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Abstract

In this paper we introduce a grid free approximate Fast Clatiem algorithm base on Nonequispaced
Fourier Transforms for accurately predicting rigid bodytein-protein docking sites. Of the many docking
approaches, grid based Fast Fourier Transform (FFT) apipesahave been shown to produce the best bal-
ance between computational complexity and accuracy of dtheslation profiles of complex protein-protein
interactions over the six dimensional search space. Hawth&se uniform sampling methods are still com-
putationally intractable and highly memory intensive foegticting large protein-protein docking sites. In this
paper we introduce an error bounded FFT for nonequispadachgproach that significantly improves compu-
tational complexity and storage. We are able to produceietfiy, highly compressed, but accurate, docking
correlation profiles.
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1 Introduction

Efforts in structural proteomics have lead to a rapid inseem the number of three-dimensional (3-D) struc-
tures of individual proteins. Moreover, knowledge of netkgof interactions and signaling pathways is also
expanding rapidly through genomic and proteomics appresmchtill, our picture of the structures of both stable
and transient protein interactions lags behind. Effortsystallizing macromolecular complexes have met with
limited success, and hybrid experimental approacheszingl cryo-electron microscopy and crystallography
or NMR to give structural details of complex assemblies aoiving. However, along with these experimental
methods, there is a growing need for efficient and robust chatipnal approaches to predicting the complexed
viable structures in protein-protein interactions. Thagproaches are also known as protein-protein docking.

Protein-protein docking or in general molecular dockingally consists of two primary selections. One is
the choice of goodness of fit measure (sometimes called dreagdunction) while the other is the choice of
the search algorithm. Both of these decisions are based assaimed molecular model. The scoring function
includes consideration for molecular properties in additio a representation of molecular shape. Grid based
Fast Fourier Transform (FFT) approaches have been showrothuge highly accurate correlation profiles
of complex protein-protein docking making them a populasicé for solving the above docking site search
problem. However, they are time consuming, and in partictligghly memory intensive for large molecules
due to the large size of the grid needed. In this paper wedaot® an adaptive grid-free irregularly spaced
Fourier approach for accurately predicting rigid body pietprotein docking sites.

Problem Description

For moleculeA, let VZ.A : R3 — R be thei?* associated density map for= 1...m, where each map
represents a molecular shape or property. Similarly foreade B we haveV;? : R® — R maps fori =
1...m.LetS;(V;): R® - C andS’i(Vi) : R? — C be the scoring functions defined &h For a rotationR in
the 3D rotation grouppO(3), the rotation operatak  is defined as

ArS(Z) := S(R1(%)) ViZeR?,

whereZ = (z,, z). Similarly, the translator operatd-*! is defined as

Tj7k’l(5i(m7y7 Z)) = SZ(‘T - ]7?/ - k7 Z = l)

for j, k,l € R. The six dimensional search docking problem, can be postdsllowing correlation problem

m

argmax 3 / / Re (T (Ar(Si(VA@))S(VP (@) did, )
Jk LR ] JTER3 JyeR3

where Re corresponds to the real part. This problem is also equivdlen following fitting minimization
problem (see section 4):

arg rln;nZ 1T AR(S:(VA@))) = Si(VE @), 2)
Db At =1



where|| - || corresponds to thé?(R?) norm. In section 3 an approximation to the correlation maggjuation 1
is obtained by an approximate convolution mfagx, y, z). To match these two maps the rotatiBris modified
to include ther rad flip around each axis. For a rotati@in the 3D rotation grougO(3), the rotation operator
AR is defined as

R := RZ1ZQZ3,

whereZ,, Z, and Zs are the rotations around each axigif, then

ARS(Z) == S(R™Y(Z)) VZeR3.

Note that alternate formulations lead tothe same searaespadeed, in [35] split the search problem into 5D
rotations and a 1D translation.

Molecular shapes have a natural smooth particle atomisticasi-atomistic representation. By taking ad-
vantage of the adaptive smooth particle representatiorgliwenate the underlying grid thus producing highly
compressed, but accurate, correlation profiles based omlaptiee irregularly spaced FFT algorithm. Our
docking method primarily consists of three steps: First,select an adaptive smooth particle representation
for proteins which is also compatible with our initial shagmplementarity based scoring function. Second,
we calculate the frequency profiles directly from the smqaattticle representation, and search effectively over
six dimensional translation and rotational space, utizihe irregularly spaced FFT, and finally, we evaluate a
compressed correlation profile which captures the rigid/qwdtein-protein docking sites.

The rest of the paper is as follows. In section 2, we summahieemain Fourier based approaches to
the rigid body protein-protein docking problem. Moreovbe different approaches to the FFT over irregularly
sampled domains are described. A complexity analysis dfagrd spherical harmonic Fourier based algorithms
for docking and matching is given in Appendix A. In sectiorh& tnain part of the algorithm is described. In
section 3.1 a smooth particle representation of moleculgrsnand affinity functions is introduced alongwith
the corresponding shape complementarity based scoriogidarto capture rigid body protein-protein docking.

With a suitable shape complementarity based scoring famatefined, the search algorithm is separated
into two parts: the translational Fourier based search heddtational search. In section 3.3 we show how
to reduce the computational and storage costs of the ttamskearch algorithm with our method. Traditional
grid based Fourier approach embeds the two molecular magp#ihgrid and convolve them using the FFT
leading toO(N?3 log N) time. In our irregularly spaced Fourier method, we assuntle imwlecules to contain
M atoms (you can take the maximum number of atoms from both qulds). An accurate approximate
correlation profile is derived i® (M log M) computational steps ar@(M ) storage. In practicd/ is much
smaller thatN3. In section 4 error estimates for the convolution profileagietd with our method are derived.

Finally, in section 5 we describe our implementation andrepn a few docking results including the
actual timing and the accuracy of our correlation profiles.

We point out that during the writing of this tech report a $aniwork by Potts et al [33] was made aware
to us. The purpose of that work is to build a fast summatioorélym of radially symmetric functions with
general kernels as an alternative to Multi-pole fast surionahethods. Our research involves the development
of a more general method for fast convolution of radially syatric functions with the purpose of predicting
molecular docking sites.



2 Prior Work

In this section we briefly review past docking approache wit emphasis on techniques applying Fourier
search. A review on irregularly sampled Fourier transfommelso presented.

2.1 Molecular Shape and Affinity Functions

Solvent molecule (probe ) Solvent

\ Accessible
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Figure 1: Solvent Accessible and Solvent Excluded Surfaces

Various molecular surfaces have been defined (Figure 1pusiapherical representation of individual
atoms and a spherical probe representing a solvent moleChke SAS is outlined by the center of the probe
sphere as it “rolls” over the atoms constituting a molecdlg].[| The SES [25], [11], is defined as the inner
boundary of the volume that can be occupied by solvent inambntith the molecule. A number of algorithms
have been developed to compute these surfaces [1, 3, 4, 86,37, 41-43] for the purpose of visualization
and various computations. It is interesting to observe atSES of proteins forming molecular complexes
exhibits a very high level of geometrical complementarititese surfaces are used extensively for visualizing
and studying molecular properties and interactions. Hewekiese surfaces are approximations of a somewhat
fuzzy boundary of the molecule’s electron density. Sudaaee also used to visualize molecular properties
associated with molecular shape (e.g. charge densityireséatic potential, hydrophobicitgtc)( [12, 22]).
Such surfaces are usually level sets of scalar fields andgteadient or Laplacian ([11,29,37,42,43]).

