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Abstract. A theory of a posteriori estimation of modeling errors in local quantities of

interest in the analysis of heterogeneous elastic solids is presented. These quantities may,

for example, represent averaged stresses on the surface of inclusions or molli�cations

of pointwise stresses or displacements, or, in general, local features of the \�ne-scale"

solution characterized by continuous linear functionals. These estimators are used to

construct goal-oriented adaptive procedures in which models of the microstructure are

adapted so as to deliver local features to a preset level of accuracy. Algorithms for

implementing these procedures are discussed and preliminary numerical results are given.

1 Introduction

The idea of automatically adapting characteristics of mathematical and computational

models of heterogeneous media so as to obtain results of a speci�ed level of accuracy was

advanced in recent work on hierarchical modeling [11, 7]. In these papers, a posteriori

bounds on the error in solutions to elastostatics problems induced by replacing �ne-

scale micromechanical properties by coarser scale or e�ective properties were derived in

global energy norms. These error estimates were then used as a basis for an adaptive

modeling process in which only enough �ne-scale information suÆcient to deliver results

of a preset accuracy, measured in energy norms, is used to characterize the model. The

resulting adaptive process can lead to signi�cant computational savings, making possible

the analysis of micromechanical e�ects in some cases that are intractable by traditional
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approaches. Preliminary results on extensions of these adaptive approaches to a class of

models depicting material damage were discussed in [6].

It is clear that adaptive procedures based on energy-norm estimates may be insensitive to

very localized features of the �ne-scale solution. Modeling error in characterizing average

stresses on interfaces or on surfaces of inclusions, for example, may not be detected by

energy-norm estimates unless virtually all of the �ne-scale information is used in de�ning

the computational/mathematical model. To eÆciently control the accuracy of models of

such local features, local estimates of modeling error are required.

In the present paper, we extend the theory of a posteriori modeling error estimation for

heterogeneous materials to \quantities of interest", by which we mean local features of the

response. In our theory, these quantities of interest could represent, for example, average

stresses on material interfaces, boundary displacements, or molli�ed pointwise displace-

ments, strains, or stresses. Mathematically, the quantities of interest are any feature of the

�ne-scale solution that can be characterized as continuous linear functionals on the space

of functions to which the �ne-scale solution belongs. We establish computable upper and

lower bounds and sharp estimates of the errors in such quantities.

With local error estimates available, we develop goal-oriented adaptive procedures, in which

the model is automatically adapted to deliver local quantities of interest to within a preset

level of accuracy. These procedures are reminiscent of recently developed goal-oriented

adaptive procedures for controlling numerical approximation error in linear functionals

[8]. In the present investigation, we present an adaptive procedure that, in principle,

utilizes only information on �ne scale structures in a neighborhood of the local feature

of interest suÆcient to produce results of preset level of accuracy; information outside

of this neighborhood need only reect the response of models de�ned using e�ective,

homogenized properties of the material.

Some basic features and assumptions underlying the approaches described here should be

noted :

1. By an exact, �ne-scale model, problem, or solution, we mean the exact solution u

to a weak boundary value problem in elastostatics in which the elastic coeÆcients,

characterized by a possibly rapidly varying elasticity tensor E = E(x) which is

known a priori. The modeling error e is the function de�ned as the di�erence between

u and any coarse-scale solution ~u to an elastostatics problem de�ned on the same

domain, subjected to the same external forces as the �ne-scale problem, but with

a di�erent elasticity tensor ~E as coeÆcients in the problem : e = u � ~u. The

function ~u, for example, could be the \homogenized solution" u0, the solution of

the problem in which e�ective properties, characterized by a constant or piecewise

constant \homogenized" elasticity tensor E0, are used.
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2. In applications of our theory and algorithms, the coarse-scale solutions are generally

computed using various numerical methods, such as �nite elements. But estimation

of numerical error is not considered in this paper; the techniques developed in [1, 8]

can be used to control approximation error. Our concern here is modeling error in

the sense discussed above, and this error can have quite di�erent properties and

behavior than numerical approximation error.

3. In theory, the tensor �eld E(x) de�nes at almost every point x in the body, an array

(Eijkl(x)) with the standard ellipticity and symmetry properties. In our applications,

E is generally piecewise constant, representing a so-called n-phase material with

n isotropic phases, n > 1. For a large class of such materials, it is possible to

represent the function E characterizing the �ne-scale microstructure with suÆcient

accuracy using actual X-ray Computed Tomography (CT) imaging procedures with

the overall model adaptivity package to characterize E. The important details of

this feature of adaptive modeling is the subject of a companion paper [10]. As will

be seen later in this present paper, only CT-data suÆcient to de�ne E = E(x) in

local neighborhoods of features of interest are needed; the enormous data storage

requirements of a global characterization of E called for in earlier global approaches

are, in general, not needed in the goal-oriented adaptivity approaches advocated

here.

