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Abstract

In this paper we introduce a grid free approximate Fast Convolution algorithm base on Nonequispaced
Fourier Transforms for accurately predicting rigid body protein-protein docking sites. Of the many docking
approaches, grid based Fast Fourier Transform (FFT) approaches have been shown to produce the best bal-
ance between computational complexity and accuracy of the correlation profiles of complex protein-protein
interactions over the six dimensional search space. However, these uniform sampling methods are still com-
putationally intractable and highly memory intensive for predicting large protein-protein docking sites. In this
paper we introduce an error bounded FFT for nonequispaced data approach that significantly improves compu-
tational complexity and storage. We are able to produce efficiently, highly compressed, but accurate, docking
correlation profiles.
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1 Introduction

Efforts in structural proteomics have lead to a rapid increase in the number of three-dimensional (3-D) struc-
tures of individual proteins. Moreover, knowledge of networks of interactions and signaling pathways is also
expanding rapidly through genomic and proteomics approaches. Still, our picture of the structures of both stable
and transient protein interactions lags behind. Efforts incrystallizing macromolecular complexes have met with
limited success, and hybrid experimental approaches, utilizing cryo-electron microscopy and crystallography
or NMR to give structural details of complex assemblies are evolving. However, along with these experimental
methods, there is a growing need for efficient and robust computational approaches to predicting the complexed
viable structures in protein-protein interactions. Theseapproaches are also known as protein-protein docking.

Protein-protein docking or in general molecular docking usually consists of two primary selections. One is
the choice of goodness of fit measure (sometimes called the scoring function) while the other is the choice of
the search algorithm. Both of these decisions are based on anassumed molecular model. The scoring function
includes consideration for molecular properties in addition to a representation of molecular shape. Grid based
Fast Fourier Transform (FFT) approaches have been shown to produce highly accurate correlation profiles
of complex protein-protein docking making them a popular choice for solving the above docking site search
problem. However, they are time consuming, and in particular, highly memory intensive for large molecules
due to the large size of the grid needed. In this paper we introduce an adaptive grid-free irregularly spaced
Fourier approach for accurately predicting rigid body protein-protein docking sites.

Problem Description
For moleculeA, let V A

i : R
3 → R be theith associated density map fori = 1 . . . m, where each map

represents a molecular shape or property. Similarly for moleculeB we haveV B
i : R

3 → R maps fori =
1 . . . m. LetSi(Vi) : R

3 → C andŜi(Vi) : R
3 → C be the scoring functions defined onVi. For a rotationR in

the 3D rotation groupSO(3), the rotation operatorΛR is defined as

ΛRS(~x) := S(R−1(~x)) ∀~x ∈ R
3,

where~x = (x, y, z). Similarly, the translator operatorT j,k,l is defined as

T j,k,l(Si(x, y, z)) = Si(x− j, y − k, z − l)

for j, k, l ∈ R. The six dimensional search docking problem, can be posed asthe following correlation problem

arg max
j,k,l,R

m
∑

i=1

∫

~x∈R3

∫

~y∈R3

Re
(

T j,k,l(ΛR(Si(V
A
i (~x))))Ŝi(V

B
i (~y))

)

d~xd~y, (1)

whereRe corresponds to the real part. This problem is also equivalent the following fitting minimization
problem (see section 4):

arg min
j,k,l,R

m
∑

i=1

‖T j,k,l(ΛR(Si(V
A
i (~x)))) − Ŝi(V B

i (~y))‖, (2)
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where‖ · ‖ corresponds to theL2(R3) norm. In section 3 an approximation to the correlation map inequation 1
is obtained by an approximate convolution mapP̂ (x, y, z). To match these two maps the rotationR is modified
to include theπ rad flip around each axis. For a rotationR in the 3D rotation groupSO(3), the rotation operator
ΛR is defined as

R := RZ1Z2Z3,

whereZ1, Z2 andZ3 are the rotations around each axis inR
3, then

ΛRS(~x) := S(R−1(~x)) ∀~x ∈ R
3.