Molecular shape (surface and volumetric) are also derik@ud approximations of an appropriate level set
of electron density [6, 13, 28, 34]. The accurate computatioelectron density representations for molecules
from the PDB requires computations at the quantum mechalgieal [7]. One usually approximates the
electron density distribution of th&"* atom with a Gaussian function ( [3, 6, 7, 20, 30, 31, 38]) as



whereB < 0 is the rate of decay paramet&, is the Van der Waals radius of tif& atom and-? = (x — a:ci)2+

(Y — yei) 4+ (2 — 2ei)* ({eis Yeir 2ei } 1S the center of thé” atom). A volumetric representation of the molecule
may now be obtained by summing the contributions from eauyieiatom, thus the electron densityz) for

M atoms is described as

M M B2

@)=Y K== " @A)
=1

i=1

Notice that for protein structure®; can be grouped into a set of about 15 distinct values.

A critical component of all docking approaches is definingiadle measure for the affinity functions in
the scoring calculations. Paper [23] separates the affimitgtions into core and a surface skin with the objec-
tive to penalize core-core clashes, but add positivelyaserskin-surface skin overlaps. By assigning different
affinities to the core and the molecular surface skin of edoimand performing a convolution between these
weighted maps, a profile is obtained where the largest valef®rm to the best translational overlap. Modifi-
cations of this approach have been developed in ([9,106]9,Phey define the core and the skin regions using
the molecular surfaces like tlselvent accessible surfa¢8AS) andsolvent excluded surfagd8ES). Other ap-
proaches include adapting scoring functions for molecuiatching[8, 21]. These scoring functions are also
designed to match molecular functional properties, suoklexgrostatics potential. They can be modified for
docking by forming a functiory for moleculeA andg for the complementary volume for molecule

2.2 Grid Based Fourier Methods

Katchalski-Katzir et. al.’s [23] use coarse grids and riotal angles to reduce the combinatorics of the search.
Gabb et. al. [19] use the a priori knowledge of suitable binding site tamas on the proteins to reduce the
combinatorics of possible relative conformations. Fasirles Transforms are used in each of [19, 23, 35] to
additionally speed up the cumulative scoring function cotapons and hence the search. Moreover, in [9, 10]
Chen et.al. improve on FFT Grid based methods [19] with better scoringfions and additional molecular
properties.

2.3 Spherical Harmonic Fourier Methods

Several groups [13, 28, 35] studied the problem of repr@sgntolecular surfaces with expansions of spherical
harmonic functions and its application to fast computatiofithe protein docking problem.

Efficiency is additionally gained from the fast rotation azuwinulative correlation function computations
involving coefficients of spherical harmonic polynomial§o combat the numerical intensive trigonometric
computations in these methods, many values are precompuotedached in a direct trade-off of memory for
increased speed. For example, most of the sine and cosime t#rthe spherical harmonic expansion are
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cached [34]. Additionally, pre-calculated values of thediions K(R) of the intermolecular separation R, are
stored. Ritchie et. al.’s [34] results compare favorablyhtose of the geometry method [17] and the Cartesian
FFT correlation method of Gabb et. al. [19].

However, the approach of [34] has some limitations. Thewiaof parametric spherical harmonic expan-
sions in is valid only for molecules exhibiting sphericapatogy. Secondly, a fixed and by no means small
truncation order of spherical harmonic polynomials (tgtlic 25 orders or more) is required to approximate
the density/characteristic functions. The non-adaptivitthe surface approximation based on a single point
spherical expansion, also makes it difficult to directlyatelthe expansion order to the range of errors that
the approximation generates. Third, the storage requoredche K(R) is not inconsequential. For example,
in [34], values of K(R) in 1@) increments are stored using 55MB of disk space. Finahiyfoum icosahedral
sampling, used by Ritchie for discretization of the scorfagction (reducing the integrals to discrete sums)
and the Fourier calculation, is not guaranteed to be acfivatproteins that have rotationally skewed aspect
ratios (i.e. elongated along a single dimension). In [24inailar Fourier method for fast rotational matching
using spherical harmonics, overcomes the restrictionansstaped molecules by discretizing the volumetric
space into several shells. The price to pay, is the prowndhtiexpensive memory usage.

In the appendix A, a more accurate description of spher@ahbnics methods [24,34] is given. Moreover,
a complexity analysis between [24,34], grid based methdd®¢k [9, 10]) and our adaptive irregularly spaced
Fourier is presented.

2.4 Nonequispaced Sampled Fourier Transforms

Several approaches to efficiently compute the Discretei&oliransform (DFT) polynomial for irregularly
sampled domains have surfaced during the last decade 2556132, 39, 40]. A review of many of these
approaches can be found in [44]. In [40] the domain is sptid Bubintervals and each subinterval is then
projected onto a space of local Chebyshev polynomials. Aferradte expansion is done in [2], Chebyshev
polynomials are replaced with a Taylor expansion. For Faurransforms with singularities, Beylkin employs
a series projections onto multi-resolution spaces [5].tButal ( [14, 15]) represent the DFT polynomial as
a multi-pole expansion. Fa¥/ non equidistant samples, the multi-pole approximate cocsbn obtains the
first M frequencies inO(M log M) computational steps an@d (M) storage. The drawbacks are that such
constructions require a fast multi-pole method, which ¢etmla complex implementation. Many of these
approaches have been introduced for 1D domains. Extensianalti-dimensions are possible through tensor
products. In this paper, we decided to follow the Noneqtedis Fast Fourier Transform (NFFT) and NFFT
approach of Potts, Elbel and Steidl ( [16, 32, 39]), since 8Bults were explicitly shown in their papers.
Moreover, the NFFT is highly accurate, conceptually simaled easy to implement.

3 Docking Algorithm

In this section we give a description of our approach for #st §earch and scoring during the docking of two
molecules A & B. The first step is to define molecular shapenigfffunctions and population algorithm of the
SAS skin. The scoring function provides a description ofenalar interactions. The second step is developing
a fast docking search algorithm.



3.1 Shape Complementarity

For the representation of shape we will define two regionsearth molecule, an interior region called the
“core” and a boundary region called the “skin”. In a dockirajctlation one molecule is held fixed (termed
receptor and designated molecule A here) while the otheecnte (termed ligand and designated molecule B
here) performs the 6-D search. The skin and core regiondwillefined differently for molecule A and B, but
all these regions will be represented using Gaussian expandviolecular affinity functions defined over these
regions will be used to compute a complementarity scorergrcanfiguration of B around A. This score will
be the combination over multiple properties. For each ptgpthe complementarity score will be computed
as a function of the overlap of the core and skin regions ofwltemolecules.

Figure 2(a) shows how we define skin and core regions for ratde& and B. Note that this definition is
asymmetric as the skin of molecule A is completely outsiddéeawde A, while the skin of B is defined using
surface atoms of B and hence is completely inside molecule B.

The following types of overlap will be possible: 1) CoreA+€B and coreA-skinB overlaps are steric
clashes; 2) SkinA-skinB are the most favorable overlapsSihA-coreB correspond to volumes outside
molecule A overlapping with interior atoms of B. This termlivide ignored as it neither penalizes nor con-
tributes to the quality of the fit. In Figure 2(a) we show how ttvo molecules (A) and (B) dock.

To define the skin-layer and the interior we need to obtairtecsrsuitable for a smooth particle represen-
tation of these two regions. In appendix B our populatioroatgm computes the skin layers for molecules A
and B. Examples of computed skin layers are shown in Figula 8a-c) the skin-layer and core regions for
molecule A is shown. In Figure (d-f) we have an example of ke kyer for molecules B.

Partner Skin
atom /
Core

Fixed molecule (A) Moving molecule (B)
(a) (b)

Figure 2: (a) Skin and Core regions. Atoms are drawn as solitbs. The skins regions are colored
while the core regions and white. (b) Docking of molecule} &XB).

The regions shown in Figure 2 define domains over which varadfinity functions can be represented us-
ing a smooth particle representation. For instance, theespeoperty can be represented by placing a Gaussian
on every center of the region.



