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Abstract

It is common knowledge that the accuracy with which computer simulations
can depict physical events depends strongly on the choice of the mathematical
model of the events. Perhaps less appreciated is the notion that the error due to
modeling can be defined, estimated, and used adaptively to control modeling error,
provided one accepts the existence of a base model that can serve as a datum with
respect to which other models can be compared. In this work, it is shown that the
idea of comparing models and controlling model error can be used to develop a
general approach for multi-scale modeling, a subject of growing importance in com-
putational science. A posteriori estimates of modeling error in so-called quantities
of interest are derived and a class of adaptive modeling algorithms is presented.
Generalizations of the theory to the problem of adaptive calibration of models are
presented for cases in which experimental data on certain quantities of interest are
available and the base model itself is not well defined. Several applications of the
theory and methodology are presented. These include the analysis of molecular
dynamics models using various techniques for scale bridging, molecular statics with
applications to problems in nanoindentation in which errors generated by the qua-
sicontinuum method are estimated and controlled. Other applications include very
preliminary work on random multi-phase composite materials, modeling quantum
mechanics, and the quantum mechanics-molecular dynamics interface.

Keywords: multi-scale modeling, goal-oriented adaptive modeling, a posteriori
error estimation.
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1 Introduction

1.1 Introductory remarks

The development of mathematical and computational modeling techniques for simu-
lating physical events that occur across several spatial and temporal scales has become
one of the most challenging and important areas of computational science. Advances
in nanotechnolgy, semiconductors, cell and molecular biology, biomedicine, geological
and earth sciences, and many other areas hinge upon understanding the interactions
of events at scales that could range from subatomic dimensions and nanoseconds to
macroscales and hours or even centuries. Available computational methods have largely
been designed to model events that take place over one, or rarely two spatial scales,
and are generally nonapplicable to multi-scale phenomena. Molecular dynamics, for
example, may provide an acceptable basis for modeling atomistic or molecular motions
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over a time period on the order of nanoseconds, while nanodevice fabrications may
involve events occurring over seconds or minutes.

In the present exposition, we develop a general approach to multi-scale modeling
based on the notion of a posteriori estimation of modeling error and on adaptive mod-
eling using so-called Goals algorithms. By a mathematical model we mean a collection
of mathematical constructions – partial differential, integral, ordinary, or algebraic
equations, boundary and initial conditions, constraints, and data – that provide an ab-
straction of a class of physical phenomena covered by scientific theory. Traditionally, a
model is selected by a modeler, the analyst, who chooses a model, based on experience,
or empirical evidence, heuristics, and personal judgment, to depict events assumed to
involve well-defined spatial and temporal scales. Events at different scales require, in
general, the use of different models. Thus, multi-scale models should generally involve
a blending or adaptation of models of one scale of events with those of another. It
would seem to follow, therefore, that successful multi-scale modeling techniques should
be able to compare models of different structure and to adapt features of different mod-
els so that they deliver results of an accuracy sufficient to capture essential features of
the response or to make engineering decisions. This is the basis for the methodologies
developed in the present work.

This presentation reviews and extends the theory and methodology developed in
earlier works (e.g. [32]) and extends the scope of applications to a broad range of
problems, including problems in molecular statics, multiphase random materials, and
to problems of model calibration and definition. The general tact is different from other
techniques proposed in the rapidly-growing literature on multi-scale modeling.

Several surveys of the literature on multi-scale modeling have been published, and
we mention in particular the articles of Liu et al. [26], E et al. [15], and Curtin and
Miller [11]. In [26], it is asserted that multi-scale methods can be naturally grouped
into two categories: concurrent and hierarchical. Concurrent methods simultaneously
solve a fine-scale model in some local region of interest and a coarser scale model in
the remainder of the domain. Hierarchical, or serial coupling methods [14], use results
of a fine scale model simulation to acquire data for a coarser scale model that is used
globally, e.g. to determine parameters for constitutive equations. The methodologies
we develop here are more akin to concurrent approaches since the notion of adaptive
modeling fits naturally within that framework. Additionally, the various applications
we present here are largely described in terms of problems in mechanics and mate-
rials science, although the framework is very general and is applicable to multi-scale
problems in virtually all areas of science.

We identify three main thrusts in the current literature for implementing multi-
scale methods. The first involves dimensional reduction approaches such as that used
by Tadmor, Ortiz, and Phillips in the quasicontinuum method (QCM) [53, 55]. The
QCM has been applied to quasi-static fracture [27, 30], grain-boundary interaction [48],
and nanoindentation [54, 52]. In these applications, the QCM has led to a dramatic
reduction in the number of degrees of freedom while still resolving physical features of
interest.

A second line of research in concurrent multi-scale methods is the decomposition-
of-scales technique used by Liu et al. in the bridging-scale method [60, 40, 56, 57].
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The scale decomposition provides a natural separation of spatial and temporal scales
for coupling molecular dynamics and continuum models and has successfully reduced
spurious wave reflection in preliminary tests. A static formulation has been applied to
the deformation of carbon nanotubes in [43], and a three-dimensional generalization to
problems in dynamic fracture is presented in [39].

Finally, perhaps the most widely used scheme in concurrent methods is directly
interfacing an atomistic and continuum model using “pad”, “overlap”, or “hand-shake”
regions. The first method to use such schemes was the FEAt method [25], which
was used to simulate the fracture of b.c.c. crystals using a molecular and continuum
model. The FEAt method later provided the foundations of the well-known molecular,
atomistic, ab initio dynamics (MAAD) or coupling of length scales (CLS) method [10],
which was the first to concurrently couple quantum, molecular, and continuum scales.
The atomistic-continuum interface in the MAAD method was extended by Belytschko
and Xiao with the bridging-domain method [7, 61] by using an augmented Lagrange
method to enforce displacement boundary conditions in the overlap region as well as
separating temporal scales in the numerical implementation. The coupled atomistic
and discrete dislocation plasticity (CADD) method [50] was developed by Shilkrot,
Miller, and Curtin to interface an atomistic model, similar to the QCM, with a more
complex continuum model that incorporates descriptions for dislocation movement [58].
In this way, dislocations can be passed to the continuum model, or vice-versa, thereby
preserving degrees of freedom that would otherwise be needed to track the dislocation
movement. Published implementations of the CADD method are two-dimensional and
static, although work in developing three-dimensional and dynamic models is reportedly
underway [51].

There also exist more general schemes that develop modeling frameworks rather
than concentrating on the details of model interfaces. The heterogeneous multiscale
method (HMM) [13], proposed by E and Engquist, provides such a framework for
designing multi-scale methods based upon the particular nature of the problem. The
HMM has been applied to many mathematical problems that possess solutions with
multiple scales, see e.g. [14], and some work has been done in a priori error estimation
for elliptic problems [16].

The idea of estimating modeling error and controling error through model adap-
tivity was inspired by work on a posteriori estimation of numerical approximation
error and control of error through adaptive meshing [1, 31, 5]. Oden, Zohdi, and
co-workers [63, 38, 37] used global error estimates to drive adaptivity of models of
multi-phase heterogeneous elastic materials. Upper and lower bounds of modeling er-
rors in local quantities of interest for this class of problems were presented in [36] and
model adaptivity based on the Goals algorithm was first presented in [59]. Further
extensions of these approaches are described in [45, 33] and a general theory for model
error estimation is proposed in [32].

In the remainder of this introduction, we review the basic ideas behind our er-
ror estimation methodology and the Goals algorithm for adaptive modeling, and we
lay down notations and assumptions prerequisite to subsequent developments. The
basic theorems on model error estimation are taken up in Section 2. Discussions of
some technicalities connected with ensemble averaging and homogenization are given
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in Section 3. Section 4 describes extensions to cases in which the data are unknown or
random and in which results of experimental tests are available. The Goals algorithms
are discussed in Section 5. There we describe two general versions of these types of
algorithms that have proved to be very effective in several application areas. A brief
account of global error estimates is given in Section 6. Applications are discussed in
Section 7, and conclusions are collected in a final section.

1.2 Basic ideas

The basic idea behind the multi-scale modeling approach to be described here is one of
computing and controling modeling error. We first assume that we can define a general
mathematical model of a physical system which can serve as a datum with respect to
which other models can be compared. This fine or base model may be highly complex,
even intractable, it may involve incomplete data, and, in general, it is never “solved”.
In studying multi-scale phenomena, this base model will depict events that take place
on the finest (smallest) spatial and temporal scales. An abstract setting for many base
models is embodied in the problem:

Find u ∈ V such that A(u) = F in V ′

where V is an appropriate topological vector space, A(·) is a nonlinear operator mapping
V into its dual, V ′, and F is given data in V ′. If 〈·, ·〉 denotes duality pairing on V ′×V ,
then the above problem is equivalent to

Find u ∈ V such that

B(u; v) = F (v), ∀v ∈ V
(1)

where
B(u; v) = 〈A(u), v〉, F (v) = 〈F, v〉 (2)

the semi-colon signaling that B(·; ·) may be a nonlinear function of the argument u to
the left of the semi-colon, but linear in the test vector v to the right of it.

Now, in all applications of interest, we do not merely want to characterize the
vectors u satisfying (1), but rather we want to find a particular physical event or feature
of the system that depends upon u. Such quantities of interest are characterized by
functionals Q of the solutions to (1). Thus, our actual target problem is this:

If u is a solution of (1), find Q(u), where Q : V → R

is a given functional defining a quantity of interest.
(3)

If (1) is intractable, so is (3). We must therefore seek an approximation to Q(u).
Let u0 be an arbitrary member of V . In the case that the forms B(·; ·) and Q(·)

are sufficiently smooth (twice differentiable in a certain functional sense), it is shown
in [32] that the error

ε = Q(u) − Q(u0) (4)
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coincides with the sum of a residual functional,

R(u0, p) = F (p) − B(u0; p) (5)

p being the solution of an appropriately defined dual or adjoint problem, and higher
order terms involving the error e0 = u − u0. We examine this result in more detail in
Section 2.

An important observation is that the trial solution u0 may itself be the solution of
some other surrogate mathematical model, characterized by a different semilinear form
B0(·; ·) and linear form F0(·); i.e. u0 is then the solution of the problem,

Find u0 ∈ V : B0(u0; v) = F0(v), ∀v ∈ V (6)

Thus, the fact that the error between the quantity of interest Q(·) computed using the
base model (1) and that computed using any other surrogate model (6) can be estimated
in some manner, provides a means for comparing the appropriateness of different models
and, presumably, controlling modeling error relative to the base model. The surrogate
problem(s) (6) will therefore correspond to models of coarser (larger) scales than (1).
Still, the base model may never be solved; it remains a datum with respect to which
various surrogates are measured.

1.3 Adaptive modeling

If modeling error can be effectively estimated, the next challenge is to adaptively control
it by systematically changing the surrogate models. This is the goal of the Goals
algorithms: to adapt the mathematical model so that preset tolerances in the error in
the specific quantity of interest can be met. Here we will describe a general family of
algorithms that include earlier methods as special cases (see [36, 59]). The surrogate
model that can approximate the base model well enough to lead to a small tolerable
error may often be a hybrid consisting of components involving several different spatial
or temporal scales. We take this subject up in Section 5.

1.4 Notation: functional derivatives and Taylor formulas

We define the functional or Gâteaux derivative of the semilinear form B(u; v) in (1) as

B′(u;w, v) = lim
θ→0

θ−1[B(u + θw; v) − B(u; v)]

assuming this limit exists. Higher derivatives of B(u; v) are defined analogously:

B′′(u;w1, w2, v) = lim
θ→0

θ−1[B′(u + θw2;w1, v) − B′(u;w1, v)]

B′′′(u;w1, w2, w3, v) = lim
θ→0

θ−1[B′′(u + θw3;w1, w2, v) − B′′(u;w1, w2, v)]

...

Thus, for each u ∈ V, B ′(u;w, v) is a bilinear form in v and w, B ′′(u;w1, w2, v) is a
trilinear form in w1, w2, and v, B′′′(u;w1, w2, w3, v) is a quadrilinear form in w1, w2,
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w3, v; etc. Similarly, if the target output functionals (the quantities of interest Q) are
differentiable, we use the following notations for various Gâteaux derivatives:

Q′(u; v1) = lim
θ→0

θ−1[Q(u + θv1) − Q(u)]

Q′′(u; v1, v2) = lim
θ→0

θ−1[Q′(u + θv2; v1) − Q′(u; v1)]

Q′′′(u; v1, v2, v3) = lim
θ→0

θ−1[Q′′(u + θv3; v1, v2) − Q′′(u; v1, v2)]

...

