
Discontinuous Galerkin methods for Coupled Flow
and Reactive Transport Problems1

Shuyu Sun and Mary F. Wheeler

The Center for Subsurface Modeling (CSM)

The Institute for Computational Engineering and Sciences (ICES)

The University of Texas, Austin, Texas 78712, USA

Abstract. Primal discontinuous Galerkin methods with interior penalty are
proposed to solve the coupled system of flow and reactive transport in porous
media, which arises from many applications including miscible displacement
and acid stimulated flow. A cut-off operator is introduced in the discontin-
uous Galerkin schemes to treat the coupling of flow and transport and the
coupling of transport and reaction. The uniform positive definitiveness and

the uniform Lipschitz continuity are established for the commonly used disper-
sion/diffusion tensor. Interestingly, the polynomial degrees of approximation
for the flow and the transport equations needs to be in the same order in order
to maintain the convergence of DG applied to the coupled system. Optimal or
nearly optimal convergences for both flow and transport are obtained when the
same polynomial degrees of approximation are chosen for flow and transport.
That is, error estimate in L2(H1) for concentration is optimal in h and nearly
optimal in p with a loss of 1/2; error estimates in semi-L∞(H1) for pressure
and in L∞(L2) for velocity establish optimality in h and sub-optimality in p

by 1/2; error estimates for concentration jump and pressure jump are optimal
in both h and p.

1. Introduction

The discontinuous Galerkin (DG) methods [8, 22, 23, 40, 25, 26, 4, 5] have re-
cently gained popularity for many attractive properties. First of all, the DG meth-
ods are locally mass conservative in the element level while most classical Galerkin
finite element methods are not. In addition, they have less numerical diffusion than
most conventional algorithms, thus are likely to offer more accurate solution, es-
pecially for advection-dominated transport problems. These methods are useful in
treating rough coefficient problems and in capturing discontinuities in the solution
due to the nature of employing discontinuous function spaces. The DG methods
can naturally handle inhomogeneous boundary conditions and curved boundaries.
The average of the trace of the fluxes from a DG solution along an element edge is
continuous and can be extended so that a continuous flux is defined over the entire
domain. As a consequence, DG can be easily coupled with conforming methods.
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Furthermore, for smooth flow and transport problems, DG with varying p can yield
nearly exponential convergence rates. For time-dependent problems in particular,
the mass matrices are block diagonal for DG, but not for conforming methods.
This provides a computational advantage, especially if explicit time integrations
are used.

The approximation spaces for DG are localized in each element, which provides
a flexibility allowing for general non-conforming meshes with variable degree of
approximation. This results in a substantially easier h-p adaptive implementation
for DG than for conventional approaches. This flexibility also increases the ef-
ficiency in adaptivities because the unnecessary areas do not need to be refined
in order to maintain conformity of the mesh. Moreover, DG has sharper error
indicators available due to the localized behaviors of DG errors; in other words,
there is less pollution of errors. This leads a more effective adaptivity for DG than
for nonconforming methods. In addition, for time dependent transient problems,
the nonconforming nature of DG allows for a easy and effective mesh modification
dynamically with time. This dynamic adaptivity is crucial for massive transient
problems involving a long simulation time, in particular, for problems where strong
physics occurs in a small part of the domain with a moving location.

From a computer science point of view, the DG methods are easier to implement
than most traditional finite element methods. The trial and test spaces are easier to
construct than conforming methods because they are local. This results a simpler
and more efficient implementation. For instance, DG methods are simpler to im-
plement than two other locally conservative approaches, finite volume methods and
mixed finite element methods. In particular, the implementation of finite volume
methods for high order degree of approximation is substantially more difficult and
less flexible than DG methods. The treatment of full tensor permeability or diffu-
sivity usually demands an expanded form involving more computational efforts for
mixed finite element methods, whereas DG methods naturally treat the full tensor
due to its primal form. Unlike traditional finite element methods, the DG algo-
rithms need only the mesh information about elements and interfaces, but without
the mesh information about edges and vertices. Such a property of space dimension
independence offers a great convenience to implement, test and debug the DG code.
That is, we can rapidly debug and test the DG code in one space dimension, and
then apply the same code to computational intensive three-dimensional problems.
In addition, the simple communication pattern between elements makes DG po-
tentially being well parallelizable, which is a necessity for many massive problems
having excessive memory and CPU time requirements.

Flow and reactive transport are fundamental processes arising in many diver-
sified fields such as petroleum engineering, groundwater hydrology, environmental
engineering, soil mechanics, earth sciences, chemical engineering and biomedical
engineering. Realistic simulations for simultaneous flow, transport and chemical
reaction present significant computational challenges [2, 29, 45, 12, 17, 18, 21, 27,
28, 31, 37, 39, 19, 38, 46, 9, 32, 10, 20, 42], see also [11] and references therein.
Traditional algorithms employ operator-splitting to treat flow, advection, diffusion-
dispersion and chemical reaction sequentially and separately. Godunov [14] and
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characteristics [3, 15] are popular methods for the advection-diffusion subprob-
lem. While the operator splitting approach allows one to employ different algo-
rithms to each subproblem as well as to implement complicated kinetics in a mod-
ular fashion [41, 16, 29], it can result in slow convergence and a loss of accuracy
[37, 41, 16]. DG has recently applied for flow and transport problems in porous me-
dia [43, 34, 24]. Four version of primal DG methods have been developed, namely,
OBB-DG (Oden-Babuška-Baumann [22] DG scheme), NIPG (Non-symmetric Inte-
rior Penalty Galerkin) [24, 26], SIPG (Symmetric Interior Penalty Galerkin) [44, 33]
and IIPG (Incomplete Interior Penalty Galerkin) [13, 33], for solution of flow and
reactive transport problems. Explicit a posteriori error estimates of DG for re-
active transport were studied in [36, 35]. DG for miscible displacement has been
investigated by numerical experiments and was reported to exhibit good numer-
ical performance [23]. However, to the best of our knowledge, the mathematical
analysis on the convergence behavior of DG applied to coupled flow and transport
problems has not been conducted. In this paper, we restrict our attention to the
primal DG methods with interior penalty terms, i.e., NIPG, SIPG and IIPG. The
estimates can be extended for the OBB-DG method.

The paper is organized as follows. In the following section, we describe the mod-
eling equations. The DG schemes and some of their properties are introduced in
section 3. Given the concentration error, the error estimates for the flow problem
are derived in section 4. The error analyses for reactive transport problem are given
in section 5 assuming the velocity error is known. Error estimates for the coupled
system are obtained in section 6 based on the results in previous sections. The last
section concludes with remarks.

2. Governing equations

In this paper, we consider coupled flow and reactive transport for a single flowing
phase in porous media. Results for system of multiple species with kinetic reactions
can be derived by similar arguments. For convenience, we will assume Ω is a
polygonal and bounded domain in Rd(d = 1, 2 or 3) with boundary ∂Ω = Γin∪Γout.
Here we denote by Γin the inflow boundary and Γout the outflow/no-flow boundary,
i.e.

Γin = {x ∈ ∂Ω : u · n < 0},
Γout = {x ∈ ∂Ω : u · n ≥ 0},

where n denotes the unit outward normal vector to ∂Ω. Let T be the final simulation
time. The classical equations governing the flow and reactive transport in porous
media are as follows.

• Flow equation

(2.1) −∇ · (K(c)∇p) ≡ ∇ · u = q, (x, t) ∈ Ω × (0, T ],

• Reactive transport equation

∂φc

∂t
+ ∇ · (uc−D(u)∇c) = qc∗ + r(c), (x, t) ∈ Ω × (0, T ],(2.2)

• Dispersion/diffusion tensor

(2.3) D(u) = dmI + |u| {αlE(u) + αt (I −E(u))} ,
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where the unknowns are p (the pressure in the fluid mixture), u (the Darcy velocity
of the mixture, i.e. the volume of fluid flowing across a unit across-section per unit
time) and c (the concentration of interested species, i.e., amount of species per unit
volume of the fluid mixture). Here, we assume that the conductivity K is a globally
Lipschitz continuous function of c, and is uniformly symmetric positive definite and
bounded. The effective porosity φ is assumed to be time-independent, uniformly
bounded above and below by positive numbers. The dispersion/diffusion tensor
D(u) has contributions from molecular diffusion and mechanical dispersion, and can
be calculated by equation (2.3), where E(u) is the tensor that projects onto the u
direction, whose (i, j) component is (E(u))ij =

uiuj

|u|2
; dm is the molecular diffusivity

and is assumed to be strictly positive; αl and αt are the longitudinal and transverse
dispersivities, respectively, and are assumed to be nonnegative. The reaction term
r(c) is assumed to be a locally Lipschitz continuous function. The imposed external
total flow rate q is a sum of sources (injection) and sinks (extraction) and is assumed
to be bounded. Concentration c∗ in the source term is the injected concentration
cw if q ≥ 0 and is the resident concentration c if q < 0.