4. It is important to emphasize that our goal is not to estimate e�ective properties

of heterogeneous materials. Indeed, the familiar process of homogenization of �ne-

scale features of the coeÆcients is here only a mathematical artifact embedded

in a broader computational strategy. Our error estimates and adaptive procedures

apply to modeling errors in any kinematically admissible function, independent of

the coeÆcients, so long as the underlying problem is well-posed. Nevertheless, the

choice of approximations or regularizations of E will obviously a�ect modeling error

and rates of convergence of the adaptive process to models delivering results with

the target accuracies.

5. Extensions of our adaptive procedures to nonlinear problems are possible, although

such extensions are not considered here. These extensions involve incorporating the

goal-oriented adaptive process as an inner loop in a broader iterative process. In

e�ect, such extensions amount to rede�ning the level of sophistication of the model

used as a datum for error estimation.

In the section following this Introduction, we describe the model class of problems and

lay down notations and preliminaries. We then establish a series of results on local es-

timates of errors in quantities of interest, including upper and lower bounds on errors.
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This is followed by the description of a goal-oriented adaptive modeling algorithm. An

analysis of the algorithm and results of preliminary numerical implementations are then

presented. The detailed description of a computational environment designed to automate

such procedures and the interface with imaging and visualization modules is the subject

of forthcoming work [10].

2 Notations and Preliminaries

We consider an open bounded 
 � R
N ; N = 1; 2, or 3, with boundary @
. In general,


 can be multi-connected and very irregular, but for present purposes, it suÆces to take


 to be Lipschitz with piecewise smooth boundaries. We denote by Hm(
); m � 0, the

space of functions with distributional derivatives of order � m in L2(
) and we use the

notation Hm(
)
def
= (Hm(
))N and L2(
)

def
= (L2(
))N .

The closure of 
 is the region occupied by a linearly elastic material body in static

equilibrium under the action of body forces f 2 L2(
) and surface tractions t 2 L2(�t),

with �t � @
. The displacements u of the body are prescribed as zero on �u = @
 n �t.

The space of admissible functions V(
) is therefore de�ned as

V(
)
def
=
�
v : v 2 H1(
);vj�u = 0

	
; (1)

the boundary values being understood in the sense of traces of H1�functions. In general,

we will assume that meas �u > 0; otherwise, our development is only altered by replacing

V(
) with V(
) nR(
), R(
) being the linear space of in�nitesimal rigid motions of the

body.

The total potential energy of the body is characterized by the functional

J : V(
)! R

J (v)
def
= 1

2
B(v;v)� F(v);

(2)

where B(�; �) is the symmetric, positive-de�nite, bilinear form,

B : V(
)�V(
)! R

B(u;v)
def
=

Z



rv : Eru dx;
(3)

and F(�) is the linear functional,

F : V(
)! R

F(v)
def
=

Z



f � v dx +

Z
�t

t � v ds
(4)
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It is also convenient to introduce the weighted inner product ((�; �))E on (L2(
))N
2

�
(L2(
))N

2

de�ned by

((A;B))E
def
=

Z



A : EB dx (5)

for tensor �elds A;B. Then, B(u;v) = ((rv;ru))E and

((rv;rv))E = B(v;v) = kvk2E(
); (6)

where k�kE(
) is the energy norm of v.

In (3), E 2 (L1(
))N
2�N2

is the uniformly elliptic tensor of elasticities which satis�es

the standard symmetry conditions : Eijkl(x) = Ejikl(x) = Eijlk(x) = Eklij(x), for a.e

x in 
; 1 � i; j; k; l � N . The notation (:) denotes contraction of second order tensors

(rv : Eru = vi;jEijkluk;l, summing on i; j; k; l, vi;j = @vi=@xj; uk;l = @uk=@xl). There,

also, dx = dx1 dx2 � � � dxN is the volume measure and ds the surface element.

The material characterized by E is assumed to have a complex, not necessarily periodic

microstructure so that E is a highly oscillatory function of position x over 
.