Taylor formulas with integral remainders can easily be constructed for such differ-
entiable functionals and semilinear forms. Among many such expansions, we list as
examples the following:

Q(u + v) − Q(u) =

∫ 1

0
Q′(u + sv; v)ds

Q(u + v) − Q(u) = Q′(u; v) +

∫ 1

0
Q′′(u + sv; v, v)(1 − s)ds

Q(u + v) − Q(u) =
1

2
Q′(u; v) +

1

2
Q′(u + v; v)

+
1

2

∫ 1

0
Q′′′(u + sv; v, v, v)(s − 1)s ds

and

B(u + w; v) − B(u; v) =

∫ 1

0
B′(u + sw;w, v)ds

B(u + w; v) − B(u; v) = B ′(u;w, v) +

∫ 1

0
B′′(u + sw;w,w, v)(1 − s)ds

We shall say that B(·; ·) and Q(·) belong to C r(V ) whenever the limits defining func-
tional derivatives of order r exist. Partial functional derivatives may also be defined;
e.g., if J(u, v) : V × V → R and J(u, v) is nonlinear in u and v, we write

Ju(u, v;w) = lim
θ→0

θ−1[J(u + θw, v) − J(u, v)]

Jv(u, v;w) = lim
θ→0

θ−1[J(u, v + θw) − J(u, v)]

etc. whenever these limits exist. In all of the theory and applications we consider in
subsequent sections, V is a reflexive Banach space with norm ‖·‖. The theory can be
extended to more general settings.

2 A Posteriori Estimates of Modeling Error

We begin with the observation that the target problem (3) can be viewed as a problem
of optimal control: find an extremum of Q subject to the constraint (1):

Q(u) = inf
v∈M

Q(v); M = {w ∈ V ; B(w; q) = F (q), ∀q ∈ V } (7)
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The Lagrangian associated with (7) is

L(v, q) = Q(v) + F (q) − B(v; q) (8)

and, assuming Q and B are Gâteaux differentiable, solutions to the constrained opti-
mization problem (7) are pairs (u, p) such that

L′((u, p); (v, q)) = 0, ∀(v, q) ∈ V × V

i.e. (u, p) is a solution of the coupled problem,

Find (u, p) ∈ V × V such that

B(u; q) = F (q), ∀q ∈ V

B′(u; v, p) = Q′(u; v), ∀v ∈ V

(9)

We refer to (9)1 as the primal base problem and to (9)2 as the dual base problem.
The dual problem is thus always linear in p. The dual solution p is called the influence
vector (or function) or the generalized Green’s function. In the cases in which B(·; ·) is
a bilinear form and Q(·) is a linear functional, the dual problem (9)2 reduces to

B(v, p) = Q(v), ∀v ∈ V

so that
Q(u) = B(u, p) = F (p). (10)

This is recognized as a generalization of the property of Green’s functions for linear
initial- and boundary-value problems.

Now let us suppose that the system (9) is intractable and that we seek an approx-
imation (u0, p0) to (u, p). The following theorem provides the error in the quantity of
interest Q:

Theorem 1 ([32]) Let the semilinear form B(·; ·) in (9) belong to C 3(V ) and let the
quantity of interest Q(·) ∈ C1(V ). Let (u, p) ∈ V × V be a solution of the base prob-
lem (9) and let (u0, p0) be an arbitrary pair in V ×V . Then the error in Q(u) produced
by u0 is given by

E(u0) = Q(u) − Q(u0) = R(u0; p0) + R(u0; ε0) + ∆1(u0, p0, e0, ε0) (11)

where R(u0; v) is the residual functional,

R(u0; v) = F (v) − B(u0; v), v ∈ V (12)

and ∆1 = ∆1(u0, p0, e0, ε0) is the remainder,

∆1 =
1

2

∫ 1

0
{B′′(u0 + se0; e0, e0, p0 + sε0)

− Q′′(u0 + se0; e0, e0)}ds

+
1

2

∫ 1

0
{Q′′′(u0 + se0; e0, e0) − 3B′′(u0 + se0; e0, e0, ε0)

− B′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)sds

(13)

8



with
e0 = u − u0 and ε0 = p − p0. (14)

�

We observe that ∆1 ≡ 0 whenever B(·; ·) is bilinear and Q(·) is linear. In that case,
Q(u)−Q(u0) = R(u0; p0)+R(u0; ε0) = R(u0; p0)+B(e0, ε0). Equation (11) establishes
that the error E(u0) is dominated by the residual functional evaluated at the influence
functional p0 to within terms of higher order in the error components (14).

An alternative representation of the error E(u0), involving the residuals associated
with the primal and dual problems in given in the following corollary.

Corollary 1 ([32]) Let the assumptions of Theorem 1 hold. Then the error in Q(u)
produced by u0 is given by

E(u0) = R(u0; p0) +
1

2
(R(u0; ε0) + R̄(u0, p0; e0)) + ∆2(u0, p0, e0, ε0) (15)

where R̄(u0, p0; v) is the residual functional for the dual problem:

R̄(u0, p0; v) = Q′(u0; v) − B′(u0; v, p0), v ∈ V (16)

and ∆2 = ∆2(u0, p0, e0, ε0) is given by:

∆2 =
1

2

∫ 1

0
{Q′′′(u0 + se0; e0, e0) − 3B′′(u0 + se0; e0, e0, ε0)

− B′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)sds.

(17)

�

We note that the remainder in (17) should be smaller in practical applications than
the one in (11) at the expense of having to determine or estimate both e0 and ε0.
Results similar to those in Theorem 1 and Corollary 1 for finite element approximation
errors were presented in Oden and Prudhomme [31] and Becker and Rannacher [5]. A
detailed account of the versions of the methods of [5] is given in [4].

It is emphasized that the surrogate functions (u0, p0) in (11)–(14) are completely
arbitrary vectors in V ×V . However, the most natural choice of these vectors are those
which are solutions of a surrogate problem of the form

Find (u0, p0) ∈ V × V such that

B0(u0; v) = F0(v), ∀ v ∈ V

B′
0(u0; v, p0) = Q′

0(u0; v), ∀ v ∈ V

(18)

where B0(·; ·) is a semilinear form for a coarser-scale problem and F0(·) and Q0(·)
are coarse-scale approximations of F (·) and Q(·). In most cases, B0, F0, and Q0 are
obtained through an appropriate homogenization or averaging process. Thus, (18)
could represent models of events that occur at scales larger than those of the base
model. Theorem 1 then provides a means for comparing models of different scales.
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3 Homogenization and Construction of Surrogates

3.1 Some general remarks

Symbolically, one can envision a multi-scale model in which the quantity of interest
Q(u) of the base model is the target output, Q(u1) is the approximation of that output
produced by a coarser-scale model obtained through a homogenization process, Q(u2)
is the approximation due to a still-coarser scale, and so on. If uN denotes the surrogate
solution to the coarsest scale model, the various modeling error components are:

Q(u) − Q(uN ) = Q(u) − Q(u1)
︸ ︷︷ ︸

error in scale 1 model

+ Q(u1) − Q(u2)
︸ ︷︷ ︸

error in scale 2 model
relative to scale 1

+ Q(u2) − Q(u3)
︸ ︷︷ ︸

error in scale 3 model
relative to scale 2

+ . . . + Q(uN−1) − Q(uN )
︸ ︷︷ ︸

error in scale N model
relative to scale N − 1

Each error component, of course, depends upon how the successive coarser models are
obtained through a homogenization process. The scenario is illustrated symbolically
in Fig. 1. As will be seen in applications discussed later, if a target error level is
specified, the models that can ultimately deliver that accuracy may involve a mosaic
of component models of several different scales.

We also note that the rigor of methods of homogenization can vary, with a very
rough averaging process often the only connection between models of different scales.
In some cases, the term homogenization is not at all descriptive of the process of coars-
ening scales. For instance, in embedding quantum mechanics models into a molecular
dynamics setting, we may call upon the Bohr correspondence principle to justify New-
tonian mechanics models without defining a meaningful limiting process. We comment
further on this topic in Section 7.

It can be argued that the limit processes carrying models of one scale to those of
larger scales, such as the limiting process from molecular models to continuum models,
is a central problem to the mathematical foundations of multi-scale modeling. It is a
subject in which some progress has been made in recent years (see e.g. [8, 19]), but
for which much additional work remains to be done. It is a remarkable fact, however,
that even when these processes are not understood and when only crude averaging
procedures are employed, the adaptive modeling algorithms described later may still
produce acceptable results, albeit at slow rates of convergence.

Finally, we note that in all applications we are only able to compute a numerical
approximation uh

0 of any particular surrogate problem solution u0. However, we can
write

Q(u) − Q(uh
0)

︸ ︷︷ ︸

total error

= Q(u) − Q(u0)
︸ ︷︷ ︸

modeling error

+ Q(u0) − Q(uh
0)

︸ ︷︷ ︸

approximation error

The total error Q(u) − Q(uh
0) can be estimated with the aid of Theorem 1 using uh

0

instead of u0. The approximation error Q(u0)−Q(uh
0) can be accurately estimated and

controlled using the theory and methodology discussed in [31] (see also [1, 5, 4, 35]).
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Finally, an estimate of the modeling error is obtained by substracting the approximation
error from the total error.

Length Scale u

u

u

u

u

10 10 10 10 10m m

0

1

2

3

−10 −9 −6 −3 0m mm

’’HOMOGENIZATION’’

Figure 1: Hierarchy of models and scales. Not all transitions to coarser scales are
simple homogenizations.

It should be understood that while models involving an ascending sequence of scales
can, in theory, be obtained through some sort of ensemble averaging (homogenization)
process, as suggested in Fig. 1, the actual surrogate pairs (u0, p0) appearing in the
error estimate (11) are not necessarily solutions of a homogenized problem defined for
coarser scale models. In fact, the coarse-scale models obtained through homogenization
processes may even belong to different function spaces than those appearing in the base
problem. For example, if the base model is discrete, such as is the case in which the base
model corresponds to a crystalline lattice model or a molecular dynamics model, and
a homogenization process produces a continuum model, then the continuum model
cannot be used as the surrogate within the context of our theory. Another step is
needed.

Let the following denote a model obtained from the base model through some
homogenization:

(ũ, p̃) ∈ V0 × V0 :

B̃(ũ; ṽ) = F̃ (ṽ), ∀ṽ ∈ V0

B̃′(ũ; ṽ, p̃) = Q̃′(ũ; ṽ), ∀ṽ ∈ V0

where B̃(·; ·), F̃ (·), and Q̃(·) are functionals produced from B(·, ·), F (·), and Q(·)
through homogenization. Let Π(·) denote a map,

Π : V0 −→ V ; Πũ = u0, Πp̃ = p0.
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Then, for any appropriate choice of Π, we use (u0, p0) as the solutions of the surrogate
models, and the error in the quantity of interest is estimated with respect to Q(u0).
We provide examples of such surrogates in Section 7.

3.2 Fine-scale fluctuations about a mean

Various methods for treating the interactions of events at two or more scales begin with
the separation of the fine scale solution u into a “mean” component ū and a fluctuation
u′ about the mean (see, e.g. [56, 57])

u = ū + u′ (19)

Comparing to our notation, if V0 ⊂ V , the component ū and u′ can be identified with
u0 and e0 = u − u0 as:

ū = u0 and u′ = e0 (20)

Using the developments laid down thus far, it is a straightforward exercise to de-
termine approximate relationships for coarse-scale/fine-scale interactions and for com-
puting the fluctuations.

Ignoring higher-order terms in the component u′ (assumed small compared to ū),
we have, for any v ∈ V

F (v) = B(ū + u′; v) ≈ B(ū; v) + B ′(ū;u′, v)

Thus
B′(ū;u′, v) ≈ R(ū; v), ∀v ∈ V (21)

That is, the fluctuations u′ satisfy the transpose of the dual problem with u replaced
by ū and with q′(u; v) replaced by the residual functional R(ū; v). Then, with p the
solution of the corresponding primal dual problem,

B′(ū;u′, p) ≈ R(ū; p) ≈ Q(u) − Q(ū) (22)

The result establishes a relationship between the fine-scale fluctuations u ′ and the error
E(ū) in the quantity of interest. The fine-scale fluctuations thus affect the error in the
quantity of interest at positions of the space-time domain within the support of the
dual solution p.

At the heart of many multi-scale methods is the particular homogenization strategy
used to compute the mean component ū. if Π : V0 → V is a given extension of the
space containing the surrogate solution such that Πu0 = ū, then one can construct the
“filter”, Pu = ū so that the fluctuations u−Pu = u′ are minimized in some sense. We
described one such approach in Section 7.

