.
We can number its nodes and its edges as in Figure 5 so that edge 3-4 is the longest one.
The faces are numbered with the number of the opposite vertex, as usual. Introducing
a criterion similar to that of Liu and Joe [17], Bansch [5] or A. Mukherjee [21] we
assign to each edge of a tetrahedron a type-label between 1 and 3: the longest edge
of a tetrahedron is labeled type 1. Note that this edge is also the longest one of two
faces. The longest edge of each one of the other two faces is edge type 2, and the rest
of the edges are type 3. Edge type 1 is the reference edge of the tetrahedron.

1

4

3

FIG. 5. Tetrahedron in canonical po&ition and local numeration of the vertices and edge&
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Paradoxically, the selection of the longest edge of the faces and the reference edge
of each element presents the most difficult case when the face or the element is regular,
that is when it has all the edges of the same length. In this case we choose the first
edge in which a node for division has been introduced. This detail ensures that the
refinement area will not increase unnecessarily in the case of a regular initial mesh. In
this way small hypothetical perturbations of the coordinates of the vertices to break
ties (see for example [21]) are not necessary.

Now we classify the tetrahedra depending on the relative position of the longest
edges. Obviously, we can get different configurations for refining a tetrahedron de-
pending on the number of nodes added and also on the relative position of the nodes.

We distinguish three types of tetrahedra based on the relative position of their
edge-types. This is because we will consider the subdivision of the tetrahedra in order,
following their edge-type: first, we consider the tetrahedron bisected by the reference
edge, second by the edge type 2, and so on.

Procedure Classification(t).
If edge 6 has type 3, then:

t has type 1
Else if edge 6 = longest(face 3)=longest(face 4) then:

t has type 2
Else

t has type 3
End if

Each type of tetrahedron can be represented by an oriented graph such as that
shown in Figure 6. The arrows in the graph indicate the dependency of the edges
when refining for conformity. This means that if in a tetrahedron there is one type 3
edge marked for refinement, all of the edges with which it is connected in the graph
must also be marked. The graph associated to a tetrahedron type 1 means that the
edge opposite to the longest one is type 3 -as marked in bold in Fig. 6(a). In a
tetrahedron type 2, the edge opposite to the reference edge is the only edge type 2,
see Fig. 6(b). Note that in this case the graph is symmetric, so we can permute types
1 and 2. Finally, in tetrahedra type 3 the opposite edge to the longest one is type
2, but is shorter than the other edge type 2, and both are in the same face. This
explains the dependency between the two edges type 2 in Fig. 6(c).

THEOREM 2.1. There are 51 different possible configumtions obtained by local or
global refinement, excluding rotations.

Proof
Note that the simplest configuration obtained by local refinement is that in which

only one node is introduced in the midpoint of the longest edge of the tetrahedron.
We will denote this configuration as (1). Global refinement of a tetrahedron means
that a node has been introduced in each one of its edges. We begin by pointing out the
equivalence of the possible configurations that are obtained by pure rotation. Let the
tetrahedron of Figure 7(a) be rotated 11' radians about an axis through the midpoints
of edges 1 and 6. We obtain again the tetrahedron in canonical position, but the
local numeration of its edges and nodes has changed. This is the unique rotation that
preserves the canonical position and is still distinct from the identity [20]. Observe
that if this rotation is denoted r, the relation between the nodes is: r(l) = 2; r(2) = 1;
r(3) = 4 and r(4) = 3. Similarly for the edges (ei: i = 1, ... ,6) we can write:
r(e1) = e1; r(e2) = e4; r(e3) = e5 and r(e6) = e6.
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(a) Type 1
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(b) Type 2

(c) Type 3

FIG. 6. Oriented graph& repre&enting the different claue6 of the tetrahedra

4

FIG. 7. Two equivalent configuration&

Next, let us represent each configuration by means of integer sequences of the
form (i ... l) where the numbers of the edges that are subdivided are listed in order
according to their types, from type 1 to type 3. For instance, the configuration of
Figure 7(a) is represented as (1623) since it is characterized by midpoint nodes of edges
1, 6, 2 and 3. (Here edge 6 has type 2, since it is the second one in the sequence, and
as it is the opposite one to the reference edge (1), the tetrahedron has type 2 in which
4 nodes are added.) For comparison, the configuration (1645) is shown in Figure 7(b).