We can also define a finite number of groups of centers in th@dnparticle representations and assign a
particular weight to each group. This weight will scale tioatribution of (the function placed on) the centers
belonging to the group to the final score. This mechanismalldlv the representation of water molecules for
instance, by adding oxygen atoms to the skin of molecule Bangs where a water molecule is likely to be
found. These additional centers in the skin of B will be assta much lower weight then surface atoms of B.
By doing so, overlaps of such atoms with the core of A will besleenalizing but overlaps with the skin of A
will contribute somewhat to the score, effectively repriggy an “optional” atom.

3.2 Affinity Function Scoring

Our scoring function is based on the grid scoring approachis10,19]. However, the fundamental difference

is that the new score is based fomctionalinteractions between the various skins and cores. By usisijiye

real values as the weights for the smooth particle reprasentof the affinity function defined over the skin
and imaginary values in the representation of the core nsgiwve will yield negative numbers for core-core
overlaps and positive numbers for skin-skin overlaps dutte convolution. In addition, we can define a finite
number of groups of centers in the smooth particle repraiens, each group having its own weight. The
weight will directly affect the contribution of (the funomm placed on) these centers to the score, so the new
weighted affinity function for thg*” molecule takes the form

M M
Q@) =Y K@) =Y _ 7K — 7).
k=1 k=1
o (an\\%_
such thattC(z7) = e oIl = ¢ 7 and R, = 1. With this new definition of molecular shape affinity we

can weight the Gaussians to reflect Core-Core clashes orSkmoverlaps. For any two Molecules A & B to
be docked, the parametey$ takes the form

)

A_ | 1~skinA B _ | 1~ skinB
e = pi ~ coreA e = —pi ~ coreB

wherep > 0. The translational convolution search scoring then besome

Pla,y,2) = (Q* ® Q%) (a,y,2) = / / / QN2 )QP (2 — 71,y — o2 — 3) ddmadrs (4)

T1 T2 T3

Making v, positive causes the scoring function to add SkinA-SkinBrlays positively, while setting;, to

be imaginary causes CoreA-CoreB interactions to clashtivetja However, we shall not construct thé?

grid directly and perform the convolution using the NFFTeTkal component of the score corresponds to the
summation of the positive skin-skin and the negative care-overlaps. The imaginary part corresponds to the
cumulative overlaps between skin and core regions.



(a) An immunoglob- (b) Idiotypic FAB 730.1.4 (c) Hyhel-
ulin  from  the (IGG1) of virus neutralizing 5 FAB
influenza virus antibody(PDB:11Al.PDB) (PDB:1BQL.PDB)
(IGG1, LAMBDA)

(PDB:2VIR.PDB)

(d) Hemagglutinin (e) Anti-ldiotypic (f) Bob-
(PDB:2VIR.PDB) Fab 409.5.3  white
(lgg2A)(PDB:1I1AI.PDB) Quail
Lysozyme

(PDB:1BQL.PDB)

Figure 3: We show three examples of populating the outer idgion and detecting surface atoms
for three antibody antigen complexes. In the first row, wenshoe of the molecules of the complex
where we populate the outer region, and in the second rowtkiee molecule where we detect surface
atoms to form the second skin. The first row contains the grekumlayer shown in red, with higher
densities being yellow and green. The surface skin in therskmw is shown in green. We show a cut
away to reveal the two skins. In the first row, the three mdestgkins had 3263/4519, 3342/4555,
3243/4308 atoms/kernel centers respectively. In the skdbwere were 988/1087, 4956/1719 and
5293/469 surface and interior atoms respectively.



3.3 Three Dimensional Translation Search

Our approach requires significantly less memory than pusvieourier methods by obtaining a compressed
representation of the convolution profile of the density shvapile retaining high accuracy. This compressed
representation can be computed directly with the NFFT &lgor, which allows us to compute the translation
search from a reduced set of frequencie®inM log M), whereM is the number of atoms, instead of the
O(N3log N) operations required for the direct FFT.

The first step of the NFFT based fast corrolation method ispiace the smooth particle map with an
accurate periodic form such that a Fourier series can betasgproximate“ (). To this end, we translate,

rescale and embed the particle data locateftzal?’, to fit in a volumetric interva[—1,1)3 = [-1, 1) x
[—1.3) x [-1,1)%. This is achieved by computing the parametet maz; ;(||Z; — Z;||) Compute the center
M = .
= Z:Tlx Now, re-center and rescale the particle cenfetg ., such that
- Xy —¢C
T =
(2 2p

foralli =1... M. The second step is to rescale and truncate the kil s.t.
z z
o Ty (2
fr@) =K <2p> <2p>

1L if —p<Z<p
0 ow.

where
X(Z) = {

Under this translation and rescaling we replérwith

M
QYY) =Y vKr(i—7)).
j=1

This truncated and rescaled form allows us to repregetitr) with a Fourier series approximation I for n
desired frequencies for some ereofThe choice on the number of computed frequencies will cbiite error
of the approximation.

The next step is to expand the kernel function into its Foweies, asCr(7) = > ;- h,;ez’”'f‘k +e€
for all z € II3 for some errok. The indexl,, refers a volumetric grid of truncated frequencies ( ilg. =
{k = (k1, ko, k3) € Z3 : —n/2 < k; < n/2}). Notice that forn — oo the equality will be exact in arfi,
sense. Moreover, the equality will be pointwise for all lesnthat satisfy the Direchlet conditions, except at
the discontinuity points. With this Fourier series repreaton

M M
A= _ - 27i(Z—%;)-k
QYD) = Y wKe(@—d) = | D by
j=1 j=1 keln
M
- _2mix-k L —2miZik L Lp2mixk
= E hre E ;e J —g aghge ,
keln j=1 kely,
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wherea; = ij‘il yje—z’”(fj)'k. An approximation of)(Z) can be obtain by just computing a finite number
of frequenices: i.e.

QA(f) = Z OZEhEE%-iI.k + &1
kel

for some errok;. Following the same procedure f@” () we obtain

QB (@) =) Bhpe™F + .

kely

The approximatior? to the convolution integral (4) now becomes

A

P(x,y,z) = / QM (11,72, 13)QP (x — 1,y — T, 2 — 13) dridradry 5)

(11,72,73) €113

—2miFk omi(Z—7) k'
= / E aghge™ ™" E Orrhyre mi(#—T)

(r1mars)etd \KEIn k'€l

— LALB2 2Tk
= E akﬁkh];e .
kely,

2miT; (kj —k;)

“Broim

The last step is true sinc

e drj =1, j=1...3if k; = kj and zero otherwise.

=

Algorithm 1: Approximate Fast Trandglation Convolution
1. Preprocessing:
(a) Compute

p = maz; ;(||7; — 7))

(b) Rescale and truncate the keri&lr) s.t.

where



(c) Compute

Zf\il i
M

CcC =

(d) Re-center and rescale particle centers?, and output pointg#; }¥, such that

Tr; —C
2p

N
2

foralli=1...Mandj=1...N.
(e) Foreach: € I,, compute the Fourier series integrals

=\ —i27T-k 3=
hy = - Kr(Z)e dz.
For tensor products kernels like the Gaussian, we can canipatabove equation with a single 1D
FFT of lengthL with a computational cost @ (L log L) andO(N) storage.

2. Inputs: The variableg N, n}, whereN relates to the accuracy of the Fourier series representatithe
smooth particle data and is the index for the number of frequencies that shall be cdatpin the NV
point DFT. Other variables include the smooth particle data

M (B\\f—fju%_lg) (BlE— zjug _B)
QA(Q—:') — Z%Ae R? and QB Z% N
j=1

where we assume all the atomic radii to be the same.

3. Truncated DFT:
With the NFFT(n, m1, o) compute the firsk € I,, frequencies ofV point DFT of the particle data

M M
o~ —2mi(Z;)-k e B _—2mi(Z;)-k
o E and .~ E ;e .