Flow and reactive transport are two-way coupled here. The velocity from the
flow equation has a direct influence on the advection behavior of transport phe-
nomena. On the other hand, the concentration from the transport equation affects
conductivity, which has a significant influence on the flow pattern. The influence
of conductivity by concentration can occur in many situations. For example, in
miscible displacement, the viscosity is strongly affected by the concentration of
species. The commonly used constitutive relation is the quarter-power mixing rule

µ(c) =
(
cµ−0.25

s + (1 − c)µ−0.25
o

)−4
. In acid stimulated flow, the permeability is

dramatically affected by the reaction between chemical and rock.
We consider the following boundary conditions for this problem.

u · n = uB (x, t) ∈ ∂Ω × (0, T ],(2.4)

(uc−D(u)∇c) · n = cBu · n (x, t) ∈ Γin × (0, T ],(2.5)

(−D(u)∇c) · n = 0 (x, t) ∈ Γout × (0, T ],(2.6)

where cB is the inflow concentration. The initial concentration is specified in the
following way.

(2.7) c(x, 0) = c0(x) x ∈ Ω.

3. Discontinuous Galerkin scheme

3.1. Notation. Let Eh be a family of non-degenerate quasi-uniform and possibly
non-conforming partitions of Ω composed of triangles or quadrilaterals if d = 2, or
tetrahedra, prisms or hexahedra if d = 3. The non-degeneracy requirement (also
called regularity) is that the element is convex, and that there exists ρ > 0 such
that if hj is the diameter of Ej ∈ Eh, then each of the sub-triangles (for d = 2) or
sub-tetrahedra (for d = 3) of element Ej contains a ball of radius ρhj in its interior.

The quasi-uniformity requirement is that there is τ > 0 such that h
hj

≤ τ for all

E ∈ Eh, where h is the maximum diameter of all elements. We assume no element
crosses the boundaries of Γin or Γout. The set of all interior edges (for 2 dimensional
domain) or faces (for 3 dimensional domain) for Eh are denoted by Γh. On each
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edge or face γ ∈ Γh, a unit normal vector nγ is chosen. The set of all edges or faces
on Γout and on Γin for Eh are denoted by Γh,out and Γh,in, respectively, for which
the normal vector nγ coincides with the outward unit normal vector.

For s ≥ 0, we define,

(3.1) Hs(Eh) =
{
φ ∈ L2(Ω) : φ|E ∈ Hs(E), E ∈ Eh

}
.

We now define the average and the jump for φ ∈ Hs(Eh), s > 1/2. Let Ei, Ej ∈
Eh and γ = ∂Ei ∩ ∂Ej ∈ Γh with nγ exterior to Ei. Denote

{φ} =
1

2

((
φ|Ei

)∣∣
γ

+
(
φ|Ej

)∣∣∣
γ

)
,(3.2)

[φ] =
(
φ|Ei

)∣∣
γ
−
(
φ|Ej

)∣∣∣
γ
.(3.3)

Denote the upwind value of concentration c∗|γ as follows:

c∗|γ =

{
c|Ei

if u · nγ ≥ 0
c|Ej

if u · nγ < 0.

The usual Sobolev norm on Ω is denoted by ‖·‖m,Ω [1]. The broken norms are
defined, for positive integer m, as

(3.4) |||φ|||2m =
∑

E∈Eh

‖φ‖2
m,E .

The discontinuous finite element space is taken to be

(3.5) Dr (Eh) ≡
{
φ ∈ L2(Ω) : φ|E ∈ Pr(E), E ∈ Eh

}
,

where Pr(E) denotes the space of polynomials of (total) degree less than or equal
to r on E. Note that we present error estimators in this paper for the local space
Pr, but the results also apply to the local space Qr (the tensor product of the
polynomial spaces of degree less than or equal to r in each space dimension) because
Pr(E) ⊂ Qr(E).

The inner product in
(
L2(Ω)

)d
or L2(Ω) is indicated by (·, ·) and the inner

product in the boundary function space L2(γ) is indicated by (·, ·)γ . The norm

(Lp(Ω))
d

for a vector-value function is defined as

‖u‖(Lp(Ω))d = ‖|u|‖Lp(Ω) ,

where |·| is the standard vector norm defined by |u| = (u · u)
1/2

. For simplicity, the
norms ‖·‖L2(Ω) and ‖·‖(L2(Ω))d are also written as ‖·‖0 for scalar-value and vector-

value functions, respectively. The norm (Lp(Ω))d×d for a matrix-value function is
defined as

‖A‖(Lp(Ω))d×d = ‖‖A‖2‖Lp(Ω) ,

where ‖·‖2 is the matrix 2-norm defined by ‖A‖2 = sup|u|=1 |Au|. The cut-off
operator M is defined as

M(c)(x) = min (c(x),M) ,(3.6)

M(u)(x) =

{
u(x) if |u(x)| 6 M
Mu(x)/ |u(x)| if |u(x)| > M

,(3.7)

where M is a large positive constant. By a straightforward argument, we can show
that the cut-off operator M is uniformly Lipschitz continuous in the following sense.
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Lemma 3.1. (Property of operator M) The cut-off operator M defined as
in equations (3.6) and (3.7) is uniformly Lipschitz continuous with a Lipschitz
constant one, that is,

‖M(c) −M(w)‖L∞(Ω) ≤ ‖c− w‖L∞(Ω) ∀c ∈ L∞(Ω) ∀w ∈ L∞(Ω),

‖M(u) −M(v)‖(L∞(Ω))d ≤ ‖u− v‖(L∞(Ω))d ∀u ∈ (L∞(Ω))
d ∀v ∈ (L∞(Ω))

d
.

We use the following hp approximation results, which can be proved using the
techniques in [6, 7]. Let E ∈ Eh, φ ∈ Hs(E) and hE is the diameter of E. Then there
exists a constant K independent of φ, r, and hE and a sequence of zhE

r ∈ Pr(E),
r = 1, 2, · · · , such that

(3.8)





∥∥φ− zhE
r

∥∥
q,E

≤ K
hµ−q

E

rs−q ‖φ‖s,E 0 ≤ q < s,

∥∥φ− zhE
r

∥∥
q,∂E

≤ K
h

µ−q− 1
2

E

rs−q− 1
2

‖φ‖s,E 0 < q + 1
2 < s,

where µ = min(r + 1, s).
We shall also use the following inverse inequalities, which can be derived using

the method in [30]. Let E ∈ Eh, v ∈ Pr(E) and hE is the diameter of E. Then
there exists a constant K independent of v, r and hE , such that

(3.9)

{ ‖Dqv‖0,∂E ≤ K r

h
1/2

E

‖Dqv‖E , q ≥ 0
∥∥Dq+1v

∥∥
0,E

≤ K r2

hE
‖Dqv‖0,E q ≥ 0.

3.2. Continuous in time scheme. We consider NIPG (the non-symmetric in-
terior penalty Galerkin method), SIPG (the symmetric interior penalty Galerkin
method) and IIPG (the incomplete interior penalty Galerkin method) for the flow
and the transport equations. The three methods for flow and the three schemes
for transport lead to nine different combinations for coupled flow and transport
problems. However, we note that only IIPG for flow is compatible with primal DG
methods for transport in the sense defined in [13].

For flow, we introduce the bilinear form a(p, ψ) and the linear functional l(ψ),

a (p, ψ; c) =
∑

E∈Eh

∫

E

K(c)∇p · ∇ψ + J0,flow (p, ψ)

−
∑

γ∈Γh

∫

γ

{K(c)∇p · nγ} [ψ] − sflow

∑

γ∈Γh

∫

γ

{K(c)∇ψ · nγ} [p] ,

l (ψ) = (q, ψ) −
∑

γ∈Γh,out∪Γh,out

∫

γ

ψuB,

where sflow = −1 for NIPG, sflow = 1 for SIPG and sflow = 0 for IIPG. The interior
penalty term J0,flow(p, ψ) for flow is defined as

J0,flow(p, ψ) =
∑

γ∈Γh

r2flowσγ,flow

hγ

∫

γ

[p] [ψ] ,

where the penalty parameter σγ,flow is a constant on each edge or face γ. We assume
0 < σ0,flow ≤ σγ,flow ≤ σm,flow.
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For transport, we define the bilinear form B(c, w;u) as

B(c, w;u)(3.10)

=
∑

E∈Eh

∫

E

(D(u)∇c − cu) · ∇w −
∫

Ω

cq−w

−
∑

γ∈Γh

∫

γ

{D(u)∇c · nγ} [w] − stransp

∑

γ∈Γh

∫

γ

{D(u)∇w · nγ} [c]

+
∑

γ∈Γh

∫

γ

c∗u · nγ [w] +
∑

γ∈Γh,out

∫

γ

cu · nγw + J0,transp (c, w) ,

where stransp = −1 for NIPG, stransp = 1 for SIPG and stransp = 0 for IIPG. The
interior penalty term J0,transp(p, ψ) for transport is defined as

J0,transp(c, w) =
∑

γ∈Γh

r2transpσγ,transp

hγ

∫

γ

[c] [w] ,

where the penalty parameter σγ,transp is a constant on each edge or face γ. We
assume 0 < σ0,transp ≤ σγ,transp ≤ σm,transp. Here q+ is the injection source term
and q− is the extraction source term, i.e.,

q+ = max (q, 0) ; q− = min (q, 0) .