In the set of integer sequences IS = {O', such that 0' = (il"'" ik), where k ~
6, ij E {I, 2, ... , 6}, i1 = 1 and in # im if n # m} we define an equivalence relation
in this way:

1) if r(O'd = 0'2, then 0'1 '" 0'2

2) if 0'1 = 0'2 except for the order of edges with the same type non-connected in
the associated graph, then 0'1 '" 0'2.

Note that the point 2) is concerning about tetrahedra type 3, in which there is
a relation between the two edges type 2. It follows immediately to check that the
previous conditions define an equivalence relation in IS.

The proof of the theorem follows simply by counting all the equivalence classes
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TABLE 1
Pouible configuration& obtained by tetrahedron &ubdividing of na edge&. Integer &equence& in

bold indicate di&tinct configuration& and # i& the number oj di&tinct (bold) configuration& in each
ca&e.

na Tet type 1 Tet type 2 Tet type 3 #
1 (1) (1) (1) 1
2 (12) ......(14) (16) (12)......(14)

(13)......(15) (13)......(15) 3
3 (125)......(143) (162) ......(164) (125)......(143)

(134)......(152) (163) ......(165) (134)......(152)
(123) ......(145) (126) ......(146)
(124)......(142) (136) ......(156)
(135) ......(153) 9

4 (1236) ......(1456) (1654) ......(1632) (1265) ......(1463)
(1234) ......(1452) (1625) ......(1643) (1364) ......(1562)
(1235) ......(1453) (1624) (1263) ......(1465)
(1356) (1635) (1264) ......(1462)
(1354) ......(1532) (1362) ......(1564)
(1426) (1365) ......(1563)
(1423)......(1245) 17

5 (12364) ......(14562) (16234) ......(16452) (12653) ......(14635)
(12365)......(14563) (16235) ......(16453) (12654) ......(14632)
(12345) ......(14523) (13645) ......(15623)
(12463) ......(14265) (13642) ......(15624)
(13524) (12634) ......(14652)
(13562) ......(15364) (13625) ......(15643)
(14235) 15

6 (123456) ......(145236) (162345) ......(164523) (126345) ......(146523)
(124356) ......(142536) (136245) ......(156423)
(135246) ......(153426) 6

[U 25 [JQ m
which are identified in the Table 1. There, the cases in bold are the distinct ones and
the other cases are equivalent by rotation to bold cases. 0

3. Outline of the Refinement Algorithm. Let m = {Tl < T2 < ... Tn} be
a sequence of nested three-dimensional grids, where Tl represents the initial mesh
and Tn the finest mesh in the sequence. To refine the sequence, or the finest mesh
Tn, implies generating a new higher-level member in the sequence to obtain: m+1 =
{Tl < T2 < ... < Tn < Tn+d. In practice Tn+l may be constructed by means of the
use of a 2-dimensional refinement algorithm applied to the skeleton of Tn as follows:

INPUT: Tn

The refinement condition is evaluated:
For each t E Tn, do:

1. If t must be refined, then:
1.1. Each edge is marked to be subdivided.
1.2. Set the mesh conformity flag, Flag = 1.

End for.
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The conformity is ensured:
While Flag = 1, do:

Set Flag = O.
For each t E Tn, do:

2. If t is non-conforming, then:
2.1. Mark the longest edge of each

non-conforming face of t
2.2. Procedure reference-edge(t)
2.3. Mark the reference-edge.
2.4. Set Flag = 1.