J=1

This step provides the frequencies directly from the atooeisters, which is a very sparse map. By
avoiding using the FFT on a large grid (slow and high storamgt)cor evaluating the DFT polynomial
(O(Mn?) computational cost). The DFT can approximated with’a order NFFT with a computational
cost isO(a®M log M + (2m + 1)3M) andO(a® M) storage.

11



4. Convolve: For eachk € I,, compute

1 a2

By multiplying the frequenciesy; and 3;, the approximate convolution of the ma@s' and QP is
performed. The point wise multiplication costdqn?3) and storage i€ (n?).

5. Inverse DFT: With the NFFTn, my, o) Compute

P(fj) — Z p,;e%if'k.
kel

The NFFT algorithm produces an output in the fornngf* order cardinal B-splines. Thus is we sample
the mapP N times, the total computational cost@(n?logn + (2m + 1)3N) and storage i€ (n?).
The total computational cost of this algorithm, excludihe preprocessing step, @(a3M log M +
n?logn + (2m + 1)2N) andO(max (o> M, 33M) + N) storage.

Note that for many docking problems, we can Betto the same constant. However, for many protéigs
can be separated into a group of about 15 distinct values mbans, the step in the NFRalgorithm can be
broken down intal/ /15 groups with the same frequency size This leads to 15 FFT extra steps. However,
the FFT step is computational faster than the blurring stefs there is no discernible timing difference.

Inverse step In the inverse step, we need to find the position of the peadngiie product of frequencies.
One solution to this problem is to append zeros to the fregcjgermap and take the inverse fourier transform.
This has both a high space and time complexity which we waladtb avoid. Another solution is to first per-
form an inverse fourier transform and do a sync interpateéimund local peaks. This is again computationally
expensive.

We follow a heuristic where we explore only those regionsclvHbok promising in a two step process.
In the first step, we invert the product map to get a low regmuprofile. From this profile, we store the first
few peak positions. In our experiments, we used 10 peakdelseécond step, using the NFFT algorithm, we
convert the product map to a set of B-Splines of ondgr Using the location information from the first step,
we locally expand the B-Spline grid around only those regiand search for the top peaks. We use the FFT to
compute the local expansions as they are a convolution gblB«Sfunctions.

3.4 Three Dimensional Rotational Search

For each rotational step the 3D Translation algorithm isgoered and a predetermined number of maximum
correlations are conserved. LRt = {R € SO(3)} be a set ofVy rotations.

Full Search Algorithm

12



1. Inputs. The variablesV, n and the set of all predefined rotatioRs,

BlE- IJHQ

e -B) (O g

Z Tj€ & and Q" (z Z 7€ &

The first moleculel4 is fixed and the second molecul#’ will be rotated. For every rotation @p?,
the 3D translational scoring @§* andQ? will be computed and the maximum obtained.

2. Preprocessing: For eachR € R, compute

(a) Rotation:

M (BlE= ;13 _B) (BlE-AR(; >|\§_B)
SCEY P B SR
j=1

(b) NFFT based Convolution

pR(x> Y, Z) = QA®QB7
where® indicates the approximate NFFT based fast translationalatotion algorithm.

3. Maximum: For all rotations inR, and translation locatioff compute
arg max Pr(z,y, 2).
ZR

For a total ofr, rotations the total computational costr(a>M log M + n3logn + (2m + 1)3N +
Nlog N)) andO(max (a3M, 33 M) + N) storage.

For an exhaustive rotational search the number of ori@mstivill be of the order of, = N3, where

N represents the number of steps in a 1-D full rotation. Duééosmoothness of the convolution operator
we sample the output profile & = M points. Since we nee@ (M log M) computations for each of the

rotational steps, the total complexity cost for a full séeasO (N3 M log M) andO (M) storage requirements.
Notice that for a grid based methods like Zdock [10], eachdi@ional search requir€¥( N3 log N) for a N3
grid. Thus a total of2(N®log V) operations and(N?) storage are needed. —A comparison with the most

popular FFT and/or Spherical Harmonic methods is showndargbpendix A.—

4 Error Estimates

In this section we derive error estimates on the accuracypfreethod for solving the optimization problem
2. In section 3 the search problem is based on obtaining tix@man of the convolution mag’(z, y, z) with
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respect to all translation® and rotationsAz. A suitable relative objective function and estimates Ishall
derived forP(z, y, z).

As pointed out in the introduction, the correlation probléh can be recast as a fitting (2) of two maps.
This is easy to see.

IT(ARQ™Y) — QP|7. = / [T(Ar(Q™Y)) — QT (AR(Q™Y)" — (QP)*] di

RS
- / T(AR(QY)T(AR(QY) di + / QB(QP) dr
R3 R3
- / T(AR(QY)(QP) di / T(AR(QY)"QP di
]R3 R3
= QP+ Q%> - / T(AR@QM)(QP)" — T(Ar(Q™)*Q" dz. (6)

]RS

The last equality is true sincE and Ay are linear operators. Now, decomp@g\ r(Q4)) andQ? into their
real and imaginary parts as

T(AR(Q™)) = T(Ar(Qn.) +iT(Ar(Q7)),

whereQ? = Q4. +iQ# and similarly forQ 5. Substituting into Equation (6) we obtain

IT(ARQ™Y) — QI = 1Q4* + QP |* — 2 (R/ T(MQ#) QR + T(MQ™M)QTL, df) :

This implies that solving the optimization correlation piem

argmax [ T(A@Q4)QH + TAQA)QF,) d7 @
s IAR RS

is equivalent to minimizing the difference of the betweea tivo molecular affinity function maps under the
L? norm

argmin [|[T(Ar(Q?)) — QP
T,Ar

We cannot, however, compuég, and(@p exactly. The approach we follow in this paper is to represent
Q4 and@p in terms of a reduced set of frequencies. Each frequencypsgately computed with the

14



NFFTT(n,al,ml). Thus the approximation to the map(#) = >, aEhEez’”m‘E takes the formQ(7) =
> wer, @phie®™ . Expressing) 4 and@p in terms ofQ) 4 and@ 5 we obtain

QA:QA+61> QB:QB+627

for some erroe; ande,. The optimization problem is expressed in terms of the apprate maps) 4 andQ 5
as

arg min | T(Ar(Q")) — Q)] (8)
T,Ar

Notice that agj, k, or z — oo, thenlim; i, ..o TF*(QP (x,y,2)) — 0 for any (z,y,2) € [-1,1)%. Thus
the maximum achieved under the objective function (7) teadg'[|Q4]|2 + [|QZ|2. A suitable relative error
of the objective function (8) is then expressed as

‘minT,AR IT(AR(QY)) = Q|| — mingr, | T (AR (QY)) — Q7|
VIRQA? + QP2

Now, the convolution map a4 andQ? is computed with the NFHT, a2, mo) and related to the approximate
convolution mapPr(Z) as

/ T(MQL))OE, + T(MGE)OE, dif = Pr(@) + (),
RS

A . . . 1/2
for some error=(7). Let F(R,Q4,QP) = ‘HQAHQ + [|QB||? — 2Pr(%)|  , then the objective function is

re-formulated as

ming ., [|[T(AR(Q)) — Q|| — mingr s, F(R,Q*, Q%)
VIQAR + Q72

We now derive error bounds for the objective functions (&) €), which depend on, the number of frequen-
cies approximated of the magsy and@ g, the NFFT (n, a1, m;) and NFFTn, asg, ma).