4 Relationship to Calibration of Models

Recent work on calibration of models and on inverse problems and optimization can be
cast naturally into the general framework developed up to this point. In the present
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context, we have in mind the calibration of models of physical phenomena as well as
numerical approximations of surrogates. Our development displaces our initial work
reported in an earlier edition [34] and parallels and extends the recent contribution
of Becker and Vexler [6], Bangerth [3], and Johannson and Runesson [24] to problems
of modeling calibration, error, and adaptivity. We here consider cases in which the
characterization of the base model involves the specification of input data which are
described by a function β ∈ D, where D is a space with norm ‖·‖D. We shall regard β as a
parameter function defining the coefficients appearing in the operators in the governing
equations and boundary conditions, but more general cases could be considered. To
indicate the dependence of the semilinear form on such coefficients, we rewrite the base
problem as follows:

Find u = u(β) ∈ V such that

B(β, u; v) = F (v), ∀v ∈ V
(23)

We are interested in situations in which the following conditions prevail:

1. The coefficients β are unknown or known only approximately. But a surrogate
model of (23) can be formulated using an initial guess or estimate β0 ∈ D0 ⊂ D

of β, leading to a tractable form B(β0, · ; ·).

2. Available are N experimental values {zi}N
i=1 that correspond to measurable fea-

tures of the response {T i(u(β))}N
i=1, T i : V −→ R.

3. The goal of the computation is to predict a target quantity of interest Q(u(β))
that has not been measured by means of physical experiments.

In problems of parameter identification (e.g. see [3, 24]), the goal is to find the
parameter function β characterizing a base model best fitting the experimental data set
{zi}N

i=1, with N ≥ dim(D). Toward this purpose, we introduce a calibration functional,
e.g.

C(γ, v) =
1

2

N∑

i=1

(T i(v(γ)) − zi)2 +
c

2
‖γ − β0‖2

D
, c > 0, (24)

and state the problem of parameter identification in terms of the following constrained
optimization problem:

Find (β, u) ∈ D × V such that

C(β, u) = inf
(γ,v)∈M

C(γ, v)

M =

{

(γ, v) ∈ D × V : B(γ, v;w) = F (w), ∀w ∈ V

}

.

(25)

We assume that the solution to this problem exists and is unique (due to the regular-
ization term in the calibration functional). The corresponding Lagrangian is

A(γ, v, q) = C(γ, v) + F (q) − B(γ, v; q) (26)
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and the critical points (β, u, p) of A satisfy

A′((β, u, p); (γ, v, q)) = 0, ∀(γ, v, q) ∈ D × V × V, (27)

where

A′((β, u, p); (γ, v, q)) =F (q) − B(β, u; q)

+ Cu(β, u; v) − Bu(β, u; v, p)

+ Cβ(β, u; γ) − Bβ(β, u; p, γ)

(28)

However, our focus here is on the problem of model calibration, where the goal is to
use the experimental data to determine a model providing reliable predictions of a target
quantity Q(u(β)). We assume here that no experimental data are available for this
target quantity. Nevertheless, the accuracy in its prediction should meet user-defined
error tolerances. Hence, the appropriate target problem is the following extension
of (3):

Find Q(u(β)) where (β, u) is a solution of the minimization problem (25)

We can therefore state an equivalent constrained minimization formulation (see also
Section 2):

Find (β, u) ∈ D × V such that

Q(u(β)) = inf
(γ,v)∈M∗

Q(v(γ))

M∗ =

{

(γ, v) ∈ D × V : C(γ, v) = inf
(ϕ,w)∈M

C(ϕ,w)

}
(29)

where M ∗ obviously contains the solution to (27). The corresponding Lagrangian is

L((γ, v, q), (ϕ,w, r)) = Q(v(γ)) + A′((γ, v, q); (ϕ,w, r)) (30)

Let V = D× V × V and let the critical points of L be denoted by φ = (β, u, p) and
θ = (γ, v, q). Then these points satisfy the equations:

L′((φ, θ); (ξ, η)) = Lφ(φ, θ; ξ) + Lθ(φ, θ; η) = 0, ∀(ξ, η) ∈ V

which leads to a set of six equations governing the solutions (β, u, p) and (γ, v, q) of the
calibration base problem,

Lθ(φ, θ; η) = 0 ⇔
Bβ(β, u; p, ϕ) = Cβ(β, u;ϕ), ∀ϕ ∈ D

Bu(β, u;w, p) = Cu(β, u;w), ∀w ∈ V

B(β, u; r) = F (r), ∀r ∈ V

(31)
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Lφ(φ, θ; ξ) = 0 ⇔

Bββ(β, u; p, γ, χ) + Buβ(β, u; p, v, χ) + Bβ(β, u; q, χ)

= Cuβ(β, u; v, χ) + Cββ(β, u; γ, χ) + Qβ(u(β);χ),

∀χ ∈ D

Bβu(β, u; p, γ, z) + Buu(β, u; p, v, z) + Bu(β, u; q, z)

= Cuu(β, u; v, z) + Cβu(β, u; γ, z) + Qu(u(β); z),

∀z ∈ V

Bβ(β, u; s, γ) = −Bu(β, u; s, v), ∀s ∈ V

(32)

We note that (32) can be simplified by substituting the last expression into the two
previous equations,

Bβ(β, u; q, χ) = Cuβ(β, u; v, χ) + Cββ(β, u; γ, χ) + Qβ(u(β);χ), ∀χ ∈ D

Bu(β, u; q, z) = Cuu(β, u; v, z) + Cβu(β, u; γ, z) + Qu(u(β); z), ∀z ∈ V

Bβ(β, u; s, γ) = −Bu(β, u; s, v), ∀s ∈ V

(33)

Systems (31) and (32) are generally untractable with current computational resources,
so we aim at developing simpler models. For example, we may consider approximations
(β1, u1, p1) and (γ1, v1, q1) of (β, u, p) and (γ, v, q) that are solutions to the surrogate
problem,

Bβ(β1, u1; p1, ϕ) = Cβ(β1, u1;ϕ), ∀ϕ ∈ D1

Bu(β1, u1;w, p1) = Cu(β1, u1;w), ∀w ∈ V

B(β1, u1; r) = F (r), ∀r ∈ V

Bβ(β1, u1; q1, χ) = Cuβ(β1, u1; v1, χ)

+ Cββ(β1, u1; γ1, χ) + Qβ(u1(β1);χ), ∀χ ∈ D1

Bu(β1, u1; q1, z) = Cuu(β1, u1; v1, z)

+ Cβu(β1, u1; γ1, z) + Qu(u1(β1); z), ∀z ∈ V

Bβ(β1, u1; s, γ1) = −Bu(β1, u1; s, v1), ∀s ∈ V

(34)

where D1 is a suitable subspace of D. The error of such solutions in the target quantity
Q(u(β)) is given in the following theorem.

Theorem 2 Let the forms Q(·) and B(·, ·; ·) be differentiable and let (β, u, p) and
(γ, v, q) be solutions of (31) and (32), respectively. Let (β1, u1, p1) and (γ1, v1, q1)
be arbitrary triples in D × V × V and let eβ = β − β1, eu = u − u1, ep = p − p1,
eγ = γ − γ1, ev = v − v1, and eq = q − q1. Then the error η in the quantity of interest

η = Q(u(β)) − Q(u1(β1))

is given by

η =A′((β1, u1, p1); (γ1, v1, p1))

+ Qβ(u1; eβ) + A′((β1, u1, p1); (eγ , ev , eq))

+ Qu(u1; eu) + A′
βup((β1, u1, p1); (γ1, v1, q1), (eβ , eu, ep)) + ∆R,

(35)
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where A′(·; ·) is as defined in (28) and

A′
βup((β1, u1, p1); (γ1, v1, q1), (eβ , eu, ep))

= Cuβ(β1, u1; v1, eβ) + Cββ(β1, u1; γ1, eβ)

− Bββ(β1, u1; p1, γ1, eβ) − Buβ(β1, u1; p1, v1, eβ)

− Bβ(β1, u1; q1, eβ) + Cuu(β1, u1; v1, eu)

− Bβu(β1, u1; p1, γ1, eu) + Cβu(β1, u1; γ1, eu)

− Buu(β1, u1; p1, v1, eu) − Bu(β1, u1; q1, eu)

− Bu(β1, u1; ep, v1) − Bβ(β1, u1; ep, γ1),

(36)

∆R =
1

2

∫ 1

0
L′′′

(

((β1, u1, p1), (γ1, v1, q1)) + s((eβ , eu, ep), (eγ , ev, eq));

((eβ , eu, ep), (eγ , ev , eq)), ((eβ , eu, ep), (eγ , ev , eq)),

((eβ , eu, ep), (eγ , ev , eq))

)

s(s − 1)ds.

(37)

Proof: The proof is a straightforward generalization of that of Theorem 1 in [32].
From the definition of the Lagrangian (30), we have

L((β, u, p), (γ, v, q)) − L((β1, u1, p1), (γ1, v1, q1))

= Q(u(β)) − Q(u(β1) − A′((β1, u1, p1); (γ1, v1, p1))

so that

η = A′((β1, u1, p1); (γ1, v1, p1)) + L((β, u, p), (γ, v, q)) − L((β1, u1, p1), (γ1, v1, q1))

To simplify notations, let φ, θ, φ1, and θ1 denote (β, u, p), (γ, v, q), (β1, u1, p1), and
(γ1, v1, q1), respectively, and let ∆φ = φ − φ1 and ∆θ = θ − θ1. Then making use of
one of the Taylor expansions, the difference between the Lagrangian terms becomes

L(φ, θ) − L(φ1, θ1)) =
1

2
L′((φ1, θ1); (∆φ,∆θ)) +

1

2
L′((φ, θ); (∆φ,∆θ))

+
1

2

∫ 1

0
L′′′((φ1, θ1) + s(∆φ,∆θ); (∆φ,∆θ), (∆φ,∆θ), (∆φ,∆θ))s(s − 1)ds

The term L′((φ, θ); (E1,∆θ)) simply vanishes since (φ, θ) defines a saddle point of the
Lagrangian L. On the other hand, we have

L′((φ1, θ1); (∆φ,∆θ)) = Lφ(φ1, θ1;∆φ)
︸ ︷︷ ︸

Qφ(φ1;∆φ)+A′

φ
(φ1;θ1,∆φ)

+ Lθ(φ1, θ1;∆θ)
︸ ︷︷ ︸

A′(φ1;∆θ)
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where

A′(φ1;∆θ) = F (q − q1) − B(β1, u1; q − q1) + Cu(β1, u1; v − v1)

− Bu(β1, u1; v − v1, p1) + Cβ(β1, u1; γ − γ1)

− Bβ(β1, u1; p1, γ − γ1)

Qφ(φ1;∆φ) = Qu(u1;u − u1) + Qβ(u1;β − β1)

A′
φ(φ1; θ1,∆φ) = Cuβ(β1, u1; v1, β − β1) + Cββ(β1, u1; γ1, β − β1)

− Bββ(β1, u1; p1, γ1, β − β1) − Buβ(β1, u1; p1, v1, β − β1)

− Bβ(β1, u1; q1, β − β1) + Cuu(β1, u1; v1, u − u1)

+ Cβu(β1, u1; γ1, u − u1) − Bβu(β1, u1; p1, γ1, u − u1)

− Buu(β1, u1; p1, v1, u − u1) − Bu(β1, u1; q1, u − u1)

− Bu(β1, u1; p − p1, v1) − Bβ(β1, u1; p − p1, γ1)

Finally, the remainder is:

∆R =
1

2

∫ 1

0
L′′′((φ1, θ1) + s(∆φ,∆θ); (∆φ,∆θ), (∆φ,∆θ), (∆φ,∆θ))s(s − 1)ds

which confirms the assertion. �

Corollary 2 If (β1, u1, p1) and (γ1, v1, q1) are the solutions of the surrogate calibration
problem (34), then the expression for the error in the quantity of interest simplifies to:

η = Qβ(u1; eβ) + Cuβ(β1, u1; v1, eβ) + Cββ(β1, u1; γ1, eβ)

− Bββ(β1, u1; p1, γ1, eβ) − Buβ(β1, u1; p1, v1, eβ) − Bβ(β1, u1; q1, eβ)

+ Cβ(β1, u1; eγ) − Bβ(β1, u1; p1, eγ) + ∆R.

(38)

Proof: If (β1, u1, p1) are solutions of (34)1,2,3, then by recalling (28) we observe that

A′((β1, u1, p1); (γ, v, q)) = 0, ∀(γ, v, q) ∈ D1 × V × V.

Hence, (35) reduces to

η = Qβ(u1; eβ) + A′((β1, u1, p1); (eγ , ev , eq)),

+ Qu(u1; eu) + A′
βup((β1, u1, p1); (γ1, v1, q1), (eβ , eu, ep)) + ∆R.

If in addition (γ1, v1, q1) are solutions of (34)4,5,6, we can similarly simplify the remain-
ing terms, i.e.