End for.
End while.
The subdivision of the mesh is performed:
For each f E skt(Tn), do:

3. Perform the subdivision of f by the 4-T algorithm of Rivara [29].
End for.
For each t E Tn, do:

4. Perform the appropriate subdivision of t.
That is, one of the 51 possible configurations.

End for.
OUTPUT: Sequence m+1 = {Tl < T2 < ... < Tn < Tn+d.

Procedure reference-edge( t) .
If there is only one edge e common longest edge for two faces

reference-edge( t) =e
Else if there are two edges, e and e* common longest edges for two faces

if e has to be subdivided reference-edge(t)=e
Else if there are no common longest edge for two faces

reference-edge(t)= e, where e is the first longest edge
in which a node has been introduced

Change the longest edge of the neighbor face of e, f
neot =neighbor element of t through f
call reference-edge( neot)

End if
End if

The salient feature in the above algorithm is the way in which mesh conformity
is assured. It is worth noting that the new 3-dimensional mesh obtained by bisection
will be conforming if and only if its 2-dimensional skeleton is conforming. To ensure
the conformity of the skeleton, we can use, with minimal changes, step 2.3 above, from
the 2-dimensional algorithm for simplicial subdivision. So, if some node is introduced
in a tetrahedron, the node on the midpoint of its longest edge is also introduced,
as in the 4T algorithm of Rivara. This is congruent with the application of the 4T
algorithm at the faces, except in the case of a tetrahedron type 2 in which only one
at the midpoint of the edge number 6 is introduced.

As an example, Figure 8 shows the application of the algorithm to a very simple
initial mesh comprised of only 2 tetrahedra (Figure 8 a)). Tetrahedron 1-2-3-4 is
refined based on the error indicators (Figure 8 b) and the other one is refined to
satisfy conformity (see Figure 8 (c), in which nodes Nl and N2 are introduced).
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Figure 8 (d) presents the division of the 2D skeleton and Figure 8 (e) the final mesh
in which the new elements have been defined.

1

(a) Initial mesh.

(c) Step 3: Conformity.

2

1

(b) Steps 1 & 2.

(d) Step 4: skeleton division.

(e) Final mesh.

FIG. 8. Example of application of the 3D algorithm

As has been noted already, the selection of the longest edge of the faces and ele-
ments may complicate matters when the faces or elements are regular. Choosing the
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first edge in which a node has been introduced, we are able to assure that incompati-
bilities between the longest edge of the faces and the longest edge of each tetrahedron
do not exist. Figure 9 shows one of these situations. Suppose that the faces are
numbered with the number of the opposite vertex as usual. There the longest edge of
each face is marked with the number of the corresponding face. This is only possible
if the lengths of some edges are equal.

1

4

3

FIG. 9. Example of non-decidable longe&t edge of the tetrahedron

What is, in this case, the longest edge of the tetrahedron? One approach is to
change the longest edge of one of the triangular faces such that two faces share the
same longest edge. But, if the longest edge of some face is changed, we must go to the
adjacent tetrahedron and verify that its longest edge must be changed as well. This
implies an iterative process such as Procedure reference-edge.

In the final stage, step 4 of the algorithm, only the local subdivision of each
3-simplex of the original mesh must be made. An iterative method similar to that
employed in [17]could be used. As we may implement different subdivisions depending
on the number of points introduced and their relative position, it is very important
to classify the tetrahedra as has been described.

THEOREM 3.1. The above algorithm is finite.
Proof This result follows directly from the fact that the corresponding two di-

mensional 4-T algorithm [29] is finite, and the number of possible configurations for
subdividing a tetrahedron are also finite. The use of a global criteria in step 2.2
of the algorithm assures that the procedure for selecting the reference-edge of the
tetrahedron is also finite.

Geometrically, the conforming process can be viewed as the refinement of a set of
polyhedral neighbor sets, where each has its axis longer than the preceding one. This
property ensures that the algorithm terminates with a conforming mesh in a finite
number of steps, in the same way as the algorithm described in [32]. 0

THEOREM 3.2. The subdivision of the faces is congruent with the internal subdi-
vision of the tetrahedra.