By definition, we have q = q+ + q−.
The linear functional L(w;u, c) is defined as

L(w;u, c) =

∫

Ω

r (M(c))w +

∫

Ω

cwq
+w −

∑

γ∈Γh,in

∫

γ

cBu · nγw.(3.11)

The continuous in time DG schemes for approximating (2.1)-(2.7) are as follows.
We seek PDG ∈ W 1,∞ (0, T ;Drflow

(Eh)) and CDG ∈ W 1,∞
(
0, T ;Drtransp

(Eh)
)

sat-
isfying,

a
(
PDG, v;M(CDG)

)
= l(v) ∀v ∈ Drflow

(Eh) , ∀t ∈ (0, T ],(3.12)
(
∂φCDG

∂t
, w

)
+B(CDG, w;uM ) = L(w;uM , CDG),(3.13)

∀w ∈ Drtransp
(Eh) , ∀t ∈ (0, T ],

(
φCDG, w

)
= (φc0, w) , ∀w ∈ Drtransp

(Eh) , t = 0,(3.14)

where uM ≡ M(uDG) with the DG velocity uDG defined below.

uDG = −K
(
M(CDG)

)
∇PDG x ∈ E, E ∈ Eh,(3.15)

uDG · n = −
{
K
(
M(CDG)

)
∇PDG · n

}

+
r2flowσγ,flow

hγ

∫

γ

(
PDG

∣∣
E
− PDG

∣∣
Ω\E

)

x ∈ γ = ∂Ei ∩ ∂Ej , Ei, Ej ∈ Eh and n exterior to Ei,

uDG · n = uB x ∈ ∂Ω.
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Here, uDG is defined at every interior point in each element, but only the normal
velocity component uDG ·n is defined on element interfaces and on domain bound-
aries, because this is all the information needed in the DG schemes in the transport
part.

3.3. Some properties of DG. The DG schemes are consistent. That is, the
true solution, if existed and essentially bounded, satisfies the DG schemes. This is
stated in the following lemma, noting that Drflow

(Eh) ⊂ Hsflow (Eh) , sflow > 3
2 and

Drtransp
(Eh) ⊂ Hstransp (Eh) , stransp >

3
2 .

Lemma 3.2. (Consistency) If p, c and u are the solution of (2.1)-(2.7) and are
essentially bounded, then they satisfy

a(p, v; c) = l(v) ∀v ∈ Hsflow (Eh) , sflow >
3

2
, ∀t ∈ (0, T ],(3.16)

(
∂φc

∂t
, w

)
+B(c, w;u) = L(w;u, c)(3.17)

∀w ∈ Hstransp (Eh) , stransp >
3

2
∀t ∈ (0, T ]

provided that the constant M for the cut-off operator is sufficiently large.

Proof. Let w ∈ Hstransp (Eh), stransp >
3
2 and E ∈ Eh. Multiplying equation (2.2)

by w|E , and integrating by parts, we have

(
∂φc

∂t
, w

)

E

−
∫

E

(uc−D(u)∇c) · ∇w +

∫

∂E

(uc−D(u)∇c) · n∂Ew

=

∫

E

qc∗w + r(c)w (x, t) ∈ Ω × (0, T ].

Summing over all elements in Eh, noting that the trace of the concentration and
its normal flux are continuous across edges/faces, and applying the boundary con-
ditions, we obtain the result for transport. The result for flow follows by a similar
argument. �

The element-wise mass conservative property of DG scheme is described as the
following Lemma.

Lemma 3.3. (Local mass balance) The approximation of the Darcy velocity
satisfies on each element E the following local mass balance property for overall
fluid.

∫

∂E\∂Ω

uDG · n

≡ −
∫

∂E\∂Ω

{
K∇PDG · n

}
(3.18)

+
∑

γ⊂∂E\∂Ω

r2flowσγ,flow

hγ

∫

γ

(
PDG

∣∣
E
− PDG

∣∣
Ω\E

)

=

∫

E

q −
∫

∂E∩∂Ω

uB
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The approximation of the concentration satisfies on each element E the following
conservative property for the mass of the species.

∫

E

∂φCDG

∂t
−
∫

∂E\∂Ω

{
D(uM )∇CDG · n

}
+

∫

∂E

CDG∗uM · n

+
∑

γ⊂∂E\∂Ω

r2transpσγ,transp

hγ

∫

γ

(
CDG

∣∣
E
− CDG

∣∣
Ω\E

)
(3.19)

=

∫

E

CDG∗q +

∫

E

r
(
M(CDG)

)
.

Proof. The chemical mass balance relationship given in (3.19) follows from the
DG scheme by fixing an element E and letting w ∈ Drtransp

(Eh) with w|E = 1,
w|Ω\E = 0. The mass balance relationship for overall fluid (3.18) follows from

the DG scheme by fixing an element E and letting v ∈ Drflow
(Eh) with v|E = 1,

v|Ω\E = 0. �

We remark that the ∂E terms in (3.18) and in (3.19) can be extended to a con-
tinuous flux defined over the entire domain Ω. We also note that the definition of
DG velocity uDG in (3.15) is compatible with the mass balance relationship (3.18).

4. Flow problem

Throughout the paper, we denote by K a generic positive constant that is inde-
pendent of h and r, but might depend on the solution of PDE; we denote by ε an
fixed positive constant that can be chosen arbitrarily small.

Theorem 4.1. (Error estimate for pressure) Let (u, p, c) be the solution to

(2.1)-(2.7), and assume p ∈ L2 (0, T ;Hsflow(Eh)), u ∈
(
L2
(
0, T ;Hsflow−1(Eh)

))d

and c ∈ L2 (0, T ;Hstransp(Eh)). We further assume that p, ∇p, c and ∇c are essen-
tially bounded. If the constant M for the cut-off operator and the penalty parameters
are sufficiently large, then there exists a constant K independent of h and r such
that

∥∥∥K1/2(c)∇
(
PDG − p

)∥∥∥
2

0
(t)(4.1)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

0
(t) +K

h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

and

J0,flow

(
PDG − p, PDG − p

)
(t)(4.2)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

0
(t) +K

h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−3
flow

,

where µflow = min (rflow + 1, sflow), µtransp = min (rtransp + 1, stransp), rflow ≥ 1,
sflow ≥ 2, rtransp ≥ 1, stransp ≥ 2, and δ = 0 in the cases of conforming meshes
with triangles or tetrahedra. In general cases, δ = 1.
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Proof. Let p̂ ∈ Drflow
(Eh) be an interpolant of concentration p such that the hp

result (3.8) holds. Define

ξ = PDG − p,

ξI = p− p̂,(4.3)

ξA = PDG − p̂ = ξ + ξI .

Subtracting the DG scheme equation from the weak formulation, we have for
any w ∈ Dr (Eh),

a(ξ, v;M(CDG)) + a(p, v;M(CDG)) − a(p, v; c) = 0.

Splitting ξ according ξ = ξA − ξI , we have

a(ξA, v;M(CDG))(4.4)

= a(p, v; c) − a(p, v;M(CDG)) + a(ξI , v;M(CDG)).

Choosing v = ξA, we obtain

a(ξA, ξA;M(CDG))(4.5)

= a(p, ξA; c) − a(p, ξA;M(CDG)) + a(ξI , ξA;M(CDG)).

Let us first consider the left hand side of error equation (4.5).

a(ξA, ξA;M(CDG))

=
∑

E∈Eh

∫

E

K(M(CDG))∇ξA · ∇ξA + J0,flow

(
ξA, ξA

)

−(1 + sflow)
∑

γ∈Γh

∫

γ

{
K(M(CDG))∇ξA · nγ

} [
ξA
]

The first two terms in above equation is nonnegative, and the third term can be
bounded by

∣∣∣∣∣∣
(1 + sflow)

∑

γ∈Γh

∫

γ

{
K(M(CDG))∇ξA · nγ

} [
ξA
]
∣∣∣∣∣∣

≤ h

Kr2flow

∑

E∈Eh

∥∥∥K 1
2

(
M(CDG)

)
∇ξA · n

∥∥∥
2

0,∂E
+
Kr2flow

h

∑

γ∈Γh

∥∥[ξA
]∥∥2

0,γ

≤ 1

2
|||K 1

2

(
M(CDG)

)
∇ξA|||20 +

1

2
J0,flow

(
ξA, ξA

)
.

where we have chosen penalty parameter to be sufficiently large such that σ0,flow ≥
2K. We have,

2a(ξA, ξA;M(CDG))

≥ |||K 1
2

(
M(CDG)

)
∇ξA|||20 + J0,flow

(
ξA, ξA

)
.