A′((β1, u1, p1); (eγ , ev , eq)) = F (q − e) − B(β1, u1; eq)
︸ ︷︷ ︸

= 0, (see (34)3)

+ Cu(β1, u1; ev) − Bu(β1, u1; ev , p1)
︸ ︷︷ ︸

= 0, (see (34)2)

+Cβ(β1, u1; eγ) − Bβ(β1, u1; p1, eγ)
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Qβ(u1; eβ) + Qu(u1; eu) + A′
βup((β1, u1, p1); (γ1, v1, q1), (eβ , eu, ep))

= Qβ(u1; eβ) + Cuβ(β1, u1; v1, eβ) + Cββ(β1, u1; γ1, eβ)

− Bββ(β1, u1; p1, γ1, eβ) − Buβ(β1, u1; p1, v1, eβ) − Bβ(β1, u1; q1, eβ)

+

{

Cuu(β1, u1; v1, eu) + Cβu(β1, u1; γ1, eu) − Bu(β1, u1; q1, eu)

+Qu(u1; eu) − Buu(β1, u1; p1, v1, eu) − Bβu(β1, u1; p1, γ1, eu)

}

= 0, (see (34)5)

−
{

Bu(β1, u1; ep, v1) + Bβ(β1, u1; ep, γ1)

}

= 0, (see (34)6)

�

Theorem 2 and Corollary 2 extend the theory presented in Section 2 to cases in
which the base model is imperfectly or incompletely specified, but for which some
observational data is assumed to be known. Adaptive modeling algorithms, such as
that described in the next section, can be used to update a sequence of surrogate models
until the coefficients and the model lead to an estimated error within preset tolerances.

Remark 1 A few remarks are in order:

1. It is clear that the choice of the calibration functional given in (24) is but one of
many possible choices. Any convex differentiable functional of the error compo-
nents T i(β))−zi or β−β0 can be used with no changes in the resulting form (35)
of the error estimate.

2. The results are also immediately extendable to cases in which one considers a
series of loadings, each delivering a different value z i

j of features T i. We then
define the calibration functional as

C(β, u) =
1

2

∑

i

∑

j

(T i(uj(β) − zi
j)

2 +
c

2
‖β − β0‖2

D
.

�

5 The Goals Algorithms

The Goals algorithms, introduced in [36, 59] and implemented in various versions in [33,
45, 46], are designed to reduce estimated modeling error by systematically adapting
the model using a sequence of surrogates. In [36], reference is made to the “Goal-
Oriented Adaptive Local Solutions” algorithms; hence “Goals”. We refer to these
general algorithms as Goals or goal-oriented algorithms. As will be shown, not all
employ “local” solutions.

The general ideas can be described in the following setting:
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1. Let the domain of the solution (u, p) ∈ V ×V of the base problem (9) be an open
region D ⊂ R

d, and let {Θj}k
j=0 be a partition of D:

D =

k⋃

j=0

Θj, Θi

⋂

Θj = δij , 0 ≤ i, j ≤ k

The semilinear and linear forms in (9) can be broken into k + 1 components so
that

B(u; v) =

k∑

j=0

BΘj
(u; v), F (v) =

k∑

j=0

FΘj
(v) (39)

for u, v ∈ V , with BΘj
(·; ·), FΘj

(·) being the values of the forms produced by
restrictions of u and v to Θj.

2. Next, through an averaging or homogenization process, we construct a surrogate
problem of the form (18) and compute the surrogate solutions (u0, p0) ∈ V × V
defined over all of D.

3. To assess the accuracy of the surrogate solution, we seek to estimate the modeling
error in the quantity of interest and call upon Theorem 1 to note that to within
higher order terms,

E(u0) ≈ R(u0, p) = R(u0; p0) + R(u0; p − p0). (40)

The first term is computable whereas the remaining term is generally intractable
and has to be estimated. However, the derivation of an estimate depends heavily
on the type of problem that is analyzed. Examples of error estimates for problems
in molecular statics, elastostatics, and elastodynamics are given in [33, 36, 46, 45].

4. If the error estimate is to within a user defined error tolerance δTOL, the analysis
stops and provides the analyst with the prediction of the quantity of interest
Q(u0).

5. If the error exceeds the tolerance, the algorithm proceeds by enhancing or improv-
ing the surrogate model in a subdomain DL ⊂ D, called the domain of influence.
Suppose that the quantity of interest Q involves features of the solution confined
to a subdomain DQ ⊂ D (e.g. Q(u) could be the average of u or its derivatives
over DQ). Then the initial choice of DL is generally the union of subdomains Θi

that intersect with DQ.

6. There are several possibilities to then compute a correction (ũ, p̃) of (u0, p0) using
the enhanced surrogate model,

I. Global Goals Algorithms. Let

B̃(ũ; v) = BDL
(ũDL

; vDL
) + B0,D\DL

(ũD\DL
; vD\DL

) (41)

where ũDL
= ũ|DL

, etc. and B0,D\DL
(·; ·) is the semilinear form for the

surrogate problem defined on restrictions of functions in V to D\DL. Thus,
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Figure 2: (top left) A fine scale base model and a subdomain ωQ surrounding features
of a quantity of interest Q; (top right) a partition of Ω into subdomains with an initial
domain of influence D = Θ0; (bottom) successive enlargements of D designed to reduce
the modeling error.

B̃(·, ·) includes fine-scale features of the base model over domain DL while it
is characterized by coarse-scale features of the surrogate model over D\DL.
We calculate (ũ, p̃) ∈ V × V such that

B̃(ũ; v) = F (v), ∀v ∈ V

B̃′(ũ; v, p̃) = Q′(ũ; v), ∀v ∈ V
(42)

II. Local Goals Algorithms. In this case, we compute a correction (ũ, p̃)
that coincides with (u0, p0) outside the initial domain of influence, but uses
the base problem data (the “fine scale data”) within DL:

BDL
(ũ; v) = FDL

(v), ∀v ∈ V (DL) with ũ = u0 in D\DL

B′
DL

(ũ; v, p̃) = Q′
DL

(ũ; v), ∀v ∈ V (DL) with p̃ = p0 in D\DL

(43)

and V (DL) is the space of restrictions of functions in V to the domain of
influence DL. The situation is illustrated in Fig. 2.

7. As done in step 3, we can derive an estimate of the modeling error of the enhanced
solution ũ,

E(ũ) ≈ R(ũ; p)
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Again, the estimation of this term depends on the type of problem (e.g. see [36,
45]). In this work, we introduce an alternative estimator by noting that:

E(ũ) = Q(u) − Q(ũ) = [Q(u) − Q(u0)] + [Q(u0) − Q(ũ)] (44)

The last term in this equation is computable and the first can be estimated by
again using Theorem 1,

E(ũ) ≈ R(u0; p) + Q(u0) − Q(ũ)

= R(u0; p̃) + R(u0; p − p̃) + Q(u0) − Q(ũ)

≈ R(u0; p̃) + Q(u0) − Q(ũ)

(45)

8. If the error estimate is to within a user defined error tolerance δTOL, the analysis
stops and provides the analyst with the prediction in the quantity of interest
Q(ũ).

9. If the error exceeds the tolerance, we obtain an indication of the error contri-
bution of each subdomain (outside the domain of influence) by computing its
contribution to the upper bound of the residual R(u0; p) (e.g. see [36, 45, 46]).
We then expand the domain of influence DL by adding the subdomains {Θi}
whose error contributions, with respect to the maximal contribution, exceed a
user defined tolerance γ and return to step 6.

Steps 1- 9 characterize a family of Global and Local Goals algorithms for adaptive
modeling. Several remarks are in order.

Remark 2 While the global versions of the Goals algorithms may involve the solution
of surrogate problems of a larger size that the local solution algorithms, they have the
advantage of accounting for possible interactions of fine-scale and large-scale behavior.
Thus, we expect that they may lead to faster convergence rates that the simpler local
methods. �

Remark 3 The Local and Global Goals algorithms described suggest numerous alter-
native schemes, many of which may be similar to classical Schwartz schemes for domain
decomposition. �

Remark 4 The initial domain of interest, of course, can be a multi-connected domain,
depending upon the number and structure of the quantities of interest. �

Remark 5 The surrogate solutions (u0, p0), (ũ, p̃) are rarely (virtually never) known
exactly, but Q(u0) and Q(ũ) can be replaced by numerical approximations Q(uh

0), Q(ũh)
and, for instance in (44),

Q(u) − Q(ũh) = Q(u) − Q(uh
0) + Q(uh

0) − Q(ũh)

The approximation errors Q(u0)−Q(uh
0) and Q(ũ)−Q(ũh) can be estimated and con-

trolled by established a posteriori error estimation techniques (see e.g. [31, 5]). �
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6 Global Estimates

Global estimates of modeling error can be obtained for specific forms of B(·; ·) and
Q(·). In cases in which B(·; ·) is a symmetric, positive-definite, bilinear form, global
estimates of e0 (= u− u0) and ε0 (= p− p0) can be used to construct upper and lower
bounds of errors in quantities of interest [36, 59, 45]. Here we provide a derivation of
such bounds for cases in which B(·; ·) and Q(·) satisfy a priori conditions.

Let V be a Banach space with norm ‖ · ‖. We observe that

B(u + w; v) = B(u; v) + B ′(u;w, v) + ∆4(u,w, v)

Q′(u + w; v) = Q′(u; v) + ∆5(u,w, v)

B′(u + w2;w1, v) = B′(u;w1, v) + ∆6(u,w1, w2, v)

where

∆4(u,w, v) =

∫ 1

0
B′′(u + sw;w,w, v)(1 − s)ds

∆5(u,w, v) =

∫ 1

0
Q′′(u + sw;w, v)ds

∆6(u,w1, w2, v) =

∫ 1

0
B′′(u + sw2;w1, w2, v)ds

for all u, v, w, w1, and w2 in V . With this notation, and recalling that u = u0 + e0

and p = p0 + ε0, we have

B(u; v) = B(u0; v) + B′(u0; e0, v) + ∆4(u0, e0, v)

Q′(u; v) = Q′(u0; v) + ∆5(u0, e0, v)

B′(u; v, p) = B ′(u0; v, p0) + B′(u0; v, ε0) + ∆6(u0, v, e0, p0 + ε0)







(46)

Then the primal and dual base models can be written:

Find (e0, ε0) ∈ V × V such that

B(u0; v) + B′(u0; e0, v) + ∆4(u0, e0, v) = F (v), ∀v ∈ V

B′(u0; v, p0) + B′(u0; v, ε0) + ∆6(u0, v, e0, p0 + ε0)

= Q′(u0; v) + ∆5(u0, e0, v), ∀v ∈ V

(47)

Thus, the errors e0 and ε0 satisfy the following equations:

B′(u0; e0, v) + ∆4(u0, e0, v) = R(u0; v), ∀v ∈ V

B′(u0; v, ε0) + ∆6(u0, v, e0, p0 + ε0)

= R̄(u0, p0; v) + ∆5(u0, e0, v), ∀v ∈ V

(48)

where R(u0; v) and R̄(u0, p0; v) are the residual functionals in (12) and (16).
If B(·; ·) and Q(·) are a bilinear form and a linear form, respectively, then ∆4, ∆5,

and ∆6 vanish, B ′ = B, Q′ = Q, so that the errors are governed by:

B(e0, v) = R(u0; v), ∀v ∈ V

B(v, ε0) = R̄(u0, p0; v), ∀v ∈ V
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Otherwise, we shall assume that constants C4 = C4(u0), C5 = C5(u0), and C6 =
C6(u0, p0) exist such that:

|∆4(u0, e0, v)| ≤ C4‖e0‖2‖v‖
|∆5(u0, e0, v)| ≤ C5‖e0‖ ‖v‖
|∆6(u0, v, e0, p0 + ε0)| ≤ C6‖e0‖ ‖v‖







(49)

and that it is possible to find a u0 ∈ V such that ∞ > α(u0), β(u0) > 0, where α(u0)
and β(u0) are given by

α(u0) = inf
w∈V \{0}

sup
v∈V \{0}

|B′(u0;w, v)|
‖w‖ ‖v‖ ≥ 0

β(u0) = inf
w∈V \{0}

sup
v∈V \{0}

|B′(u0; v, w)|
‖w‖ ‖v‖ ≥ 0

Then we easily obtain:

α(u0)‖e0‖ ≤ ‖R(u0)‖∗ + C4‖e0‖2

β(u0)‖ε0‖ ≤ ‖R̄(u0, p0)‖∗ + (C5 + C6)‖e0‖

where ‖ · ‖∗ denotes the norm on the dual space V ′:

‖R(u0)‖∗ = sup
v∈V \{0}

|R(u0; v)|
‖v‖

‖R̄(u0, p0)‖∗ = sup
v∈V \{0}

|R̄(u0, p0; v)|
‖v‖

These results show that for e0 sufficiently small, when the assumed properties prevail,
the modeling errors e0 and ε0 are globally bounded by the norms of the residuals.