Proof Note that all possible situations for refining the boundary of each tetra-
hedron are based on the relation between the longest edge of each face, since we are
using the 4T Rivara algorithm. This refinement at the boundary can also be achieved
by subdivision of the tetrahedron following the order of its marked edges, taking in
account its type and the corresponding graph. 0
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COROLLARY 3.3. The meshes obtained by application of the previous algorithm
are conforming.

The data structure is similar to that used in [11]. With this data structure
implementation of the corresponding derefinement algorithm and of the multi-grid
method are relatively simple.

Remark: The n-dimensional Algorithm.
The above ideas can be generalized to grids comprised of n- simplices in n dimen-

sions. Although the n-dimensional case must be studied more carefully, we can say
that the mesh conformity would be assured from conformity of the immediately lower
dimensional skeleton:

I-skt(Tm) C 2-skt(Tm) C ... C (n - 1)-skt(Tm)
where k-skt(Tm) denotes the k-dimensional skeleton.

The number of possible configurations obtained by subdividing a simplex obvi-
ously continues to increase with the dimension just as observed in progression from
the triangle to the tetrahedron. Hence, an implementation of the algorithm in which
only the ordered list of edges that characterizes each subdivision is taken into account
to perform the subdivision, seems to be more appealing.

It can be noted here that in a general n-dimensional simplex we need n indices
to classify the edges by their length: Hence for the n-dimensional simplex we have:

- type 1: the longest edge of the n-simplex.
- type k: the longest edge of each (n - k)-simplex of the corresponding (n - k)-

skeleton.
- type n: the remaining edges.

4. Complexity of the algorithm. Consider the 3D case. The number of el-
ements of Tm has the order of the number of vertices, N, so steps 1 and 2 of the
algorithm in Section 2.1 have a complexity of O(N). In assuring the conformity of
the skeleton we are not using the 2D refinement algorithm presented in Reference [25]
since we have to check each element again if some node is added in step 4.1. This
implies as many loops on elements as vertices are added to assure conformity, so the
complexity is at most O(N2) for local refinement; however it is O(N) when global
refinements are performed. Finally, steps 4 and 5 present a complexity of O(N).
Combining these estimates the complexity in 3D is

O(N) + O(N2) + O(N) = O(N2) for local refinement,
O(N) + O(N) + O(N) = O(N) for global refinement.

It is worth noting here that the above study provides an upper bound of the
number of operations required by the algorithm. Numerical experiments indicate that,
in practice, the algorithm performs like a linear complexity algorithm. Nevertheless,
we present in the following paragraphs another version of the algorithm that exhibits
a linear complexity with respect to the worst case: O(N).

A better complexity will be obtained if the conformity test can be improved to
O(N). This can be accomplished at the storage cost of introducing a new vector of ele-
ments belonging to the hull of each edge IT[l:A,l:NUME}, where NUMEis the actual
number of edges in the mesh and A is the maximum number of tetrahedra sharing the
same edge. Note that in general the hull h(E) of an edge relative to the triangulation
is not a convex set. In addition, we will need the vector of surronding edges for each
node IEX[NUMNj. This vector defines for each node the edge of which it is in the
midpoint. As in previous algorithms [25] this vector will also be used when coarsening
the mesh. We recall that one of the vectors in our data structure is IMNODE(NUMN)
for the nodes. In IMNODE only the proper nodes of each level are kept.
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FIG. 10. Hull of an edge relative to the teuellation

The previous algorithm can now be modified to assure the associated conformity
as follows:

For each new-node N let E be its surrounding edge, then:
For each tetrahedron t in h(E), do:
1. If t is non-conforming, then:

1.1. A node is added at the midpoint
of the longest edge of each non-conforming
face of t.

1.2. Add a node to the midpoint of the
longest edge of t.

End if.
End for.

End for.

This procedure to assure the conformity has a complexity of O(Na), where Na is
the number of added nodes due to refining. Since LNa < N the linear complexity
of the algorithm is proved.