Let us bound the right hand side of error equation (4.5). The first two terms
can be written as follows.

a(p, ξA; c) − a(p, ξA;M(CDG))
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=
∑

E∈Eh

∫

E

(
K(M(c)) −K(M(CDG))

)
∇p · ∇ξA

−
∑

γ∈Γh

∫

γ

{(
K(M(c)) −K(M(CDG))

)
∇p · nγ

} [
ξA
]

−sflow

∑

γ∈Γh

∫

γ

{(
K(M(c)) −K(M(CDG))

)
∇ξA · nγ

}
[p]

Noting that
∣∣K(M(c)) −K(M(CDG))

∣∣ ≤ K
∣∣c− CDG

∣∣ and [p] = 0, we have

∣∣a(p, ξA; c) − a(p, ξA;M(CDG))
∣∣

≤ K
∥∥c− CDG

∥∥
0

∥∥∇ξA
∥∥

0

+K
∑

Ei∪Ej=γ∈Γh

(∫

γ

∣∣∣c− CDG
∣∣
Ei

∣∣∣
∣∣[ξA

]∣∣+
∫

γ

∣∣∣c− CDG
∣∣
Ej

∣∣∣
∣∣[ξA

]∣∣
)

≤ K
∥∥c− CDG

∥∥2

0
+ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)

+K
∑

Ei∪Ej=γ∈Γh

hγ

r2flow

(∫

γ

∣∣∣c− CDG
∣∣
Ei

∣∣∣
2

+

∫

γ

∣∣∣c− CDG
∣∣
Ej

∣∣∣
2
)

≤ K
∥∥c− CDG

∥∥2

0
+ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)

+K
∑

Ei∪Ej=γ∈Γh

hγ

r2flow

(∫

γ

∣∣c− ĉ|Ei

∣∣2 +

∫

γ

∣∣∣c− ĉ|Ej

∣∣∣
2
)

+K
∑

Ei∪Ej=γ∈Γh

hγ

r2flow

(∫

γ

∣∣∣ ĉ|Ei
− CDG

∣∣
Ei

∣∣∣
2

+

∫

γ

∣∣∣ ĉ|Ej
− CDG

∣∣
Ej

∣∣∣
2
)

≤ K
∥∥c− CDG

∥∥2

0
+ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)

+K
h

r2flow

h2µtransp−1

r
2stransp−1
transp

+K
r2transp

r2flow

∑

E∈Eh

∫

E

∣∣ĉ− CDG
∣∣2

≤ K
∥∥c− CDG

∥∥2

0
+ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)
+K

h2µtransp

r2flowr
2stransp−1
transp

+K
r2transp

r2flow

∑

E∈Eh

∫

E

|ĉ− c|2 +K
r2transp

r2flow

∑

E∈Eh

∫

E

∣∣c− CDG
∣∣2

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

0
+ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)

+K
h2µtransp

r2flowr
2stransp−1
transp

+K
h2µtransp

r2flowr
2stransp−2
transp

,

where ĉ ∈ Drtransp
(Eh) is an interpolant of concentration c such that the hp result

(3.8) holds and on the element interface γ = Ei ∩ Ej , ĉ is defined as

ĉ|γ = {ĉ} =
ĉ|Ei

+ ĉ|Ej

2
.
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The third term in the right hand side of error equation (4.5) can be written as
follows.

a(ξI , ξA;M(CDG))

=
∑

E∈Eh

∫

E

K(M(CDG))∇ξI · ∇ξA + J0,flow

(
ξI , ξA

)

−
∑

γ∈Γh

∫

γ

{
K(M(CDG))∇ξI · nγ

} [
ξA
]

−sflow

∑

γ∈Γh

∫

γ

{
K(M(CDG))∇ξA · nγ

} [
ξI
]

:=

4∑

i=1

Ti

Term T1 can be bounded using Cauchy-Schwartz inequality and approximation
result,

|T1| ≤ K
∑

E∈Eh

∫

E

∣∣∇ξI · ∇ξA
∣∣

≤ ε
∥∥∇ξA

∥∥2

0
+K

∥∥∇ξI
∥∥2

0

≤ ε
∥∥∇ξA

∥∥2

0
+K

h2µflow−2

r2sflow−2
flow

.

Term T2 can be bounded using Cauchy-Schwartz inequality for penalty term,

|T2| ≤ εJ0,flow

(
ξA, ξA

)
+KJ0,flow

(
ξI , ξI

)

≤ εJ0,flow

(
ξA, ξA

)
+K

h2µflow−2

r2sflow−3
flow

.

Term T3 can be bounded using approximation results on edge,

|T3| ≤ εJ0,flow

(
ξA, ξA

)
+K

h

k2

∑

γ∈Γh

∫

γ

∣∣{∇ξI · nγ

}∣∣2

≤ εJ0,flow

(
ξA, ξA

)
+K

h2µflow−2

r2sflow−1
flow

.

Term T4 can be bounded using the inverse inequality,

|T4| ≤ K
∑

γ∈Γh

∫

γ

∣∣{∇ξA · nγ

} [
ξI
]∣∣

≤ ε
h

k2

∑

γ∈Γh

∫

γ

∣∣{∇ξA · nγ

}∣∣2 +K
k2

h

∑

γ∈Γh

∫

γ

∣∣[ξI
]∣∣2

≤ ε
∥∥∇ξA

∥∥2

0
+K

h2µflow−2

r2sflow−3
flow

.
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When the mesh contains only triangles for two space dimensions or tetrahedra for
three space dimensions and is conforming, we can choose a continuous interpolant,
and then terms T2 and T4 vanish. Thus we have

∣∣a(ξI , ξA;CDG)
∣∣ ≤

4∑

i=1

|Ti|

≤ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)

+K
h2µflow−2

r2sflow−2
flow

+K
h2µflow−2

r2sflow−1
flow

+ δK
h2µflow−2

r2s−3
flow

≤ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)
+K

h2µflow−2

r2sflow−2−δ
,

where δ = 0 in the cases of conforming meshes with triangles or tetrahedra. In
general cases, δ = 1.

Substituting all these inequalities into equation (4.5), we have,

|||K 1
2

(
M(CDG)

)
∇ξA|||20 + J0,flow

(
ξA, ξA

)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

0
+ ε
∥∥∇ξA

∥∥2

0
+ εJ0,flow

(
ξA, ξA

)

+K
h2µtransp

r2flowr
2stransp−1
transp

+K
h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

.

Using the facts 1
K I ≤ K

(
M(CDG)

)
≤ KI and 1

K I ≤ K (c) ≤ KI, we have

|||K 1
2 (c)∇ξA|||20 + J0,flow

(
ξA, ξA

)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

0

+K
h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

.

The theorem follows from approximation results and the triangle inequality. �

Error estimates for velocity follow directly from the results on pressure.

Theorem 4.2. (Error estimate for velocity) Let (u, p, c) be the solution to

(2.1)-(2.7), and assume p ∈ L2 (0, T ;Hsflow(Eh)), u ∈
(
L2
(
0, T ;Hsflow−1(Eh)

))d

and c ∈ L2 (0, T ;Hstransp(Eh)). We further assume that p, ∇p, c and ∇c are essen-
tially bounded. If the constant M for the cut-off operator and the penalty parameters
are sufficiently large, then there exists a constant K independent of h and r such
that

∥∥uDG − u
∥∥2

0
(t) ≤ K

(
1 +

r2transp

r2flow

)
∥∥CDG − c

∥∥2

0
(t)(4.6)

+K
h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

,
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and
∑

γ∈Γh

∥∥uDG · nγ − u · nγ

∥∥2

0,γ
(t)(4.7)

+
∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

2

0,γ
(t) +

∥∥∥uDG
∣∣
Ej

− u
∥∥∥

2

0,γ
(t)

)

≤ K

(
r2flow

h
+
r2transp

h

)
∥∥c− CDG

∥∥2

0
(t) +K

h2µtransp−1

r
2stransp−2
transp

+K
h2µflow−3

r2sflow−4−δ
flow

,

where µflow = min (rflow + 1, sflow), µtransp = min (rtransp + 1, stransp), rflow ≥ 1,
sflow ≥ 2, rtransp ≥ 1, stransp ≥ 2, and δ = 0 in the cases of conforming meshes
with triangles or tetrahedra. In general cases, δ = 1.

Proof. The estimate relation (4.6) follows from Theorem 4.1 and the definition
of DG velocity uDG = −K(M(CDG))∇PDG at x ∈ E, E ∈ Eh. To bound∑

γ∈Γh

∥∥uDG · nγ − u · nγ

∥∥2

0,γ
(t), we let P̂ ∈ (Drflow

(Eh))
d

be an interpolant of

p such that the hp result (3.8) holds. We define û = K(M(CDG))∇P̂ in each
element. On the element interface γ = Ei ∩ Ej , û is defined as

û|γ = {û} =
û|Ei

+ û|Ej

2
.