7 Examples

7.1 Nano-indentation application

In this section, we consider the problem of determining static equilibrium configurations
of a regular lattice of N atoms. The base problem is derived by minimization of the
potential energy of the system involving all atoms in the lattice. However, for many
applications, the base problem is intractable due to the very large number of atoms N .
In order to decrease the complexity of the base problem, the quasicontinuum method
[53, 54, 55] is a popular approach for constructing surrogate problems which aim at
reducing the number of active atoms in the lattice needed in computer simulations.

7.1.1 The base problem

Let L be a regular lattice of N atoms in R
d, d = 2 or 3. The positions of the atoms in

the reference configuration are given by the vectors x̂i ∈ R
d, i = 1, . . . , N and in the
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Figure 3: Reference configuration and deformed configuration of a model lattice.

equilibrium configuration by xi = x̂i+ui, i = 1, . . . , N , where ui is the displacement of
atom i (see Fig. 3). We assume that the lattice in the reference configuration covers the
region Ω̄, where Ω is an open bounded set of R

d with boundary ∂Ω. For a more detailed
analysis, see [42]. We introduce the finite-dimensional vector space V = (Rd)N , and
we use the notation u = (u1,u2, . . . ,uN ) ∈ V , to refer to the displacements of the
collection of N atoms. The total potential energy of the system is assumed to be the
sums:

E(u) = −
N∑

i=1

f i · ui +

N∑

k=1

Ek(u) (50)

where f i is the external load applied to an interior atom i and Ek(u) is the energy of
atom k determined from inter-atomic potentials.

The goal of molecular statics is to find the equilibrium state u ∈ V that minimizes
the total potential energy of the system, i.e. E(u) = infv∈V E(v). This minimization
problem can be recast into the variational problem:

Find u ∈ V such that B(u;v) = F (v), ∀v ∈ V (51)

where, for any u ∈ V and v ∈ V ,

B(u;v) =

N∑

i=1

[
N∑

k=1

∂Ek

∂ui
(u)

]

· vi

F (v) =

N∑

i=1

f i · vi

(52)

Here ∂/∂ui is the gradient vector with respect to each component uα,i of the displace-
ment vector ui, i.e. ∂/∂ui = (∂/∂u1,i, . . . , ∂/∂ud,i).

7.1.2 The surrogate problem by the quasicontinuum method

We briefly recall the main features of the quasicontinuum method (QCM). For more
details, see [53, 49, 28]. The objectives of the method are essentially twofold:
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1. dramatically reduce the number of degrees of freedom from N × d.

2. substantially lower the cost in the calculation of the potential energy by comput-
ing energies only at selected sites.

The approach becomes very efficient if one considers an adaptive scheme to automati-
cally select the degrees of freedom that allow one to capture the critical deformations
of the lattice.

The first step consists of choosing a set of R representative atoms, the so-called
“repatoms”, and of approximating u ∈ V by a reduced vector u0 ∈ W = (Rd)R,
R � N , with u0 = (u0,1,u0,2, . . . ,u0,R) ∈ W . The displacements u0 represent the
active degrees of freedom of the system and the repatoms are conveniently identified
with the nodes of a finite element partition Ph of Ω. The displacements of the (N −R)
slave atoms are then interpolated from u0 by piecewise linear polynomials using the
finite element mesh. Indeed, let φr, r = 1, . . . , R, be the basis functions (the hat
functions) associated with the mesh Ph. We can construct a finite element vector
function uh such that

uh(x) =

R∑

r=1

u0,rφr(x), ∀x ∈ Ω̄. (53)

The displacements of the N atoms in the lattice are obtained via the extension
operator Π : W → V defined such that

(Πu0)i = uh(xi), i = 1, . . . , N. (54)

The second step of the QCM is devoted to the approximation of the total energy
E(Πu0) by summing only over the repatoms such that:

E(Πu0) ≈ E0(u0) = −
R∑

r=1

nr f0,r · u0,r +
R∑

r=1

nrEr(u0) (55)

where nr is an appropriate weight function associated with repatom r so as to account
for all atoms in the lattice, i.e.

∑

r nr = N , and f0,r is the averaged external force
acting on repatom r. The interatomic energies nrEr(u0) are further approximated by
considering a repatom to be either “local” or “nonlocal”. The term “local” refers to the
fact that the energy at a point in the continuum depends on the deformation at that
point only and not on its surroundings. Let Rlc denote the number of local repatoms
and Rnl the number of nonlocal repatoms, R = Rlc + Rnl. The atomistic energies are
now separated into local and nonlocal contributions such as:

R∑

r=1

nrEr(u0) =

Rlc∑

r=1

nrE
loc

r (u0) +

Rnl∑

s=1

nsE
nl

s (u0) (56)

Note that for Rnl = 0, the method is called the local QCM, for Rlc = 0, the non-
local QCM. Otherwise, the method is referred to as the coupled local/nonlocal QCM.
We shall only consider the latter in what follows. For a detailed description on how
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these energies are calculated, see [28]. The approximation of the energy by the coupled
local/nonlocal approach yields non-physical forces, the so-called ghost forces, at the
interface of the local and nonlocal regions. In the QCM, corrective forces are added
to balance these ghost forces (see e.g. [49]). We also observe that the local QCM
is comparable to a homogenization process in which the energies of the slave atoms
are approximated based on the Cauchy-Born hypothesis, which postulates that when
a monatomic crystal is subjected to a small linear boundary displacement, all atoms
within the crystal follow this linear displacement pattern. Stated in another way, when
the boundaries of a representative volume of atoms in a lattice are subjected to a linear
displacement field, the volume experiences a homogeneous deformation. Friesecke and
Theil [20] have demonstrated that this hypothesis can fail in the case of the so-called
“unfavourable” lattice parameters, but that in many cases it can be rigorously proved
to hold.

Remark 6 The local/nonlocal criterion: The selection of representative atoms as lo-
cal or nonlocal is based upon the variation of the deformation gradient on the atomic
scale in the vicinity of the atoms. A repatom is made local if the deformation is almost
uniform, nonlocal if the deformation gradient is large. In the QCM, the deformation
gradients are compared elementwise by computing the differences between the eigenval-
ues of the right stretch tensor U 2 = F T F in each element, F being the deformation
gradient in the element. �

The minimization of the energy E0(u0) yields the surrogate problem:

Find u0 ∈ W such that B0(u0;v) = F0(v), ∀v ∈ W (57)

where the semilinear form B0(·; ·) and linear form F0(·) are defined as

B0(u;v) =

R∑

i=1

[
R∑

r=1

nr
∂Er

∂ui
(u)

]

· vi

F0(v) =
R∑

i=1

ni f0,i · vi

(58)

Remark 7 In [53, 49, 28] it is proposed that an automatic mesh adaption technique be
used to add and remove representative atoms “on the fly”, in order to capture the fine
features during the simulation. The criterion for adaptivity is based upon the derivation
of an error indicator similar to that of Zienkiewicz and Zhu [62] for the finite element
method. This adaptive strategy will be used as is to compute the solution u0 and an
overkill solution of the problem. Our goal here is to propose an alternative scheme
which will allow one to adapt the mesh by controlling error in a quantity of interest. �

7.1.3 Error estimation and adaptivity

The errors in the solution u0 obtained by the QCM, with respect to the solution
of the base problem, arise from three sources: 1) the nonlinear problem is solved
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approximately by an iterative method, 2) the reduction of the number of degrees of
freedom from N to R, 3) the approximation of the total potential energy by E0, as
defined in (55) and (56).

The error due to the nonlinear solver is controlled at each iteration and is assumed
to be negligible compared to the other sources of error. This error is sometimes referred
to as the solution error. The second type of error is analogous to discretization error in
Galerkin approximations such as in the finite element method. Here it can be regarded
as a model reduction error. Finally, the last source induces a so-called modeling error
due to the modeling of the energy using the coupled local/nonlocal QCM. In this work,
we will not differentiate between the three types of errors and will provide for estimates
of the total error.

In the nanoindentation problem that will be presented in the next section, the
quantity of interest is the force that the crystal exerts on the indenter. Let the atoms,
in contact with the lower surface of the indenter, be numbered from 1 to M . The
quantity of interest is

Q(u) = −
M∑

i=1

fy,i = −
M∑

i=1

∂Ei

∂uy,i
(u) (59)

where fy,i and uy,i are the force and the displacement in the y-direction with respect
to atom i. We assume that the meshes are such that the M atoms under the indenter
are representative atoms, and all the forces are computed by the nonlocal approach.
The objective is then to estimate the error quantity

E = Q(u) − Q(Πu0). (60)

The dual problem associated with the base problem (51) reads:

Find p ∈ V such that B ′(u;v,p) = Q′(u;v), ∀v ∈ V (61)

where the derivatives are given in the molecular statics case by

B′(u;v,p) =

N∑

j=1

N∑

i=1

vj ·
[

N∑

k=1

∂2Ek

∂uj∂ui
(u)

]

· pi

Q′(u;v) = −
N∑

j=1

vj ·
[

M∑

i=1

∂2Ei

∂uj∂uy,i
(u)

] (62)

The surrogate dual problem is then,

Find p0 ∈ W such that B ′
0(u0;v,p0) = Q′

0(u0;v), ∀v ∈ W (63)

where by Q0 we mean Q0(v) = Q(Πv). The errors e0 ∈ V and ε0 ∈ V in Πu0 and
Πp0, respectively, are defined as e0 = u − Πu0 and ε0 = p − Πp0. Then, the error in
Q(u) produced by Πu0 is given by, using Theorem 1,

E = Q(u) − Q(Πu0) = R(Πu0;p) + ∆1(Πu0,Πp0, e0, ε0) (64)
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where R(Πu0;v) is the residual functional, with respect to the base model problem

R(Πu0;v) = F (v) − B(Πu0;v), v ∈ V. (65)

We now propose an approach to estimate the quantity R(Πu0;p). On one hand, we
may simply consider computing R(Πu0; Πp0). But this term would fail to pick up the
model reduction error as in Galerkin methods. In other words, a better approximation
of the dual solution should be sought in a space larger than W . Our second observation
is concerned with the evaluation of the residual

R(Πu0;p) = F (Πu0,p) − B(Πu0;p)

=

N∑

i=1

(

f i −
[

N∑

k=1

∂Ek

∂ui
(Πu0)

])

· pi =

N∑

i=1

ri(Πu0) · pi

(66)

where the residual vector r(Πu0) ∈ V indicates how the forces acting on each atom
i fail to be equilibrated. It is well known that calculation of atomic forces is cost-
prohibitive when N is large. In an effort to reduce the computational cost of the error
estimator, it is desired to take into account only the most significant contributions to
r(Πu0). Towards this goal, we propose to evaluate the residual and the dual solution
on a mesh which is finer than the mesh used for the evaluation of u0, but coarser than
the mesh involving all atoms as nodes.

Let P̃h denote such a partition of Ω̄ with Ñ nodes, R < Ñ � N . In practice,
the mesh P̃h is constructed using the adaptive technique described in Remark 7. We
introduce the vector space Ṽ = (Rd)Ñ , the extension operator Π̃ : W → Ṽ , and the
residual functional R̃ on Ṽ ,

R̃(ũ; ṽ) =
Ñ∑

i=1

r̃i(ũ) · ṽi (67)

where ũ, ṽ ∈ Ṽ , and the r̃i(ũ) are computed via the coupled local/nonlocal QCM. We
also consider the new dual problem on Ṽ :

Find p̃ ∈ Ṽ such that B̃′(Π̃u0; ṽ, p̃) = Q̃′(Π̃u0; ṽ), ∀ṽ ∈ Ṽ (68)

with

B̃(ũ; ṽ) =

Ñ∑

i=1





Ñ∑

k=1

nk
∂Ek

∂ui
(ũ)



 · ṽi

Q̃(ũ) = −
M∑

i=1

∂Ei

∂uy,i
(ũ)

(69)

The error estimator with respect to the quantity of interest Q is defined as the com-
putable quantity

η = R̃(Π̃u0; p̃) =

Ñ∑

i=1

r̃i(Π̃u0) · p̃i (70)
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and we will show in the next subsection that η is a reasonable estimate of the error
E = Q(u) − Q0(u0) = Q(u) − Q(Πu0). The quality of the estimates will be measured
as usual in terms of the effectivity index λ, defined as the ratio of the estimated error
to the actual error, assuming the latter is known,

λ =
η

Q(u) − Q0(u0)
(71)

For adaptation purposes, the quantity η is decomposed into elementwise contribu-
tions ηK such that:

η =
Ne∑

K=1

ηK (72)

This is accomplished in practice as follows: for any element K, we have the nodal value
ηK

i = r̃i(Π̃u0) · p̃i. We then compute the integral average of the linear interpolant over
the element, namely

ηK(x) =

∣
∣
∣
∣
∣

1

|K|

∫

K

3∑

i=1

ηK
i φi(x) dx

∣
∣
∣
∣
∣
, x ∈ K (73)

where |K| is the area of the element K and φi(x) are the linear hat functions described
in (53). The adaptivity algorithm then proceeds as follows:

1. Initialize the load step s = 0. Input user-tolerance δtol.

2. s = s+1.