5. Quality of the meshes. Many parameters can be chosen for measuring the
quality of a mesh in 3 or higher dimensions. Here we refer to such measures as
estimates of "shape" of the tetrahedra. For example, Whitehead [34]used the relative
thickness of a simplex S:

(1)
r(S)

p(S) = d(S) ,

where r(S) is the mdius of S, that is, the distance from its centroid to its boundary,
and d(S) is the diameter of S, that is, the length of its longest edge. Stynes [33]
introduced

(2) t(S) = area(S)
d2(S)

for the bisection method applied to triangles. This ratio can be generalized easily to
higher dimensions as

(3) t(S) = volume(S)
dn(S) ,
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where n is the dimension of the simplex S. Other authors (see for example, [9]) have
used

(4) r(S)
ratio(S) = R(S) ,

(6)

where r(S) is now the length of the radius of the inscribed sphere and R(S) is the
radius of the circumsphere. Similarly, the eccentricity [9] of polyhedra, i.e. the ratio
of the lengths of the longest and shortest edge, can be similarly computed to estimate
shape quality.

For tetrahedron T and each vertex P of T, Rivara and Levin [32] use the solid
angle at P to define

(5) ~T = mini sin-1 (1 - cos2o:p - cos2 {3p - COS2jp + 2 cOSO:p cos{3p COSjp )1/2}

Moreover, for each conforming mesh, T, they assign the number ~T = min ~T to obtain
a global measure for the mesh. With these parameters they classify the tetrahedra into
four classes and offer some numerical results regarding the evolution of bad tetrahedra
when certain refinements are performed.

Liu and Joe [16, 17] introduce the estimate

'fJ(T) = 3yt>'I>'2>'3 ,
>'1 + >'2 + >'3

where >'i are the eigenvalues of the matrix A(R, M) = (M R-1)t M R-1 for matrices
M and R associated with a given tetrahedron T and a regular tetrahedron with the
same volume as T. The columns of M are the vectors corresponding to the edges
joining a vertex to the other vertices of T and R is similarly defined for the reference
tetrahedron. They prove that 'fJ(T) is independent of the order of the vertices and
that:

(7) 'fJ(T) = 12 (volume)2/3
~~ l? '.=1 j

where li means the length of the edge i.
Our objective in the following numerical experiments is to compare these param-

eters in representative examples in order to study the change in shape quality of the
tetrahedra as successive local refinements are carried out with the algorithm of section
3.

6. Numerical examples. Here we present some refinements case studies to
show the behavior of the 3D algorithm. All the calculations were performed on a
Sun-4 workstation with the f77 compiler optimization option on.

The first example corresponds to global refinement of a mesh comprised initially
of two regular tetrahedra. Figure 11 presents the CPU times versus the number of
added nodes in each step of refinement. Five global refinements were performed and
the finest mesh has 1785 nodes and 8192 tetrahedra.

The second example is for local refinement towards an edge in a prismatic domain.
Here, 40 local refinements were done to obtain 864 nodes and 3878 tetrahedra in the
finest mesh. The CPU times are shown in Figure 12. As a final example, Figure 13
illustrates local refinement toward a vertex in a 3D domain. The mesh 13 (c) contains
251 nodes and 1016 tetrahedra. The CPU time increases in the manner shown in
Figure 14. Note the slightly quadratic behavior of the first algorithm.
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In Table 2 the first four problems in [32]are listed in terms of the coordinates
of their four vertices. They are also considered in [17]. PI and P2 are well-shaped
tetrahedra; P3 is a poorly shaped tetrahedron and P4 is the regular tetrahedron.
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TABLE 2
Problem& 1 to .4

PI P2 P3 P4
T/ = 0.8846 T/ = 0.8399 1] = 0.2835 T/ = 1.0000

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.0 2.0 2.0 4.0 0.0 0.0 0.5 0.0 0.0 2v'3 0.0 0.0
1.0 5.0 0.0 0.0 4.0 0.0 1.5 5.0 2.0 v'3 3.0 0.0
0.5 0.5 5.0 0.0 0.0 4.0 0.5 0.5 5.0 v'3 1.0 v'3

The left parts of Table 3 show the results reproduced based on the longest edge
bisection [32]. The middle part of the Table 3 are for QLRB in [17]. Note that the
results using our algorithm in the right column are comparable to those by the longest
edge bisection of Rivara and Levin [32] and the QLRB algorithm of Liu and Joe [17].