2.1 The Fine-Scale Problem

Under the stated assumptions, the displacement �eld u 2 V(
) that exists when the body

is in static equilibrium under the action of external forces (f ; t) is the unique admissible

displacement that minimizes J over V(
) and is the solution to the following weak

boundary value problem :

Find u 2 V(
) such that

B(u;v) = F(v) 8v 2 V(
):
(7)

We shall refer to (7) as the �ne-scale problem since it involves all the �ne-scale features of

the material, and to its solution u as the �ne-scale solution. In the sense of distributions,

(7) is equivalent to the elliptic system,

�r � � = f

� = E"

2" = ru +ruT

u = 0 on �u

� � n = t on �t;

(8)

where n is the unit outward normal to @
, and � and " are the stress and strain tensor

�elds, respectively.
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2.2 The Regularized Problem

Various regularizations of problem (9) are obtained by replacing E by a regularized elas-

ticity tensor. For example, if the microstructure is assumed to be periodic, it is common

practice to replace E by a homogenized elasticity tensor E0, de�ning e�ective properties

of the material, usually a constant tensor. For details on homogenization of periodic com-

posites, see [4, 9]. Another approach used to regularize heterogeneous materials assumes

the existence of a Representative Volume Element (RVE); see, for example, [3]. However,

without restricting ourselves to a constant function, we assume that the elasticity tensor

E is replaced by a suitable approximation E0 that satis�es the uniform ellipticity and

symmetry conditions. We then can consider the regularized or homogenized problem,

Find u0 2 V(
) such that

B0(u0;v) = F(v) 8v 2 V(
)
(9)

where now

B0(u0;v)
def
=

Z



rv : E0
ru0 dx; (10)

and F(�) is again given by (4). The unique solution u0 to (9) is called the regularized or

homogenized solution.

2.3 Review of Energy Estimates of the Modeling Error

The modeling error is de�ned as the di�erence between the �ne-scale solution and the

regularized solution

e0
def
= u� u0: (11)

We now review two results on the estimation of this error in the energy norm. For this

purpose, we de�ne

I0 = (I�E�1E0); (12)

where I is the identity tensor. Next, for g 2 V, we de�ne the associated linear residual

functional Rg : V(
)! R,

Rg(v) = �

Z



rv : E I0rg dx; v 2 V(
): (13)
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Theorem 2.1 Let u and u0 be the solutions to problems (7) and (9) respectively. Then

the following holds :

�low � ke
0kE(
) = ku� u

0kE(
) � �upp; (14)

where

�low
def
=
jRu0(u

0)j

ku0kE(
)
; �upp

def
=
��
I0ru

0; I0ru
0
��1=2

E
: (15)

�

For proofs, see [11] and [5]. Both assertions follow from the fact that the modeling error

e0 is governed by

B(e0;v) = Ru0(v); 8v 2 V(
): (16)

Using the above result, it is possible to estimate the energy norm of the di�erence between

the �ne-scale solution u and any admissible function z 2 V(
).

Corollary 2.1 Let u and u0 be the solutions to problems (7) and (9), respectively, and

let z 2 V(
) n f0g. Then,

�zlow � ku� zkE(
) � �zupp; (17)

where

�zlow
def
=
jF(z)� B(z; z)j

kzkE(
)
; �zupp

def
=
q
2(J (z)� J (u0)) + �2upp; (18)

with J as de�ned in (2) and �upp as de�ned in (15).

Proof. The proof for the assertion ku� zkE(
) � �zupp can be found in [7]. For the lower

bound, we have

B(u� z;v) = F(v)� B(z;v) 8 v 2 V(
): (19)

Then, it is straightforward to show that

ku� zkE(
) = sup
v2V(
)nf0g

jF(v)� B(z;v)j

kvkE(
)
; (20)

and by picking v = z, we obtain

ku� zkE(
) �
jF(z)� B(z; z)j

kzkE(
)
; (21)

which concludes the proof. �

7
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3 Modeling Error in Local Quantities of Interest

As mentioned in the Introduction, global estimates of modeling error, such as the energy

estimate presented in Theorem 2.1, can be insensitive to local quantities of interest such

as interfacial stresses. To address this problem, we now present a theory for the estimation

of modeling error in quantities of interest that can be characterized as continuous linear

functionals on the space of admissible functions V(
). This theory represents a signi�cant

departure frommore traditional theories of error estimation in that it allows the estimation

of modeling error in virtually any quantity of interest to the analyst, such as (molli�ed)

pointwise values of stresses and displacements, boundary displacements and averaged

stresses. Concrete examples of such quantities of interest will be given in the section on

numerical experiments.