Note that alternate formulations lead tothe same search space. Indeed, in [35] split the search problem into 5D
rotations and a 1D translation.

Molecular shapes have a natural smooth particle atomistic or quasi-atomistic representation. By taking ad-
vantage of the adaptive smooth particle representation, weeliminate the underlying grid thus producing highly
compressed, but accurate, correlation profiles based on an adaptive irregularly spaced FFT algorithm. Our
docking method primarily consists of three steps: First, weselect an adaptive smooth particle representation
for proteins which is also compatible with our initial shape-complementarity based scoring function. Second,
we calculate the frequency profiles directly from the smoothparticle representation, and search effectively over
six dimensional translation and rotational space, utilizing the irregularly spaced FFT, and finally, we evaluate a
compressed correlation profile which captures the rigid body protein-protein docking sites.

The rest of the paper is as follows. In section 2, we summarizethe main Fourier based approaches to
the rigid body protein-protein docking problem. Moreover,the different approaches to the FFT over irregularly
sampled domains are described. A complexity analysis of grid and spherical harmonic Fourier based algorithms
for docking and matching is given in Appendix A. In section 3 the main part of the algorithm is described. In
section 3.1 a smooth particle representation of molecular maps and affinity functions is introduced alongwith
the corresponding shape complementarity based scoring function to capture rigid body protein-protein docking.

With a suitable shape complementarity based scoring function defined, the search algorithm is separated
into two parts: the translational Fourier based search and the rotational search. In section 3.3 we show how
to reduce the computational and storage costs of the translation search algorithm with our method. Traditional
grid based Fourier approach embeds the two molecular maps inaN3 grid and convolve them using the FFT
leading toO(N3 logN) time. In our irregularly spaced Fourier method, we assume both molecules to contain
M atoms (you can take the maximum number of atoms from both molecules). An accurate approximate
correlation profile is derived inO(M logM) computational steps andO(M) storage. In practiceM is much
smaller thatN3. In section 4 error estimates for the convolution profile obtained with our method are derived.

Finally, in section 5 we describe our implementation and report on a few docking results including the
actual timing and the accuracy of our correlation profiles.

We point out that during the writing of this tech report a similar work by Potts et al [33] was made aware
to us. The purpose of that work is to build a fast summation algorithm of radially symmetric functions with
general kernels as an alternative to Multi-pole fast summation methods. Our research involves the development
of a more general method for fast convolution of radially symmetric functions with the purpose of predicting
molecular docking sites.
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2 Prior Work

In this section we briefly review past docking approaches with an emphasis on techniques applying Fourier
search. A review on irregularly sampled Fourier transformsin also presented.

2.1 Molecular Shape and Affinity Functions

Solvent molecule (probe ) Solvent

Accessible

Surface (SAS)

Solvent 

Excluded

Surface (SES)

Figure 1: Solvent Accessible and Solvent Excluded Surfaces.

Various molecular surfaces have been defined (Figure 1) using a spherical representation of individual
atoms and a spherical probe representing a solvent molecule. The SAS is outlined by the center of the probe
sphere as it “rolls” over the atoms constituting a molecule [11]. The SES [25], [11], is defined as the inner
boundary of the volume that can be occupied by solvent in contact with the molecule. A number of algorithms
have been developed to compute these surfaces [1, 3, 4, 11, 29, 36, 37, 41–43] for the purpose of visualization
and various computations. It is interesting to observe thatthe SES of proteins forming molecular complexes
exhibits a very high level of geometrical complementarity.These surfaces are used extensively for visualizing
and studying molecular properties and interactions. However, these surfaces are approximations of a somewhat
fuzzy boundary of the molecule’s electron density. Surfaces are also used to visualize molecular properties
associated with molecular shape (e.g. charge density, electrostatic potential, hydrophobicity,etc.)( [12, 22]).
Such surfaces are usually level sets of scalar fields and their gradient or Laplacian ( [11,29,37,42,43]).