Using the inverse inequality to relate values of uDG on interfaces with those inside
elements, we have

∑

γ∈Γh

∥∥uDG · nγ − u · nγ

∥∥2

0,γ
(t)

≤
∑

γ∈Γh

∥∥uDG · nγ − û · nγ

∥∥2

0,γ
(t) +

∑

γ∈Γh

‖û · nγ − u · nγ‖2
0,γ (t)

≤
∑

γ∈Γh

∥∥uDG · nγ − û · nγ

∥∥2

0,γ
(t) +K

h2µflow−3

r2sflow−3
flow

=
∑

γ∈Γh

∥∥∥∥−
{
K(M(CDG))∇PDG · nγ

}
+
r2flowσγ,flow

hγ

[
PDG

]
− û · nγ

∥∥∥∥
2

0,γ

(t)

+K
h2µflow−3

r2sflow−3
flow

≤ 1

2

∑

Ei∪Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− û|Ei

∥∥∥
2

0,γ
(t) +

∥∥∥uDG
∣∣
Ej

− û|Ej

∥∥∥
2

0,γ
(t)

)

+
∑

γ∈Γh

∥∥∥∥
r2flowσγ,flow

hγ

[
PDG

]∥∥∥∥
2

0,γ

(t) +K
h2µflow−3

r2sflow−3
flow

≤ K
r2flow

h

∑

E∈Eh

∫

E

∣∣uDG − û
∣∣2 + J0,flow

(
PDG − p, PDG − p

)
(t) +K

h2µflow−3

r2sflow−3
flow

≤ K
r2flow

h

∑

E∈Eh

∫

E

∣∣uDG − u
∣∣2 +K

r2flow

h

∑

E∈Eh

∫

E

|u − û|2
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+J0,flow

(
PDG − p, PDG − p

)
(t) +K

h2µflow−3

r2sflow−3
flow

≤ K
r2flow

h

∑

E∈Eh

∫

E

∣∣uDG − u
∣∣2 +K

r2flow

h

h2µflow−2

r2sflow−2
flow

+J0,flow

(
PDG − p, PDG − p

)
(t) +K

h2µflow−3

r2sflow−3
flow

≤ K
r2flow

h

∑

E∈Eh

∫

E

∣∣uDG − u
∣∣2 + J0,flow

(
PDG − p, PDG − p

)
(t) +K

h2µflow−3

r2sflow−4
flow

.

Substituting (4.6) and (4.2) into above inequality, we bound the first term in (4.7).
The second term in (4.7) follows by a similar argument. �

5. Reactive transport problem

We now state and prove two lemmas for the properties of dispersion/diffusion
tensor, which will be used to prove the error estimates for the transport problem.

Lemma 5.1. (Uniform positive definiteness of D(u) ) Let D(u) defined as
in equation (2.3), where dm(x) ≥ 0, αl(x) ≥ 0 and αt(x) ≥ 0 are nonnegative
functions of x ∈ Ω. Then

(5.1) D(u)∇c · ∇c ≥ (dm + min (αl, αt) |u|) |∇c|2 .
In particular, if dm(x) ≥ dm,∗ > 0 uniformly in the domain Ω, then D(u) is
uniformly positive definite and for all x ∈ Ω, we have,

(5.2) D(u)∇c · ∇c ≥ dm,∗ |∇c|2 .
Proof. Notice that

D(u)∇c · ∇c = dm∇c · ∇c+ |u| {αlE(u) + αt (I −E(u))}∇c · ∇c
= dm |∇c|2 + |u| |∇c|2 αl cos2(θ) + |u| |∇c|2 αt

(
1 − cos2(θ)

)

≥ (dm + min (αl, αt) |u|) |∇c|2 ,
where θ is the angle between u and ∇c, i.e.

cos(θ) =
u · ∇c
|u| |∇c| .

�

Lemma 5.2. (Uniform Lipschitz continuousness of D(u) ) Let D(u) defined
as in equation (2.3), where, dm(x) ≥ 0, αl(x) ≥ 0 and αt(x) ≥ 0 are nonnegative of
domain x ∈ Ω, and the dispersivities αl and αt is uniformly bounded, i.e. αl(x) ≤
α∗

l and αt(x) ≤ α∗
t . Then

(5.3) ‖D(u) −D(v)‖(L2(Ω))d×d ≤ kD ‖u− v‖(L2(Ω))d ,
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where kD = (4α∗
t + 3α∗

l ) d
3/2 is a fixed number (d = 2 or 3 is the dimension of

domain Ω).

Proof. Notice that

|D(u) −D(v)|1

=
d∑

i=1

max
j=1,··· ,d

∣∣∣(D(u))i,j − (D(u))i,j

∣∣∣

=

d∑

i=1

max
j=1,··· ,d

∣∣∣∣αtδij (|u|2 − |v|2) + (αl − αt)

(
uiuj

|u|2
− vivj

|v|2

)∣∣∣∣

≤
d∑

i=1

max
j=1,··· ,d

|αtδij (|u|2 − |v|2)| +
d∑

i=1

max
j=1,··· ,d

∣∣∣∣(αl − αt)

(
uiuj

|u|2
− uivj

|u|2

)∣∣∣∣

+

d∑

i=1

max
j=1,··· ,d

∣∣∣∣(αl − αt)

(
uivj

|u|2
− vivj

|u|2

)∣∣∣∣

+

d∑

i=1

max
j=1,··· ,d

∣∣∣∣(αl − αt)

(
vivj

|u|2
− vivj

|v|2

)∣∣∣∣

≤ dαt ||u|2 − |v|2| + 3d |αl − αt| |u − v|2
≤ (αt + 3 |αl − αt|) d |u − v|2 .

Thus,

|D(u) −D(v)|2 ≤
√
d |D(u) − D(v)|1

≤ (αt + 3 |αl − αt|) d3/2 |u − v|2 ,
where we have used the property of matrix norm: for any matrix A ∈ Rm×n,

1√
m

‖A‖1 ≤ ‖A‖2 ≤
√
n ‖A‖1 .

The result follows by integration. �

We now present the error estimate for transport problem.

Theorem 5.3. (Error estimate for transport) Let (u, p, c) be the solution to

(2.1)-(2.7), and assume p ∈ L2 (0, T ;Hsflow(Eh)), u ∈
(
L2
(
0, T ;Hsflow−1(Eh)

))d
,

c ∈ L2 (0, T ;Hstransp(Eh)), ∂c/∂t ∈ L2
(
0, T ;Hstransp−1(Eh)

)
and c0 ∈ Hstransp−1(Eh).

We further assume that p, ∇p, c and ∇c are essentially bounded. If the constant
M for the cut-off operator and the penalty parameters are sufficiently large, then
there exists a constant K independent of h and r such that

∥∥∥
√
φ
(
CDG − c

)∥∥∥
2

0
(t) +

∫ t

0

|||D 1
2 (u)∇

(
CDG − c

)
|||20(τ)dτ(5.4)

+

∫ t

0

Jσ
0

(
CDG − c, CDG − c

)
(τ)dτ

≤ K

∫ t

0

∥∥∥
√
φ
(
CDG − c

)∥∥∥
2

0
(τ)dτ +K

∫ t

0

∥∥u − uDG
∥∥2

0
(τ)dτ
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+K
h

r2transp

∫ t

0

∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

2

0,γ
+
∥∥∥uDG

∣∣
Ej

− u
∥∥∥

2

0,γ

)
(τ)dτ

+K
h

r2transp

∫ t

0

∑

γ∈Γh

∥∥u · nγ − uDG · nγ

∥∥2

0,γ
(τ)dτ +K

h2µtransp−2

r
2stransp−3
transp

where µflow = min (rflow + 1, sflow), µtransp = min (rtransp + 1, stransp), rflow ≥ 1,
sflow ≥ 2, rtransp ≥ 1, stransp ≥ 2, and δ = 0 in the cases of conforming meshes
with triangles or tetrahedra. In general cases, δ = 1.

Proof. Let ĉ ∈ Drtransp
(Eh) be an interpolant of concentration c such that the hp

result (3.8) holds. Define

ξ = CDG − c,

ξI = c− ĉ,(5.5)

ξA = CDG − ĉ = ξ + ξI .

Subtracting the DG scheme equation from the weak formulation, we have for
any w ∈ Drtransp

(Eh),
(
∂φξ

∂t
, w

)
+B

(
ξ, w;uM

)

= L
(
w;uM , CDG

)
− L (w;u, c) +B (c, w;u) −B

(
c, w;uM

)
.

Splitting ξ according ξ = ξA − ξI , we have

(
∂φξA

∂t
, w

)
+B(ξA, w;uM )(5.6)

= L
(
w;uM , CDG

)
− L (w;u, c) +

(
∂φξI

∂t
, w

)
+B(ξI , w;uM )

+B (c, w;u) −B
(
c, w;uM

)
.

Choosing w = ξA, we obtain
(
∂φξA

∂t
, ξA

)
+B(ξA, ξA;uM )(5.7)

= L
(
ξA;uM , CDG

)
− L

(
ξA;u, c

)
+

(
∂φξI

∂t
, ξA

)
+B(ξI , ξA;uM )

+B
(
c, ξA;u

)
−B

(
c, ξA;uM

)
.