The goal in this section is to obtain bounds on the quantity L(u) � L(u0) = L(e0),

where L 2 V
0

(
) is a continuous linear functional. We �rst present a result on obtaining

upper and lower bounds on L(e0). Next, we show how this theory can be extended to

obtain bounds on the error in arbitrary admissible functions z 2 V(
), i.e., bounds on the

quantity L(u)�L(z) = L(u�z), where z is not necessarily the solution to an elastostatics
problem posed on the domain 
. The motivation behind this is that the modeling error in

local quantities of interest can often be reduced by adding perturbations to the regularized

solution such that the sum is still an admissible function.

3.1 Upper and Lower Bounds on Modeling Errors in Local Quantities of

Interest

Let L be a continuous linear functional on V(
), L 2 V
0

(
). As a �rst step, we �rst pose

the following global adjoint �ne-scale problem :

Find w 2 V(
) such that

B(v;w) = L(v) 8v 2 V(
)
(22)

The solution w to the adjoint �ne-scale problem is referred to as the �ne-scale inuence

function. The regularized version of this problem is referred to as the adjoint regularized

problem and reads

Find w0 2 V(
) such that

B0(v;w0) = L(v) 8v 2 V(
):
(23)

The solution to this problem will be referred to as the regularized inuence function. In

what follows, we sometimes refer to the problems (7) and (9) as the primal �ne-scale

8
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problem and primal regularized problem, respectively. It is obvious that, under the stated

assumptions on E and E0, the functions w and w0 exist and are uniquely de�ned.

It immediately follows that the modeling error in the inuence function

�e0
def
= w �w0 (24)

satis�es (recall (16))

B(v; �e0) = Rw0(v) 8v 2 V(
): (25)

We also note that �e0 satis�es the following relationship (analogous to (14)) :

��low � k�e
0kE(
) = kw �w

0kE(
) � ��upp (26)

where

��low
def
=
jRw0(w0)j

kw0kE(
)
; ��upp

def
=
��
I0rw

0; I0rw
0
��1=2

E
: (27)

We now state the main result on the estimation of modeling error in quantities of interest :

Theorem 3.1 Let u0 and w0 be the solutions to problems (9) and (23), respectively.

Then,

�low � L(e0) � �upp (28)

where

�low
def
=

1

4
(�+low)

2 �
1

4
(��upp)

2 +Ru0(w
0); (29)

�upp
def
=

1

4
(�+upp)

2 �
1

4
(��low)

2 +Ru0(w
0); (30)

with arbitrary s 2 R+ ,

��upp
def
=
q
s2�2upp � 2 ((I0ru0; I0rw0))E + s�2��2upp; (31)

and

��low
def
=
jRsu0�s�1w0(u0 + ��w0)j

ku0 + ��w0kE(
)
; (32)

where �upp and ��upp are de�ned by (15) and (27), respectively, and �� is given by

�� =
B(u0;w0)Ru0(su

0 � s�1w0)� B(u0;u0)Rw0(su0 � s�1w0)

B(u0;w0)Rw0(su0 � s�1w0)� B(w0;w0)Ru0(su0 � s�1w0)
: (33)

9
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Proof. The outline of the proof is given below; see [5] for details. The error in the quantity

of interest can be decomposed as

L(e0) = B(e0;w) = B(e0; �e0) + B(e0;w0) = B(se0; s�1�e0) +Ru0(w
0); (34)

where s 2 R
+ is an, as yet, unspeci�ed positive scaling factor. Now, using a simple

property of an inner product, we rewrite the expression (34) as

L(e0) =
1

4
kse0 + s�1�e0k2E(
) �

1

4
kse0 � s�1�e0k2E(
) +Ru0(w

0): (35)

The �rst two terms on the right hand side of (35) can be bounded above by noting that

the quantity se0 � s�1�e0 satis�es

B(se0 � s�1�e0;v) = Rsu0�s�1w0(v) 8v 2 V(
); (36)

and hence

kse0 � s�1�e0kE(
) � ��upp; (37)

with,

��upp
def
=

�Z



I0r(su0 � s�1w0) : E I0r(su0 � s�1w0) dx

�1=2

=
�
s2�2upp � 2((I0ru

0; I0rw
0))E + s�2��2upp

	1=2
:

(38)

To obtain a lower bound on the quantity se0 � s�1�e0, we note that

kse0 � s�1�e0kE(
) = kRsu0�s�1w0kE0(
) �
jRsu0�s�1w0(v)j

kvkE(
)
; (39)

for any v 2 V(
) n f0g. A linear combination of u0 and w0 of the form v = u0 + ��w0,