Molecular shape (surface and volumetric) are also derived from approximations of an appropriate level set
of electron density [6, 13, 28, 34]. The accurate computation of electron density representations for molecules
from the PDB requires computations at the quantum mechanical level [7]. One usually approximates the
electron density distribution of theith atom with a Gaussian function ( [3,6,7,20,30,31,38]) as
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Ki(r) = exp

(Br2
R2
i

− B
)

,

whereB < 0 is the rate of decay parameter,Ri is the Van der Waals radius of theith atom andr2 = (x− xci)2+
(y − yci)2+(z − zci)2 ({xci, yci, zci} is the center of theith atom). A volumetric representation of the molecule
may now be obtained by summing the contributions from each single atom, thus the electron densityI(~x) for
M atoms is described as

I(~x) =

M
∑

i=1

Ki(r) =

M
∑

i=1

e
(Br2

R2
i

−B)
. (3)

Notice that for protein structures,Ri can be grouped into a set of about 15 distinct values.
A critical component of all docking approaches is defining a suitable measure for the affinity functions in

the scoring calculations. Paper [23] separates the affinityfunctions into core and a surface skin with the objec-
tive to penalize core-core clashes, but add positively surface skin-surface skin overlaps. By assigning different
affinities to the core and the molecular surface skin of each atom and performing a convolution between these
weighted maps, a profile is obtained where the largest valuesconform to the best translational overlap. Modifi-
cations of this approach have been developed in ( [9,10,19,26]). They define the core and the skin regions using
the molecular surfaces like thesolvent accessible surface(SAS) andsolvent excluded surface(SES). Other ap-
proaches include adapting scoring functions for molecularmatching[8, 21]. These scoring functions are also
designed to match molecular functional properties, such aselectrostatics potential. They can be modified for
docking by forming a functionf for moleculeA andg for the complementary volume for moleculeB.

2.2 Grid Based Fourier Methods

Katchalski-Katzir et. al.’s [23] use coarse grids and rotational angles to reduce the combinatorics of the search.
Gabb et. al. [19] use the a priori knowledge of suitable binding site locations on the proteins to reduce the
combinatorics of possible relative conformations. Fast Fourier Transforms are used in each of [19, 23, 35] to
additionally speed up the cumulative scoring function computations and hence the search. Moreover, in [9,10]
Chen et.al. improve on FFT Grid based methods [19] with better scoring functions and additional molecular
properties.

2.3 Spherical Harmonic Fourier Methods

Several groups [13,28,35] studied the problem of representing molecular surfaces with expansions of spherical
harmonic functions and its application to fast computations of the protein docking problem.

Efficiency is additionally gained from the fast rotation andcumulative correlation function computations
involving coefficients of spherical harmonic polynomials.To combat the numerical intensive trigonometric
computations in these methods, many values are precomputedand cached in a direct trade-off of memory for
increased speed. For example, most of the sine and cosine terms of the spherical harmonic expansion are
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cached [34]. Additionally, pre-calculated values of the functions K(R) of the intermolecular separation R, are
stored. Ritchie et. al.’s [34] results compare favorably tothose of the geometry method [17] and the Cartesian
FFT correlation method of Gabb et. al. [19].

However, the approach of [34] has some limitations. Their choice of parametric spherical harmonic expan-
sions in is valid only for molecules exhibiting spherical topology. Secondly, a fixed and by no means small
truncation order of spherical harmonic polynomials (typically 25 orders or more) is required to approximate
the density/characteristic functions. The non-adaptivity of the surface approximation based on a single point
spherical expansion, also makes it difficult to directly relate the expansion order to the range of errors that
the approximation generates. Third, the storage required to cache K(R) is not inconsequential. For example,
in [34], values of K(R) in 1 (̊A) increments are stored using 55MB of disk space. Finally, uniform icosahedral
sampling, used by Ritchie for discretization of the scoringfunction (reducing the integrals to discrete sums)
and the Fourier calculation, is not guaranteed to be accurate for proteins that have rotationally skewed aspect
ratios (i.e. elongated along a single dimension). In [24], asimilar Fourier method for fast rotational matching
using spherical harmonics, overcomes the restriction to star shaped molecules by discretizing the volumetric
space into several shells. The price to pay, is the prohibitively expensive memory usage.