. (9)

4.1 Preliminary Estimates

We first derive useful error estimates to the NFFT approxionabf the radial basis function mapg. The
L?(R?) error becomes
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Q= QI = || Z aEhEe2”ik'I _ Z a%hE€2wik~x||

lell =
kel kel,

= H Z (Oé,; — Oé;;)hlge%rikf + Z Oé,;h,;e%rik'fn
EEIn Eejoo\[n

< 1S (ap — a1 | Y aphpetm .
EEIn Ee[oo\ln

< Z |O‘Ehi£‘2 + Z |(0‘;;’ - a;;)h;;|2 =e1 + 2.
Eelo\I, keI,

The last step is true sint{@z’”";'f } forms an orthonormal set. We first obtain an estimate to tveddound to

Q1.
Preposition 1. LetQ = -, yje?l#%l* 4, € € 0 > 0, then

1QII? = M ming|y|? e 304

Proof.
M M
lQF = [ Cuk@-mpra= [ - i
zel-1.1 I R
M
> ming|y;l? ZI@(&E’— Z;)dz > 8e 3 Mo =3/ ming|vy;|?.
zel-1.1)% j=1
O
We next compute the errer, which is dependent on the number of frequencies
Lemma 1.
3/2
o 22 802 8 o3 _ 2 2
= et 20 20 —0/2 L O |7 —wnt/do—o/4
Proof.
[ee]
D laghgl? SIEIlfcvcla,gl2 Yoo iR Do P =IEC D] k)
Eelo\I, " Eelo\I, Eelo\I, k=n/2+1

Recall thath; = hy, hi,hi,, Wherehy, = [ e=ow" e=2mikz qp. From [33]|hy| < \/§e‘k2”2/” + Zye /4

k272
—ca?
whenk # 0 and [ e=¢** dz < ¢~ whena, ¢ > 0 then

2ac
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0 0 2 —k272/o—0/4
2 T _9k272/4 o —0/2 g e
§ |hk| < g (;6 / +W€ / +2“ET> R

k=n/2+1 k=n/2+1

and

o0

7T 2.2 0 2.2 2
Z _e—2k /o < / —2I<: /o dk < 26—n /20
o /2 O'

k—n/2+1
. — k27 2/0_ . —k27 2/0_ 274 A
_0'/ /|9 Z < —o-/ /71-3/ - ik < © —7r n?/4o—o/
k n/2+l

2 2
Z 07 o2 o o o / g = 59 o)z
k—n/2+1k4W4 it k=n/2 3mind

The previous lemma is a modification of Theorem 3.4 in [33h@/t norm and inR3.

Lemma 2. Suppose the NFFT(n, a1, m1) is used to compute the frequencigs, wheren,m; € Z* and
a1 > 1, then

3/2
1 6m N o 6—0'/2 0.1/26—0/4—7r2/0
2 ~915/2,/ —2n% /o ' 4 2
S S ZVAM max Pl (30T R i v e T

Proof. The NFFT takes 2 parametersm. Modifying Equation (2.12) foR? in [39], the error3 = Z (g

kel,
/ 2
a;;)hE| is equal to
2
M B LM ~
E% — § : hE(E :,%76—27rzk-xv __§ : Vol 27rz(k+n?)-xv)
cy f
EEIn v=1 k v=1rez3
2
M
_ hi B —2mi(R4+nF)-Zo
= . TCni©
Rer, | ¥ v=17ez?\{0}
2 2
hzcz, o hrcr, .
< M max |y PY 0| Y EEATwmE0E <Af max 2Py | Y [
- v=1---M 4 o= Ci; - v=1---M 4 L= i
kel, |T€Z2\{0} kel, L me€Z*\{0}

— f— ‘ﬂ.“ — f— 2 f— y
wheren = an, andc; = [ ¢(Z)e "7 dz. Recall thathy: = hy, hy, h,, Wherehy, = [, e e 2™k dy
2.2
and|hy| < \/Ze Fm/0 4 Zoemo/4,
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Z | hkl hk2 hk3 Cky+nrq Cko+nry Cks+nrs

€2 < M max |7U\2E
v=1---M Cky Cko Cks

kel, [ 7€Z2°\{0}

n/2—1 huc 21°
< 2 kCk+nr
< M max |wf| D | Y | (10)
k=—n/2 |reZ\{0}
Now,
1/fL k;=0
.= i (ke /7)) 21
h 1/@(%%’” ) Otherwise
_ 1 ki=20
Ck;+ar; t
') = . _ _ 12m 2m . (11)
sin(k;m/n+r;m)k;m/n _ ki .
( Ch; ) |:(ki+(ﬁri)/7r/ﬁsin%ki7r§ﬁ)] o |:ki+ﬁn-] Otherwise
Substituting (11) into (10) we obtain
2\ 3
n/2—1 —o/4 2
2 2 —k2ﬂ'2 o s ge k 2m
2 < M max |yl 2 [e / \EJF k272 ] 2 <k+m>
k=—n/2,k#0 reZ\{0}
From lemma 4.1 in [39] we obtain
3 [ k ]2m < of K/ 2m Ly L=k/m
k+nr - k/n—1 2m—1 )"’
r=2Z\{0}
then
gy T e o/t ? ki O\ 1—k/n\? ’
2 ~ 2 —k272/0 [TV —
2 < M max Inl 2 4[€ P T k/f— 1 S —
k=—n/2,k#0

We first show the following bounds:




am
Let f = ( k ) andg = 1714 Setting% = 0 and solving fork we obtaink = an(1 —m). Thenfgis a

k—an

monotonic sequence from=0,...n/2. Since fg|,_, < fgl,_, then itis increasing. This implies

n/2

o2e/? k/m \*™ o2e=7/? 1 am
3 Jn )" |
kit \k/n—1 nirt \2a -1

k=1

am
Similarly for f§, wheref = (ﬁ) andg = ;5. Then

nz/é 0.1/26—0/4—k27r2/0 k/ﬁ 4m < o2 0.1/26—0/4—7r2/0 1 4m
— k2m3/2 k/n—1 - n2m3/2 200 — 1 ’

The result follows.

O
This last lemma is useful to compute the final error of the axipnate convolution of) 4 and@ g, using
the the NFFT and NFFT approximation as described in section 3.

Lemma3. LetQ4 = ﬂZ a/,;h;ge%ig'f- Qp = ﬁz 5;2}1,;62”“;'5, andP(z,y,2) = QA@QF. LetP(z,y,2) =
kel kel

Q4®QP be the approximate convolution map computed from the NERT,, m;), wheren,m € Z* and

ag > 1, then the errolle(¥)| = |P(Z) — P(&)| is bounded by

(@) < maxx a2 (

n

12 —0 —c/4—72 /o 3
1 " ne 2r/e L +24 ot 7P + 22 e
200 — 1 20 nirt n2m3/2 '

apBeh? e
@ = |2 E S e mEIE| (Modifying Equation (2.9) foi? in [39])

c nr
ker, F 7Fez3\{o}

h2
< max|a’G Z—k Z Cro
T jen, MRS £ konr
" ker, "rez\{0}

3

n/2-1 —o/4]? _ \ 4m _\ 2
_ o k/n 1—k/n
< LG 4 kQﬂQ/U\/E g¢ 1
< maxjagfy k__z/;k;éo [e o T2 | \ka—1 T om—1

The result follows.
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4.2 Accuracy Estimates

Theorem 1.