3. Solve the primal and dual problems.

4. Compute the error estimate.

5. Check: |η| > δtol|Q(u0)|. If false: go to Step 2. If true: mark those elements with
|ηK(Π̃u0, p̃)| > αmaxK |ηK(Π̃u0, p̃)|, where α is a user-supplied number between
0 and 1.

6. Refine flagged elements and go to Step 3.

7.1.4 A numerical example

The performance of the error estimator and adaptive strategy is demonstrated for a
nano-indentation problem proposed by Tadmor et al. [41, 49, 54]. The simulation is
actually provided as a model example accompanying the open source software pack-
age [29]. In this example, a thin film of aluminum crystal is indented by a rigid
rectangular indenter, 9.31 Å wide and infinite in the out-of-plane direction, as depicted
in Fig. 4. The dimensions for the block of crystal are 2000 × 1000 (in Angströms) in
the [111] and [1̄10] directions of the crystal. The crystal rests on a rigid support so
that homogeneous boundary conditions ui = 0 are prescribed for those atoms i located
at y = 0. The indenter is moved downward in a succession of 30 load-step increments
δl = 0.2. The boundary conditions for the atoms i just below the indenter are given
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Figure 4: Nano-indentation of an aluminum crystal (the schematic representation is
inspired from Fig. 1 in [54]).

by: ui = (0,−mδl, 0), m = 1, . . . , 30. Quasistatic steps are then considered to solve
for the displacements.

The site energies Ek(u) of each atom k of the aluminum crystal are computed here
using the Embedded Atom Method (EAM) atomistic model (see e.g. [12, 18]). Briefly,
the semi-empirical potential energy for atom k is given by the sum of of an electron-
density dependent embedding energy and pairwise interatomic potentials. Note that
the QCM employs a cutoff function to approximate the interatomic potentials as the
potential function decays rapidly with respect to the interatomic distance.

The interatomic distances in the undeformed configuration of the crystal are 2 Å
and 2 Å in the x- and y-direction, respectively. One (1̄, 1̄, 0) layer of the film con-
tains about 500, 000 atoms. In this example, we perform a pseudo-two-dimensional
analysis of the QCM in the sense that the displacement vectors are constrained to be
independent of the z-variable. However, all atomistic energies are computed in three
dimensions [54]. Rather than solving for the solution u of the full base problem (51), we
have opted to consider as our reference solution an “overkill” solution of the surrogate
problem (57). This solution is hereafter referred to as the base model solution as it
involves a sufficiently high number of degrees of freedom so that it is a very accurate
approximation of u.

The base model solution is compared to the solution u0 obtained by the quasicontin-
uum method on a much coarser discretization (see Fig. 5). The vertical displacements
of the base model and the QC solution are compared in Fig. 6 while the y-component
of the dual solutions are shown in Fig. 7. In the QC solution, the refinement parameter
was set according to the authors recommendations [29] to .075 while the Goals solution
was set to a 5 percent error tolerance in the quantity of interest. Notice in Fig. 6 how
the base model solution allows the slip plane to propagate into the material much more
quickly than the QC solution. Furthermore, notice in Fig. 7 how the dual solution for
the base model displays the influence of the slip plane on the quantity of interest as
the dislocations nucleate and move. In contrast, the mesh produced by the QCM lacks
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the resolution to capture this effect.
Next, the force under the indenter is shown in Fig. 8 for the base model solution,

the QC solution, and the Goals algorithm. This force represents a quantity of physical
interest as it can be experimentally measured and clearly indicates the nucleation of the
dislocation. Note that the base model has been run only until load step 27 due to the
limitation in the computational resources. The other two solutions have been completed
and are fully displayed. The QCM produces a stiffer material so that the critical force
for dislocation nucleation occurs one load step earlier than the base model solution.
On the other hand, the Goals solution produces a remarkably accurate representation
of the force-displacement curve when compared to the base model. Shown in Fig. 9
are the relative errors and effectivity indices for each load step, demonstrating the
effectiveness of the error estimator used. Note the effectivity index at loadstep 2 is far
from unity due to the fact that the error is near zero while the estimate is far from it.
As can be seen, the error in the solution is controlled to within the preset tolerance
of 5 percent with the exception of the third and final load steps. Although the error
estimator overestimates the exact error for most of the loadsteps in this example, this
behavior may not be true for other cases. It is not proved that this is a guaranteed
upper bound. The solution during load step 2 exhibits a behavior that we have not
been able to understand at this point. This will be the subject of future analysis.

Finally, Figs. 10, 11, and 12 compare the mesh, the primal, and the dual solutions
between the QCM and Goals methods for load step 27 (after the dislocation has nucle-
ated and the force drop observed). Notice in Fig. 10 that the Goals solution has refined
many atoms near the indenter and the surrounding region of the slip plane. While the
primal solutions in Fig. 11 look similar, the dual solutions in 12 are somewhat different.
This is a reflection of the fact that primal solution has not converged in the QCM case
thereby corrupting the accuracy of the dual solution.

7.2 Molecular dynamics application

We present in this section an application to modeling the dynamics of atoms whose
motion is determined by molecular dynamics principles. We consider here surrogate
models generated by the bridging scale method (BSM) of Wagner and Liu [60] and
the pseudo-spectral multiscale method (PMM) of Tang et al. [57]. We will show only
preliminary results, but future work will include the development of automatic model
adaptivity algorithms and the investigation of other surrogate models such as that put
forth by Xiao and Belytschko [61].

7.2.1 The base model

Let Ω ⊂ Z
d be an open bounded set, d = 1, 2, or 3. Let L denote the lattice of n atoms

covering Ω. The initial positions of the atoms are given by the vectors xi ∈ R
d and the

respective displacements by ui ∈ R
d, i = 1, . . . , n. The notation u = (u1,u2, . . . ,un)

collectively represents the displacement of the n atoms. We denote by M the mass
matrix of the system, Mij = m(i)δij , where mi is the mass of atom i. Additionally,
the interatomic potential energy (assumed to be given) is represented by E(u) and the
interatomic forces are computed as f(u) = −∂uE(u).
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Figure 5: Finite element triangulation for the base model solution (above) and the QC
solution (below). The base model mesh is shown at load step 26 while the QC solution
is shown at load step 25 (just prior to dislocation nucleation in both cases). The base
model has 40554 atoms while the QC solution has 492 active atoms.
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Figure 6: Base model (left) and QC (right) primal solutions at the beginning of dislo-
cation nucleation.
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Figure 7: Base model (left) and QC (right) dual solutions at the beginning of dislocation
nucleation.
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Figure 10: QC (left) and Goals (right) meshes at load step 27. The numbers of atoms
in the QC mesh and the Goals mesh are 1629 and 3452.
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Figure 11: Comparison of the primal solution of the QCM algorithm (left) and the
Goals algorithm (right) at load step 27.
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Figure 12: Comparison of the dual solution of the QCM algorithm (left) and the Goals
algorithm (right) at load step 27.

The molecular dynamics (MD) problem is then characterized by the following sys-
tem of ordinary differential equations for the displacements u = u(t):

Mü = f(u), u(0) = U 0, u̇(0) = V 0 (74)

subjected to appropriate boundary conditions. Note that external forces on the atoms
have been neglected for simplicity. The superimposed dot implies differentiation with
respect to time. Assuming u, v ∈ V = C2

(
(0, T );

(
R

d
)n)

, we may recast the above
problem into the weak form (1) with:

B(u;v) =

∫ T

0
vT (Mü − f(u)) dt + vT (0)Mu̇(0) − v̇T (0)Mu(0)

F (v) = vT (0)MV 0 − v̇T (0)MU0

(75)

Note that the initial conditions in the above formulation are weakly imposed. Similarly,
it is not difficult to derive the first derivative of the semilinear form B(·; ·). Indeed, we
have for p, v ∈ V,

B′(u;v,p) =

∫ T

0

(
Mp̈ − (f ′(u))T p

)T
v dt

+ (Mp(T ))T v̇(T ) − (Mṗ(T ))T v(T )

(76)

where f ′(u) = ∂uf(u) is the Hessian of E(u) evaluated at u.

7.2.2 The surrogate models: BSM and PMM

We consider as surrogate models those determined by the bridging scale method [56, 60]
and the pseudo-spectral multiscale method [57]. These methods are similar and their
overall objectives are to:

1. Construct a coarse scale model from the MD model.
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2. Solve the MD model only over a subdomain ΩMD ⊂ Ω and solve the coarse scale
model in the complementary subdomain ΩC = Ω \ΩMD. One difficulty is then to
develop proper interface conditions to reduce/eliminate spurious wave reflection
at the interface of ΩMD and ΩC .

The starting point of BSM and PPM is based on the classical decomposition of
scales (see e.g. [23]):

u = ū + u′, ū = Pu, u′ = Qu = (I − P )u (77)

where ū and u′ define the coarse-scale displacements and the fine-scale fluctuations,
respectively, P is a general projection operator, and I is the identity matrix. One main
difference between BSM and PPM is that ū is obtained in terms of piecewise linear
functions in the case of BSM and of a spectral representation in the case of PPM.

Considering the subdomains ΩMD and ΩC , the solution u can be further decomposed
into the following form:

u =

[

uMD

uC

]

=

[

ūMD

ūC

]

+

[

u′
MD

u′
C

]

in ΩMD

in ΩC

(78)

where uMD and uC are the parts of the solution in ΩMD and in ΩC , respectively.
In essence, BSM and PMM consist in approximating the large scales ūMD + ūC by
constructing a coarse scale model over the whole domain Ω (see [60, 56, 57] for details)
and by using ūC to define the boundary conditions for the full MD model in ΩMD.
However, it is well known that such a coarse model may yield spurious wave reflection
at the interface of the two domains. In order to alleviate this issue, BSM and PMM
propose to calculate the fine scale components in ΩC corresponding to those atoms that
are within the cut-off radius of atoms in ΩMD. Therefore, the vector u′

C is approximated
by a vector, say u′

G, that has zero entries, except at the position of these atoms “close”
to the interface boundary. It follows that the surrogate models using BSM or PMM
produce solutions in the form:

ũ =

[

uMD

ūC

]

in ΩMD

in ΩC

(79)

Once again, the readers are referred to [60, 56, 57] for the full description of the methods.
Our main interest in the present work is to provide error estimates with respect to
quantities of interest for the surrogate solutions ũ.
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7.2.3 Error estimates

The residual functional with respect to the MD problem can be written as

R(ũ,v) =

∫ T

0
vT (M ¨̃u − f(ũ

︸ ︷︷ ︸

r(ũ)

))dt =

∫ T

0

n∑

i=1

vi · ri(ũ)dt (80)

The local residual ri simply indicates how the second Newton law fails to be satisfied
at atom i. Given a quantity of interest Q(u), the modeling error in Q(ũ) can be
approximated by

Q(u) − Q(ũ) ≈ R(ũ,p) =

∫ T

0

n∑

i=1

pi · ri(ũ)dt (81)

where p is the dual solution associated with Q(u). The computational domain is
divided here into a partition {Θ}k

j=0, as indicated in Section 5. In the case of BSM, the
subdomains are conveniently constructed from the coarse lattice used in the solution
of the coarse scale model. We note that the error quantity can then be decomposed
into local contributions either in time, ηt, or in space, ηj , as:

ηt =
n∑

i=1

pi · ri(ũ) ηj =

∫ T

0

∑

i∈Θj

pi · ri(ũ)dt (82)

and that the error can be rewritten in terms of these local contributions as:

Q(u) − Q(ũ) ≈ R(ũ,p) =

∫ T

0
ηtdt =

k∑

j=0

ηj (83)

We will show in the following example the distribution of the contributions ηi and the
evolution of the contributions ηt.

7.2.4 Numerical example

The performance of the error estimator and of the local Goals algorithm is demonstrated
here for the one-dimensional model problem studied in [56]. In this problem, Ω =
[−2, 2], ΩMD = [−0.35, 0.35], with atomic spacing ha = 0.005. The atoms in domains
ΩMD and ΩC are represented in black and red, respectively, in Fig. 14 and subsequent
figures. The initial conditions are given by:

V0(xi) = 0, xi ∈ Ω (84)

and

U0(xi) =







0.005 (1 + 0.1 cos(80πxi))
e−100x2

i − e−6.25

1 − e−6.25
|xi| ≤ 0.25

0 otherwise

(85)
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Figure 14: Initial displacement U0(xi). The points in black represent atoms in ΩMD

while points in red denote atoms in ΩC .

Furthermore, mi = 1, i = 1, . . . , n, and the interatomic forces are given by linear
springs:

f(u) = Ku, K =










−2 1

1 −2
. . .