In the appendix A, a more accurate description of spherical harmonics methods [24,34] is given. Moreover,
a complexity analysis between [24,34], grid based methods (Zdock [9,10]) and our adaptive irregularly spaced
Fourier is presented.

2.4 Nonequispaced Sampled Fourier Transforms

Several approaches to efficiently compute the Discrete Fourier Transform (DFT) polynomial for irregularly
sampled domains have surfaced during the last decade [2, 5, 14–16, 32, 39, 40]. A review of many of these
approaches can be found in [44]. In [40] the domain is split into subintervals and each subinterval is then
projected onto a space of local Chebyshev polynomials. An alternate expansion is done in [2], Chebyshev
polynomials are replaced with a Taylor expansion. For Fourier Transforms with singularities, Beylkin employs
a series projections onto multi-resolution spaces [5]. Dutt et. al ( [14, 15]) represent the DFT polynomial as
a multi-pole expansion. ForM non equidistant samples, the multi-pole approximate construction obtains the
first M frequencies inO(M logM) computational steps andO(M) storage. The drawbacks are that such
constructions require a fast multi-pole method, which leads to a complex implementation. Many of these
approaches have been introduced for 1D domains. Extensionsto multi-dimensions are possible through tensor
products. In this paper, we decided to follow the Nonequidistant Fast Fourier Transform (NFFT) and NFFT′

approach of Potts, Elbel and Steidl ( [16, 32, 39]), since 3D results were explicitly shown in their papers.
Moreover, the NFFT is highly accurate, conceptually simple, and easy to implement.

3 Docking Algorithm

In this section we give a description of our approach for the fast search and scoring during the docking of two
molecules A & B. The first step is to define molecular shape, affinity functions and population algorithm of the
SAS skin. The scoring function provides a description of molecular interactions. The second step is developing
a fast docking search algorithm.
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3.1 Shape Complementarity

For the representation of shape we will define two regions foreach molecule, an interior region called the
“core” and a boundary region called the “skin”. In a docking calculation one molecule is held fixed (termed
receptor and designated molecule A here) while the other molecule (termed ligand and designated molecule B
here) performs the 6-D search. The skin and core regions willbe defined differently for molecule A and B, but
all these regions will be represented using Gaussian expansions. Molecular affinity functions defined over these
regions will be used to compute a complementarity score for any configuration of B around A. This score will
be the combination over multiple properties. For each property, the complementarity score will be computed
as a function of the overlap of the core and skin regions of thetwo molecules.

Figure 2(a) shows how we define skin and core regions for molecule A and B. Note that this definition is
asymmetric as the skin of molecule A is completely outside molecule A, while the skin of B is defined using
surface atoms of B and hence is completely inside molecule B.

The following types of overlap will be possible: 1) CoreA-CoreB and coreA-skinB overlaps are steric
clashes; 2) SkinA-skinB are the most favorable overlaps; 3)SkinA-coreB correspond to volumes outside
molecule A overlapping with interior atoms of B. This term will be ignored as it neither penalizes nor con-
tributes to the quality of the fit. In Figure 2(a) we show how the two molecules (A) and (B) dock.

To define the skin-layer and the interior we need to obtain centers suitable for a smooth particle represen-
tation of these two regions. In appendix B our population algorithm computes the skin layers for molecules A
and B. Examples of computed skin layers are shown in Figure 3.In (a-c) the skin-layer and core regions for
molecule A is shown. In Figure (d-f) we have an example of the skin layer for molecules B.

Partner
atom

Core

Skin

Fixed molecule (A)   Moving molecule (B)
(a) (b)

Figure 2: (a) Skin and Core regions. Atoms are drawn as solid circles. The skins regions are colored
while the core regions and white. (b) Docking of molecules (A) & (B).