�� 2 R, is then used in the above expression to obtain the best possible lower bound. The

value �� is found by a simple extremization process. The third term Ru0(w
0) depends

only on known quantities. �

It can be shown that the optimal value of the scaling factor s is given by s� =p
k�e0kE(
)=ke0kE(
). However, since �e0 and e0 are not known exactly, we use s� =p
��upp=�upp. Also, in our numerical experiments, we employ the following estimates of

the modeling error in the quantity of interest :

L(e0) � �est;upp
def
=

1

4
(�+upp)

2 �
1

4
(��upp)

2 +Ru0(w
0); (40)

10
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and

L(e0) � �est;low
def
=

1

4
(�+low)

2 �
1

4
(��low)

2 +Ru0(w
0): (41)

An important feature of the theorem above is that the elasticity tensor E0 need not be a

constant function; it need only satisfy the uniform ellipticity and symmetry conditions.

3.2 Modeling Error in Quantities of Interest for Admissible Functions

We now demonstrate how to obtain bounds on the quantity L(u � z) for admissible

functions z 2 V(
); z 6= 0, where L 2 V
0

(
) denotes a quantity of interest. We �rst

de�ne, for s 2 R+ , the functional J �
s : V(
)! R,

J �
s (v)

def
=

1

2
B(v;v)� (sF � s�1L)(v); v 2 V(
): (42)

It is easy to see that :

� The functional J �
s has a unique minimizer ��s that satis�es

B(��s ;v) = (sF � s�1L)(v); 8 v 2 V(
): (43)

Moreover,

�
�
s � su� s�1w; (44)

where u is the unique solution to (7) and w is the unique solution to (22).

� If v 2 V(
);v 6= 0, then, in the spirit of Corollary 2.1, we have

��low(v) � k(su� s�1w)� vkE(
) = k�
�
s � vkE(
) � ��upp(v); (45)

where,

��upp(v)
def
=
q
2 (J �

s (v)� J
�
s (su

0 � s�1w0)) + (��upp)
2; (46)

and

��low(v)
def
=
j(sF � s�1L)(v)� B(v;v)j

kvkE(
)
; (47)

where ��upp is as de�ned in (31).

11
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These preliminaries bring us to the following result :

Theorem 3.2 Let u0 and w0 be the solutions to problems (9) and (23), respectively. Let

z 2 V(
); z 6= 0, and denote the quantity of interest by L 2 V
0

(
). Moreover, let s 2 R+ .

Then, the quantity L(u� z) can be bounded above and below :

�low(z) � L(u� z) � �upp(z) (48)

with

�low(z)
def
= 1

4
(�+low(sz+ s�1w0))2 � 1

4
(��upp(sz� s�1w0))2

+ F(w0)� B(z;w0);
(49)

and

�upp(z)
def
= 1

4
(�+upp(sz+ s�1w0))2 � 1

4
(��low(sz� s�1w0))2

+ F(w0)� B(z;w0);
(50)

and ��upp(v) and ��low(v), v 2 V(
), are de�ned in (46) and (47), respectively.

Proof. We recall that L(v) = B(v;w) 8 v 2 V(
). Therefore,

L(u� z) = B(u� z;w)

= B(u� z;w�w0) + B(u� z;w0)

= B(s(u� z); s�1(w�w0)) + B(u;w0)� B(z;w0)

(51)

and since the energy norm k�kE(
) is derived from the bilinear form B(�; �),

L(u� z) = 1
4
ks(u� z) + s�1(w�w0)k2E(
)

� 1
4
ks(u� z)� s�1(w �w0)k2E(
)

+ B(u;w0)� B(z;w0)

= 1
4
k(su+ s�1w)� (sz+ s�1w0)k2E(
)

� 1
4
k(su� s�1w)� (sz� s�1w0)k2E(
)

+ F(w0)� B(z;w0):

(52)

Since the terms F(w0) and B(z;w0) can be computed exactly, we need only bound the

terms k(su� s�1w)� (sz� s�1w0)kE(
). From (45), we have

��low(sz� s�1w0) � k(su� s�1w)� (sz� s�1w0)kE(
) � ��upp(sz� s�1w0) (53)

12
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which concludes the proof. �

Note that the optimal value of the scaling factor s is now given by

s� =

s
kw �w0kE(
)
ku� zkE(
)

�

s
��upp
�zupp

: (54)

Later, we will also use the following estimates of the quantity L(u� z) :