‘minT,AR IT(AR(Q™Y)) — QP — mings o, [|T"(Ar (Q1)) — Q|
VIQAR + QB2

is bounded by

ming—1...a7 [y 20 nird n2m3/2 20— 1

3/2
v VM 2L et e 80 o2 8 ,/"3 —n2n? /40 —c /4 :
2’ 3743 ° PERTA '

Proof. We first prove a few inequalities. First

_ o /dn? /e \ 32 6
63/203/2111&){1,:1...]\4 Vol |:<n627r2/07r—|—240-26 o/2 220-1/2@ o/d—m /0> < 1 > m

ITARQ™Y) - QI = ||T(AR(C:2A +e) = (Q% + ca)ll
= |T(ARQ™) + T(Ar(e1) — Q¥ — ea]

> | T(AR(Q™Y) = Q%I = IT(Ar(er)) — eal] (12)

The last step is due to the triangle inequality of norms. Eirlyi the following inequality is true:

IT(AR(Q™Y) — QP < IT(AR(Q™Y)) — Q| + IT(AR(e1)) — €2 (13)

Let (T, Ag+) = argming , . IT(AR(QY)) — QB|, then

legiAr; 1T (AR (QY) — Q| — min IT(AR(QY) — Q7|

IT* (AR (@) = Q| — IT*(Ar-(Q™)) — QP (From Eqn. (12)
[T (AR=(e1)) — e2l|

lex]] + [lez]l-

Let (T**, Ag++) = argming, ,, [|T(Ar(Q?)) — Q||, then

IA A IA

i IT(An(Q) = @7l - uin IT'(Ar(@) - Q7

1T (Age=(Q™M)) = Q|| = T (Ar=+(Q™)) — Q|
IT*(ARr(e1)) — e2|| (From Egn. (13))
el + [lez]]-

VAN VAN VAN
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This implies

min [T(AR(@") = QI — min |7 (A (@) = Q7| < lleal + ez

then Equation (8) is bounded by

lexll +lleall
VIR + Q]
From Lemma 1 and 2 the result follows.
O
Preposition 2. For any two complex numbetsandb the following inequalities are satisfied
ja + b2 < [al'/2 + [b]"/? (14)
and
ja—bY2 > |a|'/? —|p]'/?| (15)
Proof. From the triangular inequality: + b|*/2 < (|a| 4 [b])'/2. Now, |a| + |b] < |a| + [b] + 2|a|'/?|b|/? =
(|a|'/? + |b|*/?)? thus proving the first inequality. The second follows trilidrom the first.
O

Theorem 2.

‘mmT,AR IT(AR(Q™Y)) — QP|| — ming» , F(R,Q*, Q")
VIIRQAI? + QB2

is bounded by

3
2,—0/2 1/2 ,—0/4—m2/o \ 2 6m
3 3MmaXy—1...\f 9.2, T ‘e o'“e 1
eior — .| ne 27 /7 _— 4 o - + 22 =

ming—1...as [ 20 nim n2ms 20— 1

[N

2nm? 3min3 n3\V 77

maxy,_, /|aLBL I
3 4 96 keln | kﬂk‘ 4 M< o e~ /20 4 80° e /2 4 8 03€—W2n2/40—0/4>

22 +
maXy=1...M |7U‘ 4
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Proof.

IT(AR(QY)) — QP2

1072 + Q%) - 2 / T(MOA)OE, + T(AQA)OE, dr
R3
102 + QP12 — 2Ba(#) — 2:().

From Eqgn. (14) we obtain

IT(ARQY) = Q%I < F(R,Q*, Q%) + V2le(@)|'*.

Let (7", R*) = argming y . IT(AR(Q™)) — QF|, then

min IT(AR@QY) — Q%) — min F(R,Q*,Q")
min IT(ARQ™Y) — QP — T (Ar-(QY)) — QP + [2e(-) |/

< lleall + lleall + 22 ()12,

IN

From Eqgn. (15) we obtain

min F(R/, Q1. Q%) - min IT(AR(QY)) — QP
IT*(AR-(Q™) — QF| — ijlg IT(AR(Q™M)) — QB + [2¢(-)[/?

lex ]l + lleal| + [2e(-)"/2,

IN

N

then Equation (9) is bounded by

lea]l + lleal| + [2¢]/2
VIQA? + [[QF?

From Lemma 1, 2 and 3 the result follows.

5 Results of our Protein-Protein Docking

In this section we report on the computational efficiency uf fast adaptive docking method on three com-
plexes: Hyhel-5 fab complexed with bobwhite quail lysozy(@®B:1BQL.PDB), Idiotype-anti-idiotype fab
complex (PDB: 1lIAl. PDB) and an influenza virus hemaggluticomplexed with a neutralizing antibody
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(&) Complex 1Hyhel-5 fab (b) Complex 2ldiotype- (c) Complex 3influenza virus

complexed with bobwhite quail  anti-idiotype fab com-  hemagglutinin complexed

lysozyme (PDB:1BQL.PDB) plex(PDB:1IAI.PDB) with  a neutralizing antibody
(PDB:2VIR.PDB)

Figure 4: The three complexes we have used as test casesrstinediecule is colored using standard
atom colors while the atoms in the second molecule are abloyeheir residue type to differentiate
the two molecules in the complex.

(PDB: 2VIR .PDB). We will simply refer to these complexesamsnplex 1, complex 2, complex 3espec-
tively (see figure 4). In all experiments, we perform the stational search using the NFFT based method for
a fixed set of orientations.

Shape complementarity is the only term in our scoring fumgtfor this experiment. This is a good com-
parison given that the fast Fourier method is the best kndgarithm for convolution in terms of speed and
memory. Our results demonstrate faster docking with lowemiory requirements while providing accurate
results.

Test Conditions For all three complexes we shall compare our method to thedtilTbased approach to
test the accuracy of our NFFT fast search algorithm. The catés are embedded in a grid t#83. Zero
padding is also done to avoid any warp around during the dotwa step.

We define theéProfile as aP[-, -, -] matrix, where each element represents the overlap of thenmlecules
for a unique translatiorEnergy Ep of the profile is the norm:Ep = || P[-, -, ]/, -

All experiments where performed on a Sun E25K with 128 preaesand 512 G of shared memory. Only
one processor was used for a translational search. Differ@mtations are computed in parallel. The FFT was
performed with the optimized flag of the Fastest Fourier $itam of the West (FFTW) package [18],

Energy retained in profile The energy retained in the profile is a value the users carifgpecietermine
the number of fourier series coefficients they need to usetalMldate the energy retained for different rates of
decays of the input Gaussians for the three test casese#iistsat as we go to a lower resolution, fewer number
of frequencies are required to obtain the same accuracyjdimg one method of performing a hierarchical
docking search.

The convolution of smooth functions like the electron dgngields a profile that is largely composed
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Number of freq. 8 =-0.5 g=-1
I [>° I [>°
163 6.3364| 3.0409| 9.9454| 3.5909
20° 3.9761| 1.2994| 7.9016| 1.7434
323 1.1991| 0.2889| 5.3285| 0.5909

Table 1: Fraction of energy lost, in %, foomplex 1, with o = m = 2 as the NFFT parameters

Number of freq. 6 =-0.5 g=-1
12 [> 12 [>°
163 4.5203| 3.5743| 6.8897| 4.2208
20° 2.5131| 1.4592| 5.1096| 1.8793
323 0.8462| 0.2480| 3.6941| 0.5297

Table 2: Fraction of energy lost, in %, foomplex 2 with o = m = 2 as the NFFT parameters

Number of freq. 6 =-0.5 g=-1
12 [>° 12 o0
163 4.8228| 2.0457| 7.7806| 2.3983
20° 2.7570| 0.8029| 6.0601| 1.0721
323 0.9504| 0.2017| 4.6343| 0.4111
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Table 3: Fraction of energy lost, in %, foomplex 3 with o = m = 2 as the NFFT parameters




@) (b) (©

(d) (e) ()

Figure 5: A slice of the profiles containing the peak for a gieeientation for each of the three test
cases is shown. In the top row, the FFT profiles are given wide&orresponding Fast docking results
are given below.

of low frequencies. In Figure 5 we show one slice of each ofttinee profiles of our test cases where the
maximum was found. Notice that since most of the energy optioéile is located at the lower frequencies
(Table 1, 2 and 3), most of the profile can be reconstructeld aview frequencies.

Full Rotational Search The rotational search is currently a full 3 degree search.pwsent results for
a low sampling of the space. For each of the three test caseased1283 FFT results to compare to. We
performed the search using only structure as the affinitgtfan. In each case, we uséd?® frequencies and
a =m = 2 as the NFFT parameters. In table 4 we present the averageidawf the closest in the top ten of
our peaks to the peak of the FFT method.

Since we are currently using only the shape or electron easiour scoring function, the docking position
is limited to shape complementarity. Other important swpriunctions like hydrophobicity matching and
electrostatics complementarity will be considered in fetexperiments.