The regions shown in Figure 2 define domains over which various affinity functions can be represented us-
ing a smooth particle representation. For instance, the shape property can be represented by placing a Gaussian
on every center of the region.
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We can also define a finite number of groups of centers in the smooth particle representations and assign a
particular weight to each group. This weight will scale the contribution of (the function placed on) the centers
belonging to the group to the final score. This mechanism willallow the representation of water molecules for
instance, by adding oxygen atoms to the skin of molecule B in places where a water molecule is likely to be
found. These additional centers in the skin of B will be assigned a much lower weight then surface atoms of B.
By doing so, overlaps of such atoms with the core of A will be less penalizing but overlaps with the skin of A
will contribute somewhat to the score, effectively representing an “optional” atom.

3.2 Affinity Function Scoring

Our scoring function is based on the grid scoring approachesof [9,10,19]. However, the fundamental difference
is that the new score is based onfunctional interactions between the various skins and cores. By using positive
real values as the weights for the smooth particle representation of the affinity function defined over the skin
and imaginary values in the representation of the core regions, we will yield negative numbers for core-core
overlaps and positive numbers for skin-skin overlaps during the convolution. In addition, we can define a finite
number of groups of centers in the smooth particle representations, each group having its own weight. The
weight will directly affect the contribution of (the function placed on) these centers to the score, so the new
weighted affinity function for thejth molecule takes the form

Qj(~x) =

M
∑

k=1

γjkKk(~x) =

M
∑

k=1

γjkK(~x− ~xk).

such thatK(~x) = e−σ‖~x‖
2
2 = e

(
B‖~x‖22

R2
k

−B)
andRk = 1. With this new definition of molecular shape affinity we

can weight the Gaussians to reflect Core-Core clashes or Skin-Skin overlaps. For any two Molecules A & B to
be docked, the parametersγjk takes the form

γAk =

{

1 ∼ skinA
ρi ∼ coreA , γBk =

{

1 ∼ skinB
−ρi ∼ coreB ,

whereρ > 0. The translational convolution search scoring then becomes:

P (x, y, z) = (QA ⊗QB)(x, y, z) =

∫

τ1

∫

τ2

∫

τ3

QA(τ1, τ2, τ3)Q
B(x− τ1, y − τ2, z − τ3) dτ1dτ2dτ3 (4)

Making γk positive causes the scoring function to add SkinA-SkinB overlaps positively, while settingγk to
be imaginary causes CoreA-CoreB interactions to clash negatively. However, we shall not construct theN3

grid directly and perform the convolution using the NFFT. The real component of the score corresponds to the
summation of the positive skin-skin and the negative core-core overlaps. The imaginary part corresponds to the
cumulative overlaps between skin and core regions.
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(a) An immunoglob-
ulin from the
influenza virus
(IGG1, LAMBDA)
(PDB:2VIR.PDB)

(b) Idiotypic FAB 730.1.4
(IGG1) of virus neutralizing
antibody(PDB:1IAI.PDB)

(c) Hyhel-
5 FAB
(PDB:1BQL.PDB)

(d) Hemagglutinin
(PDB:2VIR.PDB)

(e) Anti-Idiotypic
Fab 409.5.3
(Igg2A)(PDB:1IAI.PDB)

(f) Bob-
white
Quail
Lysozyme
(PDB:1BQL.PDB)

Figure 3: We show three examples of populating the outer skinregion and detecting surface atoms
for three antibody antigen complexes. In the first row, we show one of the molecules of the complex
where we populate the outer region, and in the second row, theother molecule where we detect surface
atoms to form the second skin. The first row contains the grownskin layer shown in red, with higher
densities being yellow and green. The surface skin in the second row is shown in green. We show a cut
away to reveal the two skins. In the first row, the three molecules/skins had 3263/4519, 3342/4555,
3243/4308 atoms/kernel centers respectively. In the second, there were 988/1087, 4956/1719 and
5293/469 surface and interior atoms respectively.
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3.3 Three Dimensional Translation Search

Our approach requires significantly less memory than previous Fourier methods by obtaining a compressed
representation of the convolution profile of the density maps while retaining high accuracy. This compressed
representation can be computed directly with the NFFT algorithm, which allows us to compute the translation
search from a reduced set of frequencies inO (M logM), whereM is the number of atoms, instead of the
O(N3 logN) operations required for the direct FFT.