. . .
. . . 1

1 −2










(86)

In the case of BSM, the coarse lattice is constructed by placing a coarse grid point at
every p atom in Ω so that the coarse grid spacing hc = pha; see Fig. 15. The time
integration scheme is identical to that used by Wagner and Liu [60]. In this example,
we suppose that we are interested in the locally averaged displacement:

Q(u) =
1

CardM
∑

i∈M

ui, M = {i : |xi| ≤ 0.0025} (87)

for which the strong form of the dual problem is determined as

Mp̈ −
(
f ′(u)

)T
p = 0, −Mṗ(T ) = q, p(T ) = 0 (88)

where q is the vector defined such that Q(u) = qT u. The dual problem is solved by
integrating (88) backwards in time using a numerical scheme similar to that used in
the forward time integration of the primal problem.

The first set of experiments deals with bridging scale method. The surrogate so-
lution ũ, the dual solution p, and the local residuals rr(ũ) are shown in Fig. 16 for
four specific times. Observe how the dual solution propagates in time in the opposite
direction to the primal solution. The dual solution indicates how the local residuals
r(ũ) influence the error in the quantity of interest. In particular, it can be seen that,
as the front moves left to right, the dual solution reduces to zero. This simply means
that the sources of error introduced in those spatial regions in which the dual solution
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hc = pha

ha

Figure 15: Schematic illustrating the construction of the coarse lattice on which the
coarse scale displacements ū are computed (BSM).

is zero do not have enough time to propagate and pollute the quantity of interest. In
the meantime, the local residuals become significant when the fine scale noise starts to
move across the interface boundary. The combination of both effects implies that the
major contributions to the error in the quantity of interest are generated during the
time interval 0.35 ≤ t ≤ 0.90 and in the subregion 0.35 ≤ x ≤ 0.5 as shown in Fig. 17.

Since the sources of error, according to Fig. 17, are essentially created in the space
intervals [0.35, 0.5] and [−0.5,−0.35] (by symmetry), we choose to enlarge ΩMD to
[−0.5, 0.5] in a one adaptive step of the Goals algorithm. Fig. 18 displays the new error
contributions along the pre-adapted solution errors for comparison. As clearly shown,
the modeling error has been effectively eliminated. Note that the dual solution p in
the present numerical experiment was computed using the fine scale model. A major
task will be to construct adequate and reliable surrogate models for the dual problem.

We repeat the same experiments in the case of PMM. Here we only show the
results of the adaptive algorithm by considering ΩMD = [−0.5, 0.5], [−0.4, 0.4], and
[−0.45, 0.45]. Fig. 19 shows how the contribution to the errors are reduced by successive
refinement of the model problem.

7.3 Random Heterogeneous Materials

We now show an application of the Local Goals algorithms to the analysis of the
elastostatics of random multi-phase composite materials (see also [46]). In Section 7.3.1,
we first define the model problem and notations. We then introduce a brief overview on
the surrogate models and the estimation of modeling errors in Section 7.3.2 and present
a specific example application to a two-phase composite material in Section 7.3.3.

7.3.1 Model Problem and Notations

We consider a material body, occupying an open and bounded domain D ⊂ R
d, d =

1, 2, 3, with boundary ∂D = Γu ∪ Γt, Γu ∩ Γt = ∅, meas(Γt) > 0, meas(Γu) > 0, Γu

and Γt being portions of ∂D on which displacements and tractions are to be specified,
respectively. The body is in static equilibrium under the action of deterministic applied
forces f ∈ L2(D)d, a surface traction t ∈ L2(Γt)

d−1, and a prescribed displacement
U ∈ L2(Γu)d on Γu. We assume the body is composed of a multi-phase, composite,
elastic material with highly oscillatory material properties. The geometrical features
and material properties of its constituents are functions of a random vector ω ∈ Ω,
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Figure 16: Time snapshots of the primal, dual, and force residual at t = 45, 60, 75, 90
(BSM).

where Ω denotes the collection of all possible realizations. The governing probability
distribution density function p : Ω −→ [0, 1] is assumed to be known.

Let u = u(x,ω) denote the random displacement vector field defined on D ×
Ω and let ∇u denote the spatial gradient. Then the Cauchy stress tensor σ(x,ω)
satisfies σ(x,ω) = E(x,ω)∇u(x,ω), where E(x,ω) is the fourth order tensor of
elasticities with components Eijkl(x,ω) ∈ L∞(D,L2(Ω))d×d. The standard symmetry
and ellipticity conditions hold for a.e. x ∈ D and a.s. ω ∈ Ω:

Eijkl(x,ω) = Ejikl(x,ω) = Eijlk(x,ω) = Eklij(x,ω).

α0ξijξij ≤ Eijkl(x,ω)ξijξkl ≤ α1ξijξij, α1 ≥ α0 > 0.
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Figure 18: The temporal contribution to the error (left) and the spatial contribution
(right) following model adaptivity (BSM).

We introduce a space of test functions V ,

V =
{
v ∈ H1(D,L2(Ω)) : v(x,ω) = 0, ∀x ∈ Γu, ω ∈ Ω

}
, (89)

where H1(D,L2(Ω)) is the Hilbert space,

H1(D,L2(Ω)) =

{

v(x,ω) :

∫

Ω

∫

D
[∇v : ∇v + v : v] p(ω) dxdω < ∞

}

.

Having established the necessary notations and conventions, we now recall the varia-
tional formulation (9) of our linear, stochastic, elastostatics problem, where [46]:

F (v) =

∫

Ω

∫

D
(f : v) p(ω) dxdω +

∫

Ω

∫

Γt

(t : v) p(ω) dsdω,

B(w,v) =

∫

Ω

∫

D
(E∇w : ∇v) p(ω) dxdω,

(90)
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(right) following model adaptivity (PMM).

where and n and s denote the unit normal and position vector on ∂D. Following the
approach in Sections 1.2 and 2, we define the target of the analysis as a functional Q(·)
of the solution u.

7.3.2 Surrogate Models and Modeling Errors

To implement versions of the Goals algorithms, we compute a surrogate solution pair
(u0,p0) of (18), where the bilinear form B0(·, ·) is obtained by first computing the
statistical mean Ē(x) of E(x,ω) and by then using standard homogenization methods
or classical Hashin-Shtrikman bounds [22] to obtain the deterministic, homogeneous,
elasticity tensor E0. Thus,

B0(w,v) =

∫

Ω

∫

D
(E0∇w : ∇v) p(ω) dxdω. (91)

The incurred modeling errors are denoted as e0(x,ω) = u(x,ω) − u0(x,ω) and
ε0(x,ω) = p(x,ω) − p0(x,ω). The corresponding residual functionals (12) and (16)
reduce to [46]:

R(u0,v) = −
∫

Ω

∫

D
(EI0∇u0 · ∇v) p(ω) dxdω,

R(p0, z) = −
∫

Ω

∫

D
(EI0∇z · ∇p0) p(ω) dxdω,

(92)

where I0(x,ω) = I − E−1E0 denotes the deviation tensor. We can now call upon
Corollary 1 to establish the error in the quantity of interest,

E(u0) = R(u0;p0) +
1

2
(R(u0, ε0) + R(p0, e0))) + ∆2(u0,p0, e0, ε0)

Ignoring the higher order term ∆2(u0,p0, e0, ε0), yields the estimate,

E(u0) ≈ R(u0;p0) +
1

2
(R(u0, ε0) + R(p0, e0))) (93)
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The last two terms in the RHS of (93) are generally intractable and further steps need
to be taken to derive a computable estimate of the error. We here introduce an example
of an estimator derived in [46] which is used in the example problem in Section 7.3.3:

E(u0) ≈ ηest,upp = R(u0,p0) +
1

4
(η+

upp)2 − 1

4
(η−upp)2,

where

η±upp =

√
∫

Ω

∫

D
EI0∇(u0 ± p0) : I0∇(u0 ± p0) p(ω) dxdω.

The Goals algorithm provides with two approaches to reduce the error E(u0) and
compute enhanced solutions (ũ, p̃) of (u0,p0): the Local or the Global Goals version
(see Section 5). In either case, we use the estimator η̃est, derived from (45), to assess
the error in the quantity of interest of the enhanced solutions,

E(ũ) ≈ η̃est = R(u0, p̃) + Q(u0) − Q(ũ).

7.3.3 Numerical Example

For the base problem, we consider a two-phase composite material consisting of iso-
tropic, linearly elastic constituents. Cylindrical inclusions account for 30 percent of
the volume and have been randomly dispersed in the matrix material, as depicted
in Fig. 20. The structure is subjected to a traction t at the top and has prescribed
zero displacements at the base y = 0. The Young’s modulus and Poisson ratio of
the matrix material are deterministic and given by Em = 5 GPa and νm = 0.345.
The material properties of the inclusions, however, are functions of the random vector
ω = {ω1, ω2} ∈ (0, 1) × (0, 1), such that:

Eincl(ω) = Eincl(ω1) = 110GPa + 20GPa × ω1,

νincl(ω) = νincl(ω2) = 0.28 + 0.4 × ω2,

We assume that ω1 and ω2 are statistically independent which implies that p(ω) =
p1(ω1) p2(ω2). We additionally assume that pi(ωi), i = 1, 2, are truncated Gaussian
distribution density functions,

pi(ωi) = 2
A√
2π

e−(2ωi−1)2/2π, i = 1, 2

A = 2

[

erf

(
1√
2π

)

− erf

(

− 1√
2π

)]−1

In this example, our target Q(u) is the statistical average of the average strain εyy over
a small circular area DQ near the support of the structure, with a radius r = 0.017m
(see Fig. 20).

We establish the surrogate problem (18) by computing the average of the Hashin-
Shtrikman upper and lower bounds [22] of the material coefficients in the base model.
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Figure 20: A structural component constructed from a two-phase composite material
in equilibrium under the action of applied stress t and prescribed zero displacements
at y = 0.

Using these averaged coefficients, we construct a a surrogate E0 whose coefficients are
obviously homogeneous and deterministic. It is easy to show [47] that with the current
choice of Q(u) the surrogate solutions (u0,p0) are also deterministic functions. In
Fig. 21, the strain field ε0

yy is shown which is obtained by using overkill finite element
(FE) approximations of (u0,p0) (All FE computations are performed with the FE code
ProPHLEX [2]).

For comparison, the base solution u(x, ω) has also been computed by using overkill
Monte Carlo and FE approximations and the statistical average of the resulting strain
field εyy(x, ω) is shown in Fig. 22, where the area of interest around DQ has been
magnified. In Table 1, the relative error in the quantity of interest and the effectivity
indices of the estimate ηest,upp is given. The relative error appears to be large, but with
a reasonable effectivity of 122 percent, the estimator ηest,upp provides a fairly accurate
assessment of the error.

To reduce the error, we perform two separate series of local enhancements. In one
series, we employ the Local Goals algorithm, while the global Goals is used in a second
series. In Table 2, the relative errors and the effectivity indices of the error estimator
η̃est are listed for three steps of both approaches. Also, in Figures 23 and 24, the
statistical averages of the enhanced strain fields ε̃yy are shown that are obtained after
the first and third step, respectively. In these figures, the boundary of the domain of
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influence ∂DL is highlighted red.
As expected (see Remark 2), the results in Table 2 reveal that, although the Global

Goals algorithm requires solving a larger problem, the rate of decrease in the error in
the target quantity is more pronounced with this approach. In both approaches, the
estimator η̃est exhibits good accuracy with effectivity indices close to unity. For the
Global Goals version, the effectivity is slightly worse, but this is due to the fact that
the error has been reduced to much smaller values. In most applications, however, the
estimators will lose some accuracy as the error becomes very small.

E(u0)/Q(u) ηest,upp/E(u0)

0.73 1.22

Table 1: Relative error and effectivity index of the estimator ηest,upp.

Local Goals Global Goals

Step No. E(ũ)/Q(u) η̃est/E(ũ) E(ũ)/Q(u) η̃est/E(ũ)

1 0.61 1.07 0.20 1.31

2 0.61 1.10 0.15 1.49

3 0.56 1.08 0.13 1.40

Table 2: Relative error and estimator effectivity for the locally enhanced problems.
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Figure 21: Strain field ε0
yy for the deterministic surrogate problem.
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DQ

Figure 22: Mean value of the strain field εyy for the base problem.
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(a) Local Goals (b) Global Goals

Figure 23: Mean values of the strain field ε̃yy after the first step of local enhancement
using the Local and Global Goals algorithm.

(a) Local Goals
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(b) Global Goals

Figure 24: Mean values of the strain field ε̃yy after the third step of local enhancement
using the Local and Global Goals algorithm.
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7.4 Quantum Mechanics Models and the QM-Molecular Dynamics

Interface

Our goal here is to briefly demonstrate how classical quantum mechanics itself has been
the springboard for creating numerous reduced models of various structures and that
these can also be viewed as surrogate to a more general base system. Moreover, we also
describe how the framework developed thusfar provides a basis for characterizing the
interface of QM models with those of molecular dynamics. A more detailed exposition
of these ideas is to be the subject of a future paper.