Timings The FFT works on a grid. Hence we need to discretize our ingtat th a grid. The convolution re-
quires the grid to be a power of 2 in each dimension, and mustf@pe enough to accommodate both molecules.
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Test case | Average error in peak#\]
Complex 1 2.64
Complex 2 3.10
Complex 3 3.11

Table 4: The average deviation of the peak in the full FFT metinom the closest in the top ten of
our method, for each orientation, is tabulated for each i&feltases. Since we have performed only
a coarse rotational sampling, there are orientations wiherpeak of the FFT is present in a slightly
different orientation for our method. We also do not weidtg aiverage by the value of the peak in
the FFT method. This results in some orientations where igtartte between the peaks are large,
leading to the large average deviation. The rate of decdyedtérnel functiong was set as -1.0. The
NFFT parameters used ate= m = 2 and16° fourier series coefficients were computed.

Thus, zero padding which typically will double the grid sigeneeded. For average size proteins (such as the
superoxide dismutase) and grid spacing of 1A for reasonasielution, a volume of 256is necessary. For
docking of two larger molecules>(70 ,&radius), one would need to go to grids beyond 51Phis is clearly a
very expensive operation with respect to time consumed. e deal with flexible molecules, the need to
perform Fourier transforms through the pipeline prohibis use of the FFT.

For our search NFFT based method, the low resolution fregjegrcan be obtained efficiently as shown
in Table 5. The second step of the NFFT based method is to eiNE#FT and obtain the coefficients of the
Cardinal B-splines that describes the convolution profileis step is significantly faster than the NFEFtep.
The third is to actually to compute the maximum from the peoBtsplines. If a low resolution grid of size
M is used, by using an FFT of sizd we compute the inverse significantly faster than Step 1 with%
Translation location error.

Frequenciesd,3) | a=2,83=2a=2,8=3|a=2,=4| a=4,8=4 | FFT256°)
1000 0.077414 0.142723 0.254004 0.347024 | 16.798823
4096 0.114369 0.182574 0.298170 0.662981 | 16.798823
8000 0.170260 0.240088 0.360787 1.214280 | 16.798823

Table 5: Time in seconds taken to estimate Fourier coeft€iaith the NFFT for different over-
sampling factorsy and 3 for a molecule with 1100 atoms. The time to perform the FFTaf@p63
grid is also given. Note that the FFT was performed with th&\WFwith the optimized flag on.

This is clearly a very expensive operation with respect neetconsumed. When we deal with flexible
molecules, the need to perform Fourier transforms throbghpipeline prohibits the use of the fast Fourier
transform. We see that even a FFT of a very low-resolutionehotl128 is more time consuming than our
method with sampling factors, 5 = 2, 2.
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Memory requirements The experimental results closely followed the theoretib&imory requirement
that is linear in the number of expansion points. We used aongover-sampling factor of 2. Hence for our
three test cases which had approximately 10000 to 1500(sipapoints, we needed approximately 5SMB of
space. This is in contrast to 268 MB for&6> grid for the FFT Grid Based approaches. This is also very low
compared with the memory requirements of other methodsisisrl in Appendix A.

6 Conclusion

In this paper we introduce an adaptive irregular spacedi€omethod based on grid free smooth patrticle
representations to efficiently predict protein-proteircking sites. Our algorithm is significantly faster than
the grid based FFT docking algorithms by avoiding the cagtibn of the volumetric grid. In the future, we
envision improving the speed, efficiency, generality angilfiéty of predicting, visualizing, and analyzing
protein-protein interactions with significantly more degg of freedom.

In the current form of the algorithm we have only docked shaitiethe electron density. To further improve
the accuracy of our predictions we shall incorporate antbede our algorithm with associated molecular
properties such as electrostatics and hydrophobicity.

In section 5 the rotational search is discretized in unif@uter angles, a better choice is to use the opti-
mized uniform sampling described in [27].

To increase the precision of the maximum search in our casspreconvolution profiles, we shall develop
a local interpolation scheme to compute the convolutiofilerm an accurate and fast manner. Moreover, more
efficient non convex optimization schemes for peak detedlwll be investigated.

Finally, we shall refine and calibrate our docking proceduard validate docking computations on a set
of known complexes, and subsequently on challenge probfesns CAPRI, and from collaborations with
experimental scientists.
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Appendix A: Computational Analysis of Previous Approaches

The method we develop in this paper is based on the grid FFioappes. However, since are method is
grid free we significantly reduce the memory and time comipésx We are interested how this method also
measures with respect to more modern Docking approaches .

Current docking methods can be characterized into Foungioa Spherical harmonic approaches. To make
a fair comparison with these newer methods a complete coiypkmnalysis is presented. In particular, we are
interested in complexity analysis of the FFT/Sphericahi@nic approach of Kovaost al and the Spherical
harmonic method of Ritchiet al.
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A.1 FFT/Spherical Harmonic approach

The algorithm developed by Kovaes al [24] relies on relating the spherical harmonic expansicefftments
on a sphere of radiusto a Discrete Fourier Transform (DFT) representation bynkhe Fourier transform
of the correlation function of (Equation (3) in [24]. L¢t: R? — R andg : R? — R be two density functions
which are bounded and of compact support inside a voliime R3. Expandingf by series of spherical
harmonic expansions on a sphere of radiuge obtain:

f(ru) ~ Fim (7)Y (1) (A-1)

whereY},, are spherical harmonic# the order of the expansion amds a unit vector. Moreover, letr f be
a rotational operator in Euler angle representafior?, ). For a rotation? on f we have:

B—-1 l l
Arfru) = 3" " finDhy (6,0, 0)Yim(u) (A-2)
=0 m=—Iln=-1
where
D! (6,0,9) = e ™d.,, (0)e™"Y,
and

L (6) = <—1>m\/ Eﬁ - ﬁ;ia%ose).

Finally, letT}, be the translation operator such that

Tpg(x>y> Z) = g(x,y,z - p) V($7y7 Z) € Rg

The correlation function can now be built from the densitgdiions( f, g) with their respective rotations
(R, R") and intermolecular distance translation operdtorThis leads us to the 6D degrees of freedom corre-
lation

o(R,R5p)= Y Arf-T,Ary. (A-3)

3
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Replacing the operato(d\r, Ar/, T,) into Equation (A-3) and making the following change of vatés
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and lettingc = n — 1’ we obtain the following correlation function

B-1B-1 U

C(¢797¢7¢/79/7¢/>P) = Z Z Z Z Z (A-4)
=0 I'=0 m=—ln=—Ilm/=-U' h'=—1' h=—1
dl hd dl_’nhldl’lmlez’(ncr—i—hn—l—mw—i—h’n’—l—m’w )Iilzlnm ( )

= T(o,nw,o’ 1, p)

) 1 l & 0 —
I (p) = VAG 5)(1' + 5) '/0 [/0 Jom(r) g (r)r2 dr| - dig(8)sing dg.

The previous correlation function is now in terms of the fivde anglesr, n, w, n’, w’ and the intermolec-
ular distancep. Taking the Fourier transform of the previous equation $ead

where

B-1B-1

T(n,j,m,h',m’, p) Z Z dyddvodh T8 (). (A-5)
1=0 I'=

The correlation function in the sample domain is computethking an Inverse Fast Fourier Transform (IFFT)
of equation A-5. This leads toBB x 2B x 2B x 2B x 2B Cartesian grid for the five anglés, 7, w, ', w’)
and one fixed singular intermolecular distancelt is easy to see from equation (A-5) th@(B>) Fourier
coefficients are needed. Moreover, each entry requesomputations thus the total computational cost for
the IFFT isO(B" log B). Suppose thap is discretized intaD,, steps and- is discretizedD, steps, then the
total memory cost i€)(B®) and the total computational costd¥ D, D,B" log B)

We can immediately observe several drawbacks to this #fgori The most important being a lack of an
error bound on the spherical harmonic representation. tdere the width of the discretization of the Euler
angles is directly related to the number of spherical haimexpansions. This is significant, since the output
of the correlation function is much smoother than the raswiwf the data. This implies that the discretization
of the Euler angles can be made larger than the resolutioheobtiginal molecules with significant loss of
accuracy.