Let us first consider the left hand side of error equation (5.7).
The first term can be written as,

(
∂φξA

∂t
, ξA

)
=

1

2

d

dt

∥∥∥
√
φξA

∥∥∥
2

0,Ω
.

The second term of equation (5.7) is,

B(ξA, ξA;uM )

=
∑

E∈Eh

∫

E

D(uM )∇ξA · ∇ξA −
∑

E∈Eh

∫

E

ξAuM · ∇ξA −
∫

Ω

q−
(
ξA
)2
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− (1 + sform)
∑

γ∈Γh

∫

γ

{
D(uM )∇ξA · nγ

} [
ξA
]

+
∑

γ∈Γh

∫

γ

ξA∗uM · nγ

[
ξA
]
+

∑

γ∈Γh,out

∫

γ

uM · nγ

(
ξA
)2

+ J0,transp

(
ξA, ξA

)

=:

7∑

i=1

Ri.

We usually integrate by parts the advection term at this step if transport is
not coupled with flow [33], which transfers a few terms into nonnegative terms.
However, for transport coupled with flow, we cannot do so because the velocity
here is approximated solution uM rather than true velocity u. It is easy to see that
terms R1, R3, R6 and R7 are nonnegative. We need to bound terms R2, R4 and
R5 by R1 +R3 +R6 +R7. Term R2 can be bounded using the boundedness of uM :

|R2| ≤
∑

E∈Eh

∫

E

∣∣ξA
∣∣ ∣∣∇ξA

∣∣

≤ ε|||D 1
2 (u)∇ξA|||20 +K

∥∥∥
√
φξA

∥∥∥
2

0
.

Term R4 is the term that leads the requirement of sufficient large penalties
for SIPG and IIPG. It can be bounded using the inverse inequality and the fact
1
K D (u) ≤ D

(
uM
)
≤ KD (u).

|R4| ≤ h

Kr2transp

∑

E∈Eh

∥∥∥D 1
2

(
uM
)
∇ξA · n

∥∥∥
2

0,∂E
(5.8)

+
Kr2transp

h

∑

γ∈Γh

∥∥[ξA
]∥∥2

0,γ

≤ 1

2
|||D 1

2

(
uM
)
∇ξA|||20 +

1

2
J0,transp

(
ξA, ξA

)

≤ 1

2
|||D 1

2 (u)∇ξA|||20 +
1

2
J0,transp

(
ξA, ξA

)
.

where we have chosen penalty parameter σ0,transp to be sufficiently large such that
σ0,transp ≥ 2K.

Term R5 is bounded by

|R5| ≤ K
h

r2transp

∑

E∈Eh

∥∥ξA∗
∥∥2

0,∂E
+ ε

r2transp

Kh

∑

γ∈Γh

∥∥[ξA
]∥∥2

0,γ

≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+ εJ0,transp

(
ξA, ξA

)
.

Thus,

B(ξA, ξA;uM )

≥ 1

3
|||D 1

2 (u)∇ξA|||20 +
1

3
J0,transp

(
ξA, ξA

)
−K

∥∥∥
√
φξA

∥∥∥
2

0
.

Let us bound the right hand side of error equation (5.7). Noting that uM · n =
uDG · n = u ·n on the domain boundary if the constant M for the cut-off operator
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is sufficiently large, we can write the first two terms as,

L
(
ξA;uM , CDG

)
− L

(
ξA;u, c

)
=

∫

Ω

(
r
(
M(CDG)

)
− r (M(c))

)
ξA

Using Lemma 3.1, we have,

∣∣L
(
ξA;uM , CDG

)
− L

(
ξA;u, c

)∣∣ ≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

∥∥ξI
∥∥2

0

≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

h2µtransp

r
2stransp

transp

|||c|||2s .

The third term in the right hand side of of error equation (5.7) can be bounded
as ∣∣∣∣

(
∂φξI

∂t
, ξA

)∣∣∣∣ ≤ K

∥∥∥∥
∂ξI

∂t

∥∥∥∥
0

∥∥∥
√
φξA

∥∥∥
0

≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

∥∥∥∥
∂ξI

∂t

∥∥∥∥
2

0

≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

h2µtransp−2

r
2stransp−2
transp

|||ct|||2s−1.

The fourth term in the right hand side of of error equation (5.7) is

B(ξI , ξA;uM )

=
∑

E∈Eh

∫

E

D(uM )∇ξI · ∇ξA −
∑

E∈Eh

∫

E

ξIuM · ∇ξA −
∫

Ω

q−ξIξA

−
∑

γ∈Γh

∫

γ

{
D(uM )∇ξI · nγ

} [
ξA
]
− sform

∑

γ∈Γh

∫

γ

{
D(uM )∇ξA · nγ

} [
ξI
]

+
∑

γ∈Γh

∫

γ

ξI∗uM · nγ

[
ξA
]
+

∑

γ∈Γh,out

∫

γ

uM · nγξ
IξA + Jσ

0

(
ξI , ξA

)

=:
8∑

i=1

Ti.

Terms T1 through T3 can be bounded by using Cauchy-Schwartz inequality and
approximation results,

|T1| ≤ ε|||D 1
2 (u)∇ξA|||20 +K

h2µtransp−2

r
2stransp−2
transp

|||c|||2s ,

|T2| ≤ ε|||D 1
2 (u)∇ξA|||20 +K

h2µtransp

r
2stransp

transp

|||c|||2s ,

|T3| ≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

h2µtransp

r
2stransp

transp

|||c|||2s .

Term T4 can be bounded by hiding in the penalty term and term T5 can be
bounded by using inverse inequalities,

|T4| ≤ ε
r2transp

Kh

∑

γ∈Γh

∥∥[ξA
]∥∥2

0,γ
+

Kh

r2transp

∑

E∈Eh

∥∥∇ξI · n
∥∥2

0,∂E

≤ εJ0,transp

(
ξA, ξA

)
+K

h2µtransp−2

r
2stransp−1
transp

|||c|||2s ,
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|T5| ≤ εh

Kr2transp

∑

E∈Eh

∥∥∥D 1
2 (u)∇ξA · n

∥∥∥
2

0,∂E
+
Kr2transp

h

∑

E∈Eh

∥∥ξI
∥∥2

0,∂E

≤ ε|||D 1
2 (u)∇ξA|||20 +K

h2µtransp−2

r
2stransp−3
transp

|||c|||2s .

The terms T6 through T8 can be bounded by using Cauchy-Schwartz inequality
and approximation results,

|T6| ≤ εJ0,transp

(
ξA, ξA

)
+K

h

r2transp

h2µtransp−1

r
2stransp−1
transp

|||c|||2s

≤ εJ0,transp

(
ξA, ξA

)
+K

h2µtransp

r
2stransp+1
transp

|||c|||2s ,

|T7| ≤ K
h

r2transp

∑

γ∈Γh,out

∫

γ

(
ξA
)2

+K
r2transp

h

h2µtransp−1

r
2stransp−1
transp

|||c|||2s

≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

h2µtransp−2

r
2stransp−3
transp

|||c|||2s ,

|T8| ≤ εJ0,transp

(
ξA, ξA

)
+KJσ

0

(
ξI , ξI

)

≤ εJ0,transp

(
ξA, ξA

)
+K

h2µtransp−2

r
2stransp−3
transp

|||c|||2s .

We remark that, in the cases of triangles or tetrahedra, we can choose a continuous
ĉ to have T5 = T8 = 0, but this does not help unless we have a sharper bound on
T7.

Noting that [c] = 0, and uM · n = u · n on the domain boundary if the constant
M for the cut-off operator is sufficiently large, we can write the last two terms in
the right hand side of of error equation (5.7) as

B
(
c, ξA;u

)
−B

(
c, ξA;uM

)

=
∑

E∈Eh

∫

E

(
D(u) −D(uM )

)
∇c · ∇ξA −

∑

E∈Eh

∫

E

c
(
u− uM

)
· ∇ξA

−
∑

γ∈Γh

∫

γ

{(
D(u) −D(uM )

)
∇c · nγ

} [
ξA
]

−stransp

∑

γ∈Γh

∫

γ

{(
D(u) −D(uM )

)
∇ξA · nγ

}
[c]

+
∑

γ∈Γh

∫

γ

c∗
(
u− uM

)
· nγ

[
ξA
]

=:

5∑

i=1

Si.
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Noting that
∣∣u − uM

∣∣ ≤
∣∣u − uDG

∣∣ point-wise if the constant M for the cut-off
operator is sufficiently large, we can bound term S1 as

|S1| ≤ K
∑

E∈Eh

∫

E

∣∣D(u) − D(uM )
∣∣ ∣∣∇ξA

∣∣

≤ ε|||D 1
2 (u)∇ξA|||20 +K

∥∥D(u) −D(uM )
∥∥2

0

≤ ε|||D 1
2 (u)∇ξA|||20 +K

∥∥u − uM
∥∥2

0

≤ ε|||D 1
2 (u)∇ξA|||20 +K

∥∥u − uDG
∥∥2

0
.