The first step of the NFFT based fast corrolation method is to replace the smooth particle map with an
accurate periodic form such that a Fourier series can be usedto approximateQA(~x). To this end, we translate,
rescale and embed the particle data located at{~xi}Mi=1 to fit in a volumetric interval[−1

4 ,
1
4)3 = [−1

4 ,
1
4) ×

[−1
4 ,

1
4 )× [−1

4 ,
1
4)3. This is achieved by computing the parameterp = maxi,j(‖~xi − ~xj‖) Compute the center

~c =
PM

i=1 ~xi

M . Now, re-center and rescale the particle centers{~xi}Mi=1 such that

~xi :=
~xi − ~c

2p

for all i = 1 . . .M . The second step is to rescale and truncate the kernelK(~x) s.t.

KT (~x) = K
(

~x

2p

)

X
(

~x

2p

)

where

X (~x) =

{

1 if − p ≤ ~x ≤ p
0 ow.

Under this translation and rescaling we replaceQ with

QA(~y) =
M
∑

j=1

γjKT (~y − ~xj).

This truncated and rescaled form allows us to representQA(~x) with a Fourier series approximation inΠ3 for n
desired frequencies for some errorε. The choice on the number of computed frequencies will control the error
of the approximation.

The next step is to expand the kernel function into its Fourier series, asKT (~x) =
∑

k∈In
h~ke

2πi~x·k + ε
for all ~x ∈ Π3 for some errorε. The indexIn refers a volumetric grid of truncated frequencies ( i.e.In =
{k = (k1, k2, k3) ∈ Z

3 : −n/2 ≤ ki < n/2}). Notice that forn → ∞ the equality will be exact in anL2

sense. Moreover, the equality will be pointwise for all kernels that satisfy the Direchlet conditions, except at
the discontinuity points. With this Fourier series representation

QA(~x) =

M
∑

j=1

γjKT (~x− ~xj) =

M
∑

j=1

γj





∑

k∈In

h~ke
2πi(~x−~xj)·k





=
∑

k∈In

h~ke
2πix·k

M
∑

j=1

γje
−2πi~xj ·k =

∑

k∈In

α~kh~ke
2πix·k,
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whereα~k =
∑M

j=1 γje
−2πi(~xj)·k. An approximation ofQ(~x) can be obtain by just computing a finite number

of frequenicesn i.e.

QA(~x) =
∑

k∈In

α~kh~ke
2πix·~k + ε1

for some errorε1. Following the same procedure forQB(~x) we obtain

QB(~x) =
∑

k∈In

β~kh~ke
2πix·k + ε2.

The approximation̂P to the convolution integral (4) now becomes

P̂ (x, y, z) =

∫

(τ1,τ2,τ3)∈Π3

QA(τ1, τ2, τ3)Q
B(x− τ1, y − τ2, z − τ3) dτ1dτ2dτ3 (5)

=

∫

(τ1,τ2,τ3)∈Π3





∑

k∈In

α~kh~ke
−2πi~τ ·k





∑

k′∈In

βk′hk′e
2πi(~x−~τ)·k′

=
∑

k∈In

α~kβ~kh
2
~k
e2πi~τ ·k.

The last step is true since

1
2
∫

− 1
2

e2πiτj(kj−k′j)dτj = 1, j = 1 . . . 3 if kj = k′j and zero otherwise.

Algorithm 1: Approximate Fast Translation Convolution

1. Preprocessing:

(a) Compute

p = maxi,j(‖~xi − ~xj‖)

(b) Rescale and truncate the kernelK(x) s.t.