The algorithm is too rigid for adaptively solving the coabn function. For example, if we require a high
precision discretization of the Euler angles around a smagibn, then we are forced to solve it everywhere.
With O(B?®) entries the memory requirements quickly become prohéhitin practice about28B° bytes are
needed. FoB = 32, the memory requirements become larger that 4 GB, placiralveve many of today
workstations. This motives discussing the following flégibpproach for fast scoring by Ritchie on the double
skin layer model.
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A.2 Double skin layer Approach

This method relies on correlation scoring of the overlapvieen the double skin later model of both the ligand
and the receptor molecules. This model involves to voluimskins of the molecule. The interior skin is the
union of all the van Der Waals volumes of the surface atoms. dénsity of this skin is represented as

(r) = 1; r e Surface atom
=~ 71 0; otherwise :

The exterior skin is defined using the solvent-accessibienaolecular surfaces and the density is represented
as

5(r) = 1; r € Surface skin
PAE)= 0; otherwise '

The correlation functions are expanded in terms of sphehaamnonics. However, in contrast to Kovac’s
method, the skin is represented with real spherical harcsaad radial functions. Expanding the inner skins
we obtain

—_

n— l

N
T(f) ~ Z Z anlmRnl(f)ylm(Qa(b); n>1l> |m‘ >0

n=1 =0 m=-—I

where R,,;(r) is based on generalized Laguerre polynomials &ht the order of expansion. Please refer
to [34] for the different choices foR,,;(r). The total number of coefficients in this expansioigV?3). The
spherical harmonic representation can be easily rotatachdrthe Euler angle@y, 3, ). The updated rotated
coefficientsa’ , are computed as

nlm
l
a/nlm = Z anlm'Dier’ (OZ, ﬁa 7)7 (A'G)
m/=—1
where
Dinm’ (Oé, 57 '7) = e_imladfn’m(ﬁ)e_im’y'

Also, leta,, = be the translated coefficients by the operdtpf34].
In the double skin model the scoring functidif-) takes the form

S = /ﬁA(fA)TB(ZB) dV+/TA(L4)ﬁB(£B) dV—Q/TA(ﬂA)TB(zB) dv
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where the final term acts as a steric penalty for the intémi@rior skin. The scoring functiof(-) is written in
terms of the Euler angle$;, v1, as, B2, 72 and the intermolecular distange

S(p, B1,m, a2, B2, 72) = Z Qy, cosmag + Qp sinmay; L =N —1, (A-7)

m=—L

where

N
Qj_n(pa /81 y V1, /827 72) = Z (Argm/ (p)bnlm/ + Anlm ( )bncl)m/)émm/a (A_8)

Q0. 81,71, 02.92) = D (A (000, + Ao (0)0,5 ) St (A-9)

nlm/

and

’l’m’ Z anlm /1l |m|\P ( )6mm’ . (A-lO)

nlm

See [34] for the ternd,, /|| (p)-
To make a complexity analysis of the algorithm, we assumetfieg all the six degrees of freedom dis-
cretized such that

Let
N? = Number of discrete steps 681, 71), (A-11)
N? = Number of discrete steps 66, 72),
D, = Discretization steps of,
D, = Number of Spherical Harmonic shells
M,, = N = Discretization steps aks.

The computational cost of Ritchie’s algorithm can be eadéermined from the following equations (Equa-
tions (7.17-7.18) in [34]). The cost to compute equationl@-involvesO(N?3) computations. This implies
that every time thatp, 31, a1) is updated, from equations (A-7), (A-8) and (A-@) N°) computations are
required. However, any update @, v2) only requiresO(N?3). Moreover, due to the Fourier series represen-
tation of (A-8) we see thaD (V) computations are required for any updatexgf

This implies that the total computational cos€D,N7 + D,(N? —1)N® + D,N°(M, — 1)). However,
the memory cost boils down t6(D,N?). The D, factor is due the caching of the integr&l,,,, 17|, (p)-
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Time complexity Space Complexity
Ritchieet al O(D,N"+ D,(N —1)N°>+ D,N°(2N — 1)) O(D,N3)
Kovacsel al O(D,D,N"log N) O(D,N?)
Grid Based Docking (Zdock O(N°®log N) O(N?)
Our Method max(O(N3M log M), O(N3n3logn)) max(O(n3), O(M))

Table 6: Complexity analysis results

However, this step can be made apriori, therefore the caatipoal complexity is reduced t@(D,N” +
D,(N —1)N® + D,N>(M, — 1)). However, notice, that for even one single orientationation, O(N®)
computations are needed.

We can make a direct comparison between both methods andvowtiacking search algorithm. We shall
first establish a common notation to directly compare botthous. LetV = B (both methods having the same
order). And let discretized all five rotational angles witle same step size. In Table 6, the total computational
and memory costs for both methods are shown. Notice thatseegpddce the complexity cost for the grid based
method Zdock, see [10].

From Table 6 we observe that Ritchie’s method is better tharaks’ with respect to asymptotic worst-case
space and time complexity. In particular, Kovacs methociy memory intensive. However, Ritchie’s method
is based on spherical harmonics, thus ill suited for repitasg non star shaped molecules. In addition, no error
estimators have been developed, thus the confidence ondinaey of the results in lost. Our proposed method
has significantly better asymptotic worst-case space amel tomplexity. It performs a combination of 3-D
translational and 3-D rotational search. For each rotaidmranslational search is performed inMD{og M),
whereM of the order of the number of atoms in the largest moleculace&sV? rotations are performed then
we can compute the full six dimensional search ilNO{/ log M) time and O{/) memory. Finally,M is
significantly smaller thamv3.

B Appendix B: Molecular Skin Population

We define the skin region of one molecule as the region bebgnigi the Solvent Accessible Surface Volume

(Vsas)- Since we use the convolution of Gaussian functions owenatenters as our data structure for repre-

senting molecular structure, we define the skin implicityaaset of spheres packing the region. The packing

density is itself chosen to approximately equal the packiinfpe atoms belonging to the molecular surface.
The region is defined over a trilinear grid in which the moleds embedded. The grid spacihds chosen

to preserve the features of the molecule. Assuming thahtkedtomic distance is 14, we can usé = 0.5A.

By finding the boundary vertices of tht#AS, we can obtain potential centers for the skin spheres. Tepte

aliasing artifacts, we randomly choose potential centetedt for whether it should contain a sphere or not. A
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packing algorithm then decides, based on the packing gemrsjtired, if a potential center should contain an
atom or not.
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Algorithm 1 Skin population
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Procedure AddAtom(cell c)

d = {cell € G :dist(cd,c) < 2rp,}
As(d) = set of skin atoms in’
if A,(¢') = {} then
return true;
end if
return false;

Inputs are: M, A;,r;, ¢, i =1..M,r,, h]
Output is: Adaptive grid~> with grid points classified as SES or not.
{Construct adaptive octree for atoms
for i = 1to M do
{InsertA; into grid.}
forall ge G:|c; —g| <ri+r,do
g < Vsas
end for
. end for
: {Classify the boundary cells

: forall Cellc € G do

v1..vg < vertices ofe.

if (HUZ c VSAS) A (HU]' Q:L vSAS); 1,7 € 1.8 then
¢ Ssas
end if

: end for

: {Add skin region spherés
: for all Cellsc € Sg45, chosen randomlgo

if AddAtom(c)then
New Skin Probe( center=centey(radius=, ).
inc(Ms)

end if

- end for 34
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