L(u� z) � �zest;upp
def
= 1

4
(�+upp(sz+ s�1w0))2 � 1

4
(��upp(sz� s�1w0))2

+ F(w0)� B(z;w0);
(55)

and

L(u� z) � �zest;low
def
= 1

4
(�+low(sz+ s�1w0))2 � 1

4
(��low(sz� s�1w0))2

+ F(w0)� B(z;w0):
(56)

4 Goal-Oriented Adaptive Modeling

One way to overcome the loss of �ne-scale information due to regularization techniques is

to use the regularized solution as a starting point in a procedure that adaptively improves

the quality of the solution. Such procedures are common in the context of �nite elements

where a coarse mesh solution is used as a starting point and is adaptively improved upon by

re�ning the mesh. Here, we are concerned with adapting the model of the microstructure

itself. We begin this section by describing a goal-oriented strategy for model adaptation

for a given quantity of interest. We then present an algorithm based on this strategy.

4.1 Adaptive Modeling Strategy

Our strategy for adapting the material model based on modeling error in a quantity of

interest L 2 V
0

(
) consists of :

1. Solution of the regularized problems (9) and (23) for u0 and w0, respectively

2. Estimation of the modeling error L(u� u0) in the quantity of interest using Theo-

rem 3.1

3. If required, enhancement of the regularized solution u0 by taking into account the

�ne-scale material features over a \region of inuence"

13
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Let us elaborate further on the third part of our strategy. Suppose 
L � 
 is determined

to be (in a fashion to be described shortly) the region where the �ne-scale elasticity tensor

E most inuences the quantity of interest L. We propose solving a problem on 
L with

the regularized solution u0 providing the boundary conditions. More precisely, de�ne

�Lt
def
= @
L \ �t; �Lu

def
= @
L n �Lt: (57)

De�ne the local function space on 
L as

V(
L) =
�
v 2 V(
);v = 0 on 
 n 
L;vj�Lu = 0

	
: (58)

Next, an extension operator EL : V(
L)! V(
) is introduced, de�ned by :

vL 2 V(
L); EL(vL) = v such that vj
L = vL;vj
n
L = 0: (59)

The restriction of the regularized solution u0 to the domain of inuence 
L is de�ned as

u0L : u0L
def
= u0j
L. Then ~uL is sought as the solution to the following weak boundary value

problem :

Find ~uL 2 fu
0
Lg+V(
L) such that

BL(~uL;vL) = FL(vL) 8vL 2 V(
L);
(60)

where the bilinear and linear forms are de�ned as

BL(~uL;vL)
def
=

Z

L

rvL : Er~uL dx; (61)

and

FL(vL)
def
=

Z

L

f � vL dx+

Z
�Lt

t � vL ds; (62)

respectively. Thus, ~uL is a perturbation on 
L that takes into account the �ne-scale

microstructure. Moreover, it equals the primal regularized solution u0 on the �Lu portion

of its boundary. Using the extension operator introduced earlier, we arrive at a locally

enhanced function ~u 2 V(
) de�ned as :

~u
def
= u0 + EL(~uL � u

0
L): (63)

We now make two observations :

14
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� The locally enhanced solution ~u 2 V(
) is an admissible function and satis�es the

kinematic constraint ~uj�u = 0, even though it is not the solution to a global problem

posed on 
.

� The modeling error in the quantity of interest L corresponding to the perturbed

solution is L(u)�L(~u) = L(u� ~u). This quantity can be bounded above and below

using Theorem 3.2.

We now propose a technique to determine the \domain of inuence" 
L. We consider a

non-overlapping partition P of the domain 
 into cells �k, 1 � k � N(P), where N(P)
is the total number of cells in the partition. De�ne

�k;upp
def
=

�Z
�k

I0ru
0 : E I0ru

0 dx

� 1

2

��k;upp
def
=

�Z
�k

I0rw
0 : E I0rw

0 dx

� 1

2

;

(64)

and note that

�2upp =

N(P)X
k=1

�2k;upp;
��2upp =

N(P)X
k=1

��2k;upp; (65)

where �upp and ��upp were introduced in (15) and (27), respectively. Next, note that the

proof of Theorem 3.1 (see [5]) is based on the decomposition

L(e0) = B(e0; �e0) + B(e0;w0); (66)

which implies that

jL(e0)j � �
def
= �upp��upp + �uppkw

0kE(
): (67)

This suggests that the cells k in which the quantity

�k
def
= �k;upp��k;upp + �k;uppkw

0kE(�k) (68)

exceeds a tolerance can be picked to constitute the domain of inuence 
L.