TABLE 3
Compari&on of problem& 1 to -4

Problem 1.

Longest edge bisection QLRB Based on Skeleton
level NTET TJmin ~min NTET TJmin NTET TJmin ~min

1 1 .885 31.39 1 .885 1 .885 31.39
2 8 .682 18.19 8 .682 8 .682 18.19
3 86 .479 8.33 64 .663 64 .571 13.84

Problem 2.

Longest edge bisection QLRB Based on Skeleton
level NTET TJmin ~min NTET T/min NTET TJmin ~min

1 1 .840 30.00 1 .840 1 .840 30.00
2 8 .657 16.78 8 .504 8 .504 9.59
3 86 .458 7.42 64 .504 64 .504 9.59

Problem 3.

Longest edge bisection QLRB Based on Skeleton
level NTET TJmin ~min NTET TJmin NTET T/min ~min

1 1 .284 4.28 1 .284 1 .284 4.28
2 8 .181 2.62 8 .181 8 .181 2.62
3 192 .165 1.59 64 .170 64 .163 1.59

Problem 4.

Longest edge bisection QLRB Based on Skeleton
level NTET T/min ~min NTET TJmin NTET TJmin ~min

1 1 1.00 45.00 1 1.00 1 1.00 45.00
2 8 .546 13.63 8 .546 8 .546 13.63
3 306 .458 7.42 64 .429 64 .429 7.42

Figure 15 shows local refinements of a 3D domain in which a singularity on the
interior corner edge is assumed. The mesh 15(b) contains 1365 nodes and 6657 tetra-
hedra.
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(a) Initial mesh (b) After 10 local refinements

(c) Detail of the refinement on the surface

FIG. 15. Local refinement at a re-entrant corner

The evolution of the shape measurements through the sequence of 10 refinements
can be observed in Figure 16. Here Min sol ang is the minimum solid angle, Min
pla ang is the minimum planar angle, Min Styn is the minimum value of (2), Min
Whit is the minimum of (l),min etha is the minimum of (7), and minmtio r/R is the
minimum of the ratio (4).
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7. Conclusions. The ideas presented here provide a framework for studying
local refinement in 3D and extend the ideas developed by Rivara and other researchers.
In fact the way in which a 3-dimensional refinement is deduced from the application
of the similar 2-dimensional scheme can be recursively generalized to any dimension.
The first algorithm presented here has a higher complexity, in terms of an upper
bound of the number of operations required, than the one developed by Liu and Joe
[17, 16]. This study of complexity suggests an improved version. In this case, the use
of a new vector of elements belonging to the hull of each edge reduces the algorithm
complexity to linear.

The edges of each tetrahedron are ordered in a compatible way with the order in
each face, and this makes it possible to write the algorithms so that only this order has
to be taken into account to perform iteratively the subdivision of each tetrahedron.

The results obtained seem to confirm that measure of degeneracy is bounded, and
converges asymptotically to a fixed value. Even though we do not have a mathematical
proof of this property, the algorithm developed in this paper has shown itself to be in
practice a powerful tool for the refinement of tetrahedral grids. Moreover, as in the
2D case, in 3D it is also possible to develop inverse algorithms for the derefinement
of meshes created by means of the refinement algorithm [26]. This is an important
feature for dealing with time dependent problems.

These algorithms based on bisection can be extended in such a way that the
refinement algorithm yields in a sequence of refined meshes, which though physically
non-nested, still retain an underlying logical refinement structure [4].
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