Term S2 can be bounded in a similar way as that for S1:

|S2| ≤ K
∑

E∈Eh

∫

E

∣∣u − uM
∣∣ ∣∣∇ξA

∣∣

≤ ε|||D 1
2 (u)∇ξA|||20 +K

∥∥u− uDG
∥∥2

0
.

Term S3 can be bounded by using the continuity of dispersion/diffusion tensor
and the penalty term.

|S3| ≤ K
∑

γ∈Γh

∫

γ

∣∣{D(u) −D(uM )
}∣∣ ∣∣[ξA

]∣∣

≤ K
∑

γ∈Γh

∥∥[ξA
]∥∥

0,γ

·
∑

Ei∩Ej=γ∈Γh

(∥∥∥D(u)|Ei
− D(uM )

∣∣
Ei

∥∥∥
0,γ

+
∥∥∥D(u)|Ej

− D(uM )
∣∣
Ej

∥∥∥
0,γ

)

≤ K
∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

0,γ
+
∥∥∥uDG

∣∣
Ej

− u
∥∥∥

0,γ

) ∑

γ∈Γh

∥∥[ξA
]∥∥

0,γ

≤ K
h

r2transp

∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

2

0,γ
+
∥∥∥uDG

∣∣
Ej

− u
∥∥∥

2

0,γ

)

+εJ0,transp

(
ξA, ξA

)
.

Term S4 vanishes because [c] = 0. Term S5 can be bounded using penalty terms
and the error of normal velocity on element interfaces.

|S5| ≤ K
∑

γ∈Γh

∫

γ

∣∣u · nγ − uM · nγ

∣∣ ∣∣[ξA
]∣∣

≤ K
h

r2transp

∑

γ∈Γh

∫

γ

∣∣u · nγ − uDG · nγ

∣∣2 + εJ0,transp

(
ξA, ξA

)
.

Combining all the terms in (5.7), we have,

d

dt

∥∥∥
√
φξA

∥∥∥
2

0
+ |||D 1

2 (u)∇ξA|||20 + Jσ
0

(
ξA, ξA

)

≤ K
∥∥∥
√
φξA

∥∥∥
2

0
+K

∥∥u− uDG
∥∥2

0
+K

h

r2transp

∑

γ∈Γh

∥∥u · nγ − uDG · nγ

∥∥2

0,γ

+K
h

r2transp

∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

2

0,γ
+
∥∥∥uDG

∣∣
Ej

− u
∥∥∥

2

0,γ

)



DG FOR COUPLED FLOW AND REACTIVE TRANSPORT 22

+K
h2µtransp−2

r
2stransp−3
transp

.

Integrating with respect to time, we have,

∥∥∥
√
φξA

∥∥∥
2

0
(t) +

∫ t

0

|||D 1
2 (u)∇ξA|||20(τ)dτ +

∫ t

0

Jσ
0

(
ξA, ξA

)
(τ)dτ

≤
∥∥∥
√
φξA

∥∥∥
2

0
(0) +K

∫ t

0

∥∥∥
√
φξA

∥∥∥
2

0
(τ)dτ +K

∫ t

0

∥∥u− uDG
∥∥2

0
(τ)dτ

+K
h

r2transp

∫ t

0

∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

2

0,γ
+
∥∥∥uDG

∣∣
Ej

− u
∥∥∥

2

0,γ

)
(τ)dτ

+K
h

r2transp

∫ t

0

∑

γ∈Γh

∥∥u · nγ − uDG · nγ

∥∥2

0,γ
(τ)dτ +K

h2µtransp−2

r
2stransp−3
transp

≤ K

∫ t

0

∥∥∥
√
φξA

∥∥∥
2

0
(τ)dτ +K

∫ t

0

∥∥u − uDG
∥∥2

0
(τ)dτ

+K
h

r2transp

∫ t

0

∑

Ei∩Ej=γ∈Γh

(∥∥∥uDG
∣∣
Ei

− u
∥∥∥

2

0,γ
+
∥∥∥uDG

∣∣
Ej

− u
∥∥∥

2

0,γ

)
(τ)dτ

+K
h

r2transp

∫ t

0

∑

γ∈Γh

∥∥u · nγ − uDG · nγ

∥∥2

0,γ
(τ)dτ +K

h2µtransp−2

r
2stransp−3
transp

.

The theorem follows from approximation results and the triangle inequality. �

6. The coupled system of flow and transport

Combining the results developed for the flow and for the transport equations,
we can obtain error estimates for the coupled system.

Theorem 6.1. (Error estimate for transport in the coupled system) Let
(u, p, c) be the solution to (2.1)-(2.7), and assume p ∈ L2 (0, T ;Hsflow(Eh)), u ∈(
L2
(
0, T ;Hsflow−1(Eh)

))d
, c ∈ L2 (0, T ;Hstransp(Eh)), ∂c/∂t ∈ L2

(
0, T ;Hstransp−1(Eh)

)

and c0 ∈ Hstransp−1(Eh). We further assume that p, ∇p, c and ∇c are essen-
tially bounded, and rflow is in the same order with rtransp (i.e. rflow/rtransp and
rtransp/rflow are bounded). If the constant M for the cut-off operator and the penalty
parameters are sufficiently large, then there exists a constant K independent of h
and r such that∥∥∥

√
φ
(
CDG − c

)∥∥∥
L∞(0,T ;L2)

+ |||D 1
2 (u)∇

(
CDG − c

)
|||L2(0,T ;L2)(6.1)

(∫ T

0

J0,transp

(
CDG − c, CDG − c

)
(τ)dτ

)1/2

≤ K
hµflow−1

r
sflow−1−δ/2
flow

+K
hµtransp−1

r
stransp−3/2
transp

,
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where µflow = min (rflow + 1, sflow), µtransp = min (rtransp + 1, stransp), rflow ≥ 1,
sflow ≥ 2, rtransp ≥ 1, stransp ≥ 2, and δ = 0 in the cases of conforming meshes
with triangles or tetrahedra. In general cases, δ = 1.

Proof. Substituting the DG velocity error bounds (4.6) and (4.7) into the error
estimate for concentration (5.4), we have

∥∥∥
√
φ
(
CDG − c

)∥∥∥
2

0
(t) +

∫ t

0

|||D 1
2 (u)∇

(
CDG − c

)
|||20(τ)dτ

+

∫ t

0

Jσ
0

(
CDG − c, CDG − c

)
(τ)dτ

≤ K

∫ t

0

∥∥∥
√
φ
(
CDG − c

)∥∥∥
2

0
(τ)dτ +K

(
1 +

r2transp

r2flow

)∫ t

0

∥∥CDG − c
∥∥2

0
(τ)dτ

+K
h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

+K
h

r2transp

·
(∫ t

0

(
r2flow

h
+
r2transp

h

)
∥∥c− CDG

∥∥2

0
(τ)dτ +

h2µtransp−1

r
2stransp−2
transp

+
h2µflow−3

r2sflow−4−δ
flow

)

+K
h2µtransp−2

r
2stransp−3
transp

≤ K

(
1 +

r2transp

r2flow

+
r2flow

r2transp

)∫ t

0

∥∥∥
√
φ
(
CDG − c

)∥∥∥
2

0
(τ)dτ +K

h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

+K
h2µflow−2

r2transpr
2sflow−4−δ
flow

+K
h2µtransp−2

r
2stransp−3
transp

.

Using the Gronwall’s inequality, we have the error bound (6.1) for concentration.
�

Remark 6.2. Let us assume that the exact solutions p, u, c are sufficiently smooth
and rtransp = rflow. Theorem 6.1 gives sharp a priori error estimates in the following
senses. The error bound in L2

(
H1
)

for concentration is optimal in h and nearly

optimal in p with a loss of power 1
2 . The L2(L2) error estimate for concentration

jump is optimal in h and in p.

Theorem 6.3. (Error estimate for flow part in the coupled system) Let
(u, p, c) be the solution to (2.1)-(2.7), and assume p ∈ L2 (0, T ;Hsflow(Eh)), u ∈(
L2
(
0, T ;Hsflow−1(Eh)

))d
, c ∈ L2 (0, T ;Hstransp(Eh)), ∂c/∂t ∈ L2

(
0, T ;Hstransp−1(Eh)

)

and c0 ∈ Hstransp−1(Eh). We further assume that p, ∇p, c and ∇c are essen-
tially bounded, and rflow is in the same order with rtransp (i.e. rflow/rtransp and
rtransp/rflow are bounded). If the constant M for the cut-off operator and the penalty
parameters are sufficiently large, then there exists a constant K independent of h
and r such that

∥∥∥K1/2(c)∇
(
PDG − p

)∥∥∥
L∞(0,T ;L2)

(6.2)
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≤ K
hµflow−1

r
sflow−1−δ/2
flow

+K
hµtransp−1

r
stransp−3/2
transp

,

sup
t∈(0,T )

(
J0,flow

(
PDG − p, PDG − p

))1/2
(6.3)

≤ K
hµflow−1

r
sflow−3/2
flow

+K
hµtransp−1

r
stransp−3/2
transp

and
∥∥uDG − u

∥∥
L∞(0,T ;L2)

(6.4)

≤ K
hµflow−1

r
sflow−1−δ/2
flow

+K
hµtransp−1

r
stransp−3/2
transp

,

where µflow = min (rflow + 1, sflow), µtransp = min (rtransp + 1, stransp), rflow ≥ 1,
sflow ≥ 2, rtransp ≥ 1, stransp ≥ 2, and δ = 0 in the cases of conforming meshes
with triangles or tetrahedra. In general cases, δ = 1.