15
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4.2 The Goal-Oriented Adaptive Local Solution Algorithm (GOALS)

We begin by considering quantities of interest of the type

L(v) =

Z
!

l(v) dx; ! � 
; (69)

where l is a linear map : l : V(
) ! L1
loc(
). Our algorithm can be easily modi�ed to

accommodate quantities of interest of other types. The GOALS algorithm can now be

stated as follows :

Step 1. Initialization. Given the initial data 
, �u, �t, E, f and t, construct a non-

overlapping partition of the domain P = f�kg; k = 1; 2 : : :N(P). Specify error tolerance

parameters �TOL and ÆTOL, 0 < ÆTOL < 1.

Step 2. Regularization. Compute the homogenized elasticity tensor E0. Solve the primal

regularized problem (9) for u0 and the adjoint regularized problem (23) for w0.

Step 3. Modeling Error Estimation. Compute error indicators �k, ��k and �k for 1 � k �
N(P), using (64) and (68). Estimate the modeling error in the quantity of interest using

Theorem 3.1. Denote this estimate by �est.

Step 4. Tolerance Test. If �est � �TOL � L(u0), STOP.

Step 5. Domain of Inuence. Determine initial guess for \domain of inuence" 
L as all

the cells that intersect !, the region over which the quantity of interest is de�ned :


L = [j2J�j J
def
= fj : �j \ ! 6= ;g : (70)

Compute the quantities �L; ��L, and �L :

�L
def
=

(X
k2J

�2k;upp

) 1

2

; ��L
def
=

(X
k2J

��2k;upp

) 1

2

; �L
def
= �L��L + �Lkw

0kE(
L) (71)

Step 6. Update Domain of Inuence. Determine the \bad neighbors" of 
L, i.e., if �i >

ÆTOL � �L, mark �i as bad and update 
L :


L  
L [ f bad neighbors g : (72)

Update the quantities �L; ��L, and �L.

Step 7. Solution of Local Problem. Solve local problem (60) on 
L for ~uL. Construct the

locally enhanced solution ~u 2 V(
) using (63).

Step 8. Estimate Modeling Error. Estimate the modeling error L(u�~u) using Theorem 3.2

and denote the estimate by �est. If �est � �TOL � L(~u), STOP. Else, GOTO Step 6.

16
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In many applications, the decay of local e�ects may be very fast, meaning that 
L is often

small in comparison with 
. However, cases can be anticipated, such as composites with

�ber reinforcements, where decay rates are small and relatively large domains of inuence

may be needed to attain the target accuracies.

5 Numerical Experiment

To illustrate the adaptive modeling strategy proposed earlier, we consider a partially

loaded 2-phase composite material in which the matrix material and the cylindrical in-

clusions are both isotropic. The volume fraction of the inclusions is taken to be 0:3 and

they are randomly dispersed in the matrix material as shown in Figure 1. The mate-

rial properties are taken to be (E = 100:0MPa; � = 0:2) for the matrix material and

(E = 1000:0MPa; � = 0:2) for the inclusions, where E is the Young's modulus and � is

the Poisson's ratio. Plane strain conditions are assumed to hold.

y

x
ω

Figure 1: Schematic of the composite body considered. Dashed lines indicate the parti-

tioning of the domain into cells.

We are interested in determining a material model that accurately predicts the following

quantity of interest :

L(v) =
1

j!j

Z
!

�11(v) dx =
1

j!j

Z
!

�
C1

@v1
@x

+ C2
@v2
@y

�
dx; (73)

where ! is the region occupied by the inclusion indicated in Figure 1. This quantity of

interest is the average of the �11 component of the stress tensor on the inclusion ! (with

appropriate material constants C1 and C2).

In order to evaluate the accuracy and e�ectivity of various bounds, we compute reference

�ne-scale solutions u and w using well resolved h-p meshes and the h-p adaptive �nite

17
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Figure 2: The �11 component of the stress �eld �(u).

element code ProPHLEXTM [2]. For instance, the h-p mesh used in computing the primal

�ne-scale solution u has 111; 000 degrees of freedom. The �11 component of the stress �eld

�(u) is shown in Figure 2.

The domain is partitioned intoN(P) = 42 cells as indicated by the dashed lines in Figure 1

(Step 1 of the GOALS algorithm). Because of the lack of microstructural periodicity, the

homogenized properties of the domain are taken to be the average of the Hashin-Shtrikman

upper and lower bounds [3] (Step 2). Next, the homogenized problems (9) and (23) are

solved accurately to obtain the homogenized solutions u0 and w0, respectively. Again,

this is done using the h-p adaptive �nite element code ProPHLEXTM.