We focus on a nonrelativistic molecular system consisting of M nuclei and N elec-
trons interacting through Coulombic forces. The Hamiltonian for such systems is:

H = − ~
2

2m

N∑

i=1

∆ri
− ~

2

2

M∑

K=1

1

MK
∆RK

−
N∑

i=1

M∑

K=1

ZKe2

rKi

+
∑

K>L

ZKZLe2

RKL
+
∑

i>j

e2

rij

(94)

where ~ is Planck’s constant, m the electron mass, ∆ri
and ∆RK

the Laplacians in
the ri and RK coordinates, ri and RK being the position vectors to electron i and
nuclei K, respectively, MK is the mass of nuclei K, e the electron charge, eZK is
the charge of nuclei K, rKi = |ri − RK |, RKL = |RK − RL|, and rij = |ri − rj|,
1 ≤ K,L ≤ M , 1 ≤ i, j ≤ N . Ignoring electron spin coordinates for simplicity in
notation, the time-independent Schrödinger equation for this molecular system can be
written,

B(Ψ,Φ) = 〈Φ,HΨ〉 − ET 〈Φ,Ψ〉 = 0, ∀Φ ∈ HN (95)

where Ψ is the wave function, dependent on the 3N vector r = (r1, r2, . . . rN ) and the
3M vector R = (R1,R2, . . . RM ),

B(Ψ,Φ) =
~

2

2m

N∑

i=1

∫

R3

∫

R3M

∇ri
Φ∗ · ∇ri

Ψdri d
3MR

+
~

2

2

M∑

K=1

∫

R3

∫

R3N

∇RK
Φ∗ · ∇RK

ΨdRK d3Nr

+

∫

R3N

∫

R3M

Φ∗ (VeM (r,R) + VMM (R) + Vee(r)) Ψd3Nr d3MR

−ET 〈Φ,Ψ〉.

(96)

Here, VeM , VMM , and Vee are the third, fourth, and fifth (potential) terms on the
right-hand-side of (94), respectively, ET is the total energy,

〈Φ,Ψ〉 =

∫

R3N

∫

R3M

Φ∗(r,R)Ψ(r,R) d3MR d3Nr,

and HN is the subspace of normalized functions,

HN =

{

Φ ∈ H : ‖Φ‖ = 1

}

, (97)
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where ‖Φ‖2 =

∫

R3N

∫

R3M

Φ∗Φd3MR d3Nr, with

H =

{

Φ = Φ(r,R)| Φ ∈ H1(R3N × R
3M ; C) ∩ L2

a(R
3N × R

3M )

}

, (98)

L2
a(·) being the space of complex-valued L2-functions, anti-symmetric with respect to

the election positions in respect of the Pauli principle.
The primal base problem consists of finding the pairs (Ψ, ET ) ∈ HN ×R such that:

B(Ψ,Φ) = 0 = 〈Φ,HΨ〉 − ET 〈Φ,Ψ〉, ∀Φ ∈ HN . (99)

Since H is Hermitian, ET is real.
Let us take the ground state energy Eg = minET as our quantity of interest,

Q(Ψ) = Eg = inf
Φ∈HN

〈Φ,HΦ〉. (100)

Then the dual problem is to find P ∈ HN such that

B(Φ, P ) = 〈Φ,HΨ〉 + 〈Ψ,HΦ〉, ∀Φ ∈ HN . (101)

Clearly,
0 = B(Ψ, P ) = 〈Ψ,HΨ〉 + 〈Ψ,HΨ〉 = 〈Ψ,HΨ〉 − ET 〈Ψ,Ψ〉,

so that ET = 〈Ψ,HΨ〉/〈Ψ,Ψ〉, as expected.

7.4.1 Surrogate Models via the Born-Oppenheimer Approximation

The classical Born-Oppenheimer approximation is based on the assumption that the nu-
clei, being much more massive than the electrons, can be treated as fixed points for the
purpose of computing the electronic structure (the ground state energy) of the system.
In particular, for the electron calculations, the nuclei positions R = (R1,R2, . . . ,RM )
are treated as parameters and the wave function decomposes as follows:

Ψ(r,R) = Ψe(r;R)χ(R),

Ψe being the electronic part, depending parametrically on R, and χ(R) the contribution
to the wave function from the nuclei system. Schrödinger’s equation for the electronic
contribution is then

HelecΨe(r;R) = Eelec(R)Ψe(r;R),

where
Helec = Te(r) + VeM(r;R) + VMM (R),

Te(r) being the electron kinetic energy and Eelec(R) is the energy of the electron
system, dependent now only on R. The energy for the total molecular system is thus
(neglecting the nuclei kinetic energy):

ET (R∗) = inf
R∈R3M

{Eelec(R) + VMM (R)} . (102)
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Let χ(R) denote the nuclear wave function in a Born-Oppenheimer approximation; e.g.

Hnuc(R)χ(R) = (TM (R) + Eelec(R) + VMM (R)) χ(R) = ẼT χ(R),

ẼT being the approximate total energy. Let Ψ0 denote the wave function for the full
surrogate system: Ψ0(r,R) = Ψe(r;R)χ(R). Then the error in the quantity of interest
is

E(Ψ0) = R(Ψ0;P ) =

∫

R3N

∫

R3M

P ∗(r,R)
[
Hnuc(R)

+Helec(r;R) − ET

]
Ψ0(r;R) d3Nr d3MR

(103)

In the event that TM (R) is omitted and the influence function P can be decomposed
into product functions P (r,R) = Pr(r)PR(R), the estimate (103) simplifies to

E(Ψ0) ≈
∫

R3N

∫

R3M

P ∗(r,R)
[
ẼT + Eelec(R) − ET

]
Ψ0(r;R) d3Nr d3MR. (104)

Molecular Dynamics. The transition from quantum mechanics to the Newtonian
mechanics description of the dynamics of molecular systems is justified by the Bohr
correspondence principle, characterized by Born [9] as follows: “Judged by the test
of experience, the laws of classical physics have brilliantly justified themselves in all
processes of motion, macroscopic and microscopic, down to the motion of atoms as a
whole (kinetic theory of matter). It must therefore be laid down, as an unconditionally
necessary postulate, that the new mechanics [circa 1923], supposed still unknown, must
in all problems reach the same results as the classical mechanics. In other words, it
must be demonstrated that, for the limiting cases of large masses and of orbits of large
dimension, the new mechanics passes over into the classical mechanics”. This principle
is very compatible with models based on the Born-Oppenheimer approximation. In
place of the exterior optimization problem (102) we can use the molecular dynamics
system,

MKR̈K(t) +
∂U(R)

∂RK
= 0, 1 ≤ K ≤ M, (105)

with periodic boundary conditions in R
3 and with appropriate initial conditions. Here

U is the potential energy of the molecular system. The total energy is

EMD =
M∑

K=1

P K · P K

2MK
+ U(R),

with P K = MKṘK the momentum vector at site K. At equilibrium configurations,
R0,

∂U(R0)

∂RK
= 0, (106)

and EMD = U(R0). A surrogate problem then involves introducing the pair (Ψ0, ẼT ) =
(χ0(R0), EMD(R0)) where

B0(χ
0,Φ) = 〈Φ,Hnuc(R

0)χ0〉 − EMD(R0)〈Φ, χ0〉 = 0, ∀Φ ∈ H̃, (107)
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with H̃ = {Φ ∈ H1(R3M , C) ∩ L2
a(R

3M ), ‖Φ‖2 = 〈Φ,Φ〉 = 1}, EMD(R0) = U(R0),
and now 〈Φ, χ〉 =

∫

R3M Φ∗ χd3MR. At this point χ0 can be an arbitrary function in H̃.
The generation of a sequence of surrogate solutions χ0 that systematically reduce the
modeling error satisfying (107) is an open problem.

Approximate Potentials. The potential energy U in the MD models (105)
or (106) can be identified with the ground state energy of the molecular system. Thus,

U(R) = ET (R) − 1

2

M∑

K=1

MKṘK · ṘK

= Eelec(R) + VMM (R),

so that the forces on a nuclei set are

F K(R) = −∂U(R)

∂RK

≈ ∂Eelec(R)

∂RK
−

M∑

K>L

e2ZKZL(RK − RL)

R3
KL

,

1 ≤ K ≤ M . One can therefore proceed with an MD model calculation using electron
ground state energies or an approximation if Eelec is in hand. There is a large literature
on methods for approximating Eelec dating back over half a century. We provide two
classical examples in concluding this subsection.

Hartree-Fock Model The classical Hartree-Fock model [21, 17] of the electronic
structure of nonrelativistic systems is based on the Born-Oppenheimer approximation
described earlier. The idea is to represent the electronic wave function as the Slater
determinant,

ΨHF
e (r;R) =

1√
N !

∑

σ

(−1)|σ|
N∏

i=1

ϕσ(i)(ri)

=
1√
N !

det(ϕi(rj)),

the sum taken over all permutations σ of the indices, |σ| being the signature of σ, and
the ϕi being so-called molecular orbitals. The functional

EHF (Φ;R) = 〈ΨHF
e ,HelecΨ

HF
e 〉 ≈ Eelec

is the Hartree-Fock representation of the energy of the electronic system, and Φ =
(ϕ1(r1), ϕ2(r2), . . . , ϕN (rN )).

Electronic calculations are usually based on Ritz approximations of the orbitals of
the form

ϕh
i (ri) =

P∑

k=1

cik χk(ri),

where the χk are linearly independent basis functions and

span

{
N∏

i=1

{χk(ri)}
}

= HNP ⊂ H.
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We then compute
Eelec ≈ Eh

elec(R) = inf
Φh∈HNP

EHF (Φh;R).

Density Functional Theory. A more popular approach toward computing ap-
proximations to Eelec is to use Density Functional Theory [44]. Then

Eelec = inf
ρ∈K

EDFT (ρ),

where, for the Thomas-Fermi Theory, for example,

EDFT (ρ) = co

∫

R3

|∇√
ρ|2 dr + c1

∫

R3

ρ5/3dr

+
1

2

∫

R3

∫

R3

ρx)ρ(y)

|x− y| dxdy

−
M∑

K=1

∫

R3

ρ(r)

|r − RK |dr +
1

2

∑

x6=y

ce2

|x− y| ,

(108)

and ρ = ρ(r1, r2, r3) is the electron density. Ritz Galerkin approximations of K and
ρ yield approximations to Eelec in the same spirit as the Hartree-Fock example. The
analysis then proceeds as in the Hartree-Fock cases.

A Posteriori Error Estimates. Estimation of the error, Eelec − Eh
elec is an

exercise in error estimation for nonlinear eigenvalue problems. The linear case is dealt
with in [35]; the nonlinear case is open, but may be readily resolvable using ideas in [32].

8 Concluding Comments

That mathematical models of physical events are almost always imperfect abstractions
of nature is a truism universally understood by all students of science and engineering.
The possibility of quantifying in some way the level of imperfection is therefore an
intriguing proposition. Our approach is to measure this imperfection as estimates of
error in specific quantities that we single out as important features of the behavior of
the system under consideration. But even then we do not escape the necessity of using
another imperfect model, the base model of the event. Nevertheless, we believe that the
relatively straightforward machinery we describe for comparing models by estimating
modeling error can be very valuable, particularly when two or more models of events
that occur at different scales are considered. If this process can be tied to physical
measurements as well, it may be possible to develop powerful techniques for simulating
events at multiple scales with a level of reliability beyond that thought possible in
recent times.

There are many open issues that remain to be resolved. Given a list of quantities
of interest for a base model at the finest scale, a systematic approach for developing
the optimal ensemble-averaged or homogenized characterizations of these quantities at
coarser scales is needed. We have offered some examples in this work, but further work
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on how these averaging techniques affect accuracy of estimates and convergence rates
of the adaptive process is needed.

Adaptive modeling techniques are in early stages of development. The Global- and
Local-Goals algorithms presented here represent only two of many possible approaches.
Other techniques could be inspired by many of the multigrid methods in use in linear
and nonlinear solvers. The role of various hand-shake methods for interfacing models
of different scales as a basis for adaptive modeling is also a topic worthy of further
study.

There is also the issue of modifying the definition of a quantity of interest as one
progresses to coarser-scale models. In a two-scale situation, the coarse-scale model is a
surrogate: an artifact of a computational process. In more general situations, it can be
conceived that coarser-scale models may possess features of interest themselves, not al-
ways tied to fine-scale quantities of interest. The procedures we developed here should
be applicable to such situations with straightforward modifications. Of overriding im-
portance is the goal of estimating the relative error in quantities delivered by two or
more models.

Much work remains to be done on the QM-MD interface and on traversing hier-
archies of QM-electronic models as well. We hope to explore some of these issues in
future work.
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