Proof. Taking L∞ norm with time in (4.1), we have
∥∥∥K1/2(c)∇

(
PDG − p

)∥∥∥
2

L∞(0,T ;L2)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

L∞(0,T ;L2)
+K

h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

.

Substituting (6.1) into above inequality, we obtain (6.2). Similarly, L∞ norm of
(4.2) gives

sup
t∈(0,T )

J0,flow

(
PDG − p, PDG − p

)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

L∞(0,T ;L2)
+K

h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−3
flow

.

Substituting (6.1) into above inequality, we obtain (6.3). L∞ norm of (4.6) gives
∥∥uDG − u

∥∥2

L∞(0,T ;L2)

≤ K

(
1 +

r2transp

r2flow

)
∥∥c− CDG

∥∥2

L∞(0,T ;L2)
+K

h2µtransp

r2flowr
2stransp−2
transp

+K
h2µflow−2

r2sflow−2−δ
flow

.

Substituting (6.1) into above inequality, we obtain (6.4). �

Remark 6.4. Let us assume that the exact solutions p, u, c are sufficiently smooth
and rtransp = rflow. Theorem 6.3 gives sharp a priori error estimates in the follow-
ing senses. The semi-L2

(
H1
)

error bound for pressure is optimal in h and nearly

optimal in p with a loss of power 1
2 . The L∞(L2) convergence for pressure jump is

optimal in h and in p. Finally, the L∞
(
L2
)

error estimate for velocity establishes

optimality in h and sub-optimality in p by 1
2 .



DG FOR COUPLED FLOW AND REACTIVE TRANSPORT 25

7. Discussion and conclusion

Three versions of primal discontinuous Galerkin (DG) methods were proposed
to solve coupled flow and reactive transport in porous media. A cut-off operator M
was introduced in the DG schemes in order to achieve convergence. We estimated
the uniform positive definitiveness and the uniform Lipschitz continuity of the well
known established dispersion/diffusion tensor for porous media.

We first studied the flow and the transport parts separately assuming the error
from the other part is known. Then we combined the results from the two parts
to complete the a priori error analysis of the coupled system. We consider the
same mesh for both flow and transport, but the transport part can use a polyno-
mial degree of approximation rtransp different from that for the flow part rflow. A
set of conditions were proposed for convergence of DG applied to the coupled sys-
tem. Interestingly, the polynomial degrees of approximation spaces for flow and for
transport needs to be in the same order in order to maintain the convergence of DG
applied to the coupled system. That is, rflow/rtransp and rtransp/rflow need to be
bounded. This excludes unbalance p-version refinement for flow and for transport.
For example, p-version of DG with rflow = r2transp for the coupled system might not
converge.

If the degree of approximation for the flow part differs from that for the transport
part, the convergence behaviors for the coupled system are controlled by the part
with less degree of approximation. Optimal or nearly optimal convergences for
both flow and transport can be achieved when the same polynomial degrees of
approximation spaces were chosen for flow and transport. Under this condition,
the error bound in L2

(
H1
)

for concentration is optimal in h and nearly optimal

in p with a loss of power 1
2 . The semi-L2

(
H1
)

error bound for pressure is optimal

in h and nearly optimal in p with a loss of power 1
2 . The L∞

(
L2
)

error estimate

for velocity establishes optimality in h and sub-optimality in p by 1
2 . Finally, the

L2(L2) error estimate for concentration jump and the L∞(L2) estimate for pressure
jump are optimal in h and in p.
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[22] J. T. Oden, I. Babuška, and C. E. Baumann. A discontinuous hp finite element method for
diffusion problems. J. Comput. Phys., 146:491–516, 1998.

[23] B. Rivière. Discontinuous Galerkin finite element methods for solving the miscible displace-
ment problem in porous media. PhD thesis, The University of Texas at Austin, 2000.

[24] B. Rivière and M. F. Wheeler. Non conforming methods for transport with nonlinear reaction.
Contemporary Mathematics, 295:421–432, 2002.

[25] B. Rivière, M. F. Wheeler, and V. Girault. Part I: Improved energy estimates for interior
penalty, constrained and discontinuous Galerkin methods for elliptic problems. Computational
Geosciences, 3:337–360, 1999.

[26] B. Rivière, M. F. Wheeler, and V. Girault. A priori error estimates for finite element methods
based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal.,
39(3):902–931, 2001.

[27] J. Rubin. Transport of reacting solutes in porous media: Relation between mathematical
nature of problem formulation and chemical nature of reactions. Water Resources Research,
19(5):1231–1252, 1983.

[28] J. Rubin and R. V. James. Dispersion-affected transport of reacting solutes in saturated
porous media: Galerkin method applied to equilibrium-controlled exchange in unidirectional
steady water flow. Water Resources Research, 9(5):1332–1356, 1973.

[29] F. Saaf. A study of reactive transport phenomena in porous media. PhD thesis, Rice Univer-
sity, 1996.

[30] Ch. Schwab. p- and hp- finite element methods, theory and applications in solid and fluid
mechanics. Oxford science publications, 1998.

[31] J. V. Smith, R. W. Missen, and W. R. Smith. General optimality criteria for multiphase
multireaction chemcial equilibrium. AIChE Journal, 39(4):707–710, 1993.

[32] C. I. Steefel and P. Van Cappellen. Special issue: Reactive transport modeling of natural
systems. Journal of Hydrology, 209(1-4):1–388, 1998.

[33] S. Sun. Discontinuous Galerkin methods for reactive transport in porous media. PhD thesis,
The University of Texas at Austin, 2003.



DG FOR COUPLED FLOW AND REACTIVE TRANSPORT 27

[34] S. Sun, B. Rivière, and M. F. Wheeler. A combined mixed finite element and discontinuous
Galerkin method for miscible displacement problem in porous media. In Recent progress in
computational and applied PDEs, conference proceedings for the international conference
held in Zhangjiaje in July 2001, 319-346.

[35] S. Sun and M. F. Wheeler. Energy norm a posteriori error estimation for discontinuous
Galerkin approximations of reactive transport problems. TICAM report 03-39, Institute for
Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX,
2003.

[36] S. Sun and M. F. Wheeler. A posteriori error analyses for symmetric discontinuous Galerkin
approximations of reactive transport problems. TICAM report 03-19, Institute for Compu-
tational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 2003.

[37] A. J. Valocchi and M. Malmstead. Accuracy of operator splitting for advection-dispersion-
reaction problems. Water Resources Research, 28(5):1471–1476, 1992.

[38] J. van der Lee and L. De Windt. Present state and future directions of modeling of geochem-
istry in hydrogeological systems. J. Contam. Hydrol., 47/2(4):265–282, 2000.

[39] M. Th. van Genuchten. Analytical soultions for chemical transport with simultaneous adsorp-
tion, zero-order production and first-order decay. Journal of Hydrology, 49:213–233, 1981.

[40] M. F. Wheeler and B. L. Darlow. Interior penalty Galerkin procedures for miscible displace-
ment problems in porous media. In Computational methods in nonlinear mechanics (Proc.

Second Internat. Conf., Univ. Texas, Austin, Tex., 1979), pages 485–506. North-Holland,
Amsterdam, 1980.

[41] M. F. Wheeler and C. N. Dawson. An operator-splitting method for advection-diffusion-
reaction problems. In J. R. Whiteman, editor, The Mathematics of Finite Elements and
Applications VI, pages 463–382. Academic Press, London, 1987.

[42] M. F. Wheeler, C. N. Dawson, P. B. Bedient, C. Y. Chiang, R. C. Bordern, and H. S.
Rifai. Numerical simulation of microbial biodegradation of hydrocarbons in groundwater.
In Proceedings of AGWSE/IGWMCH Conference on Solving Ground Water Problems with
Models, National Water Wells Association, pages 92–108, 1987.

[43] M. F. Wheeler, O. Eslinger, S. Sun, and B. Rivière. Discontinuous Galerkin method for
modeling flow and reactive transport in porous media. In Proceedings of the 2002 CANUM
conference, series ESAIM. to appear.

[44] M.F. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J.
Numer. Anal., 15(1):152–161, 1978.

[45] G. T. Yeh and V. S. Tripathi. A critical evaluation of recent developments in hydrogeochemical
transport models of reactive multichemical components. Water Resources Research, 25(1):93–
108, 1989.

[46] G. T. Yeh and V. S. Tripathi. A model for simulating transport of reactive multispecies compo-
nents: model development and demonstration. Water Resources Research, 27(12):3075–3094,
1991.