As the next step in the GOALS algorithm, the modeling error indicators �k;upp, ��k;upp,

and �k are computed using (64) and (68). In Figures 3, 4, and 5, we show the normalized

quantities �k, ��k, and �k, 1 � k � 42, respectively. A major di�erence between the

distribution of the primal and the adjoint error indicators is that the primal indicators

are global in nature whereas the adjoint indicators are highly local. In fact, only two

cells contribute substantially to the adjoint modeling error estimate ��upp. This localized

behavior is also seen in the distribution of the error indicators �k.

To assess the quality of the error bounds and estimates computed in this step of the

GOALS algorithm, we use the notion of an e�ectivity index . For a given error estimate,

the e�ectivity index is de�ned as the ratio of the estimated error to the true error. In

our case, we compute the \true error" using the reference solutions u and w. The closer

the e�ectivity index is to unity, the better the quality of the estimate. Thus, the e�ec-

tivity index of the upper bound on the homogenization error �upp introduced in (15) is

18
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Figure 3: Distribution of the quantity �k;upp normalized with respect to the maximum.
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Figure 4: Distribution of the quantity ��k;upp normalized with respect to the maximum.

�upp=ku� u0kE(
). First, the e�ectivity indices of the estimates corresponding to the pri-

mal problem are shown Table 1. We see that the upper bound �upp is very close to true

homogenization error ku� u0kE(
), whereas the lower bound is ineÆcient.

The e�ectivity indices of the estimates associated with the adjoint problem are next shown
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Figure 5: Distribution of the quantity �k normalized with respect to the maximum.

�upp
ku� u0kE(
)

1.0848

�low
ku� u0kE(
)

0.4966

Table 1: E�ectivity indices of the estimates associated with the primal problem.

in Table 2. For the adjoint problem, both the upper and lower bounds on kw �w0kE(
)
are seen to be accurate. The bounds �upp and �low on the modeling error in the quantity

of interest are far from unity as expected; for a detailed analysis of the accuracy of these

bounds, see [5]. The arithmetic average of these bounds, denoted by �av, and the estimates

of the modeling error �est;low and �est;upp are much more reasonable and can be used to

drive the adaptive process.

The relative modeling error in the quantity of interest L, de�ned as L(u � u0)=L(u) is

found to be 351%. In order to reduce this error, we adapt the material model as follows.

The cell containing the inclusion ! is chosen as an initial guess for the domain of inuence


L. Note that this is the cell with the largest error indicator �k. The local problem (60)

is solved on this cell using a well-resolved h-p adaptive mesh, and the enhanced solution

~u is constructed. The error in the quantity of interest is now drastically reduced and we

�nd L(u� ~u)=L(u) = 6:7%.

The material model is further adapted by choosing 
L to be the union of the three cells
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��upp
kw�w0kE(
)

1.1191

��low
kw�w0kE(
)

0.9979

�upp
L(e0)

-7.0692

�low
L(e0)

8.8310

�av
L(e0)

0.8809

�est;low
L(e0)

1.0574

�est;upp
L(e0)

0.7044

Table 2: E�ectivity indices of the estimates associated with the adjoint problem corre-

sponding to the quantity of interest L.

with the largest �ks. This leads to an L-shaped domain (see Fig. 5). The process of

solving a local problem, as described above, is repeated and the enhanced solution ~u is

constructed. Now, we �nd L(u� ~u)=L(u) = 0:9%.

Thus, the material model required to predict the quantity of interest L to within 1%

consists of the �ne-scale features in just three cells of the partition, and the homogenized

material elsewhere.

6 Summary and Conclusions

The concept of adaptive modeling of materials makes no assumptions about the existence

of Representative Volume Elements (RVEs) or the periodicity of microstructure, as is

usual in the traditional analysis of composites. Using regularization as part of a larger

algorithm, adaptive modeling attempts to deliver material models that satisfy preset

accuracy requirements.

In this work, we present a new theory for the goal-oriented adaptive modeling of hetero-

geneous materials, and an algorithm for adapting material models based on our theory of

local modeling error estimation. Preliminary numerical examples demonstrate the advan-

tages that such modeling techniques have over traditional methods. Extensive numerical

experiments, details of a parallel computational infrastructure for the adaptive model-

ing of heterogeneous materials, and the incorporation of imaging technology into such
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analyses are subjects to be addressed in future work.
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