KT (~x) = K
(

~x

p

)

X
(

~x

p

)

where

X (~x) =

{

1 if − p ≤ xi < p, i = 1 . . . 3
0 ow.
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(c) Compute

c =

∑M
i=1 xi
M

(d) Re-center and rescale particle centers{~xi}Mi=1 and output points{~yi}Ni=1 such that

~xi :=
~xi − c

2p

for all i = 1 . . .M andj = 1 . . . N .

(e) For eachk ∈ In compute the Fourier series integrals

h~k =

∫

Π3

KT (~x)e−i2π~x·k d~x.

For tensor products kernels like the Gaussian, we can compute the above equation with a single 1D
FFT of lengthL with a computational cost ofO(L logL) andO(N) storage.

2. Inputs: The variables{N,n}, whereN relates to the accuracy of the Fourier series representation of the
smooth particle data andn is the index for the number of frequencies that shall be computed in theN
point DFT. Other variables include the smooth particle data:

QA(~x) =

M
∑

j=1

γAj e
(
B‖~x−~xj‖

2
2

R2
j

−B)
and QB(~x) =

M
∑

j=1

γBj e
(
B‖~x−~xj‖

2
2

R2
j

−B)
.

where we assume all the atomic radii to be the same.

3. Truncated DFT:

With the NFFT′(n,m1, α) compute the firstk ∈ In frequencies ofN point DFT of the particle data

α′
~k
≈

M
∑

j=1

γAj e
−2πi(~xj )·k and β′~k ≈

M
∑

j=1

γBj e
−2πi(~xj)·k.

This step provides the frequencies directly from the atomiccenters, which is a very sparse map. By
avoiding using the FFT on a large grid (slow and high storage cost) or evaluating the DFT polynomial
(O(Mn3) computational cost). The DFT can approximated with amth order NFFT′ with a computational
cost isO(α3M logM + (2m+ 1)3M) andO(α3M) storage.
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4. Convolve: For eachk ∈ In compute

p~k = α′
~k
β′~kh

2
~k
.

By multiplying the frequenciesα~k and β~k, the approximate convolution of the mapsQA andQB is
performed. The point wise multiplication cost isO(n3) and storage isO(n3).

5. Inverse DFT: With the NFFT(n,m2, α) Compute

P̂ (~xj) =
∑

k∈In

p~ke
2πi~x·k.

The NFFT algorithm produces an output in the form ofmth order cardinal B-splines. Thus is we sample
the mapP̂ N̄ times, the total computational cost isO(n3 log n + (2m + 1)3N̄) and storage isO(n3).
The total computational cost of this algorithm, excluding the preprocessing step, isO(α3M logM +
n3 log n+ (2m+ 1)3N̄) andO(max (α3M,β3M) +N) storage.

Note that for many docking problems, we can setR~k to the same constant. However, for many proteinsR~k
can be separated into a group of about 15 distinct values. This means, the step in the NFFT′ algorithm can be
broken down intoM/15 groups with the same frequency sizen. This leads to 15 FFT extra steps. However,
the FFT step is computational faster than the blurring step,thus there is no discernible timing difference.

Inverse step In the inverse step, we need to find the position of the peak given the product of frequencies.
One solution to this problem is to append zeros to the frequencies map and take the inverse fourier transform.
This has both a high space and time complexity which we would like to avoid. Another solution is to first per-
form an inverse fourier transform and do a sync interpolation around local peaks. This is again computationally
expensive.

We follow a heuristic where we explore only those regions which look promising in a two step process.
In the first step, we invert the product map to get a low resolution profile. From this profile, we store the first
few peak positions. In our experiments, we used 10 peaks. In the second step, using the NFFT algorithm, we
convert the product map to a set of B-Splines of orderm2. Using the location information from the first step,
we locally expand the B-Spline grid around only those regions and search for the top peaks. We use the FFT to
compute the local expansions as they are a convolution of B-Spline functions.

3.4 Three Dimensional Rotational Search

For each rotational step the 3D Translation algorithm is performed and a predetermined number of maximum
correlations are conserved. LetRs = {R ∈ SO(3)} be a set ofNR rotations.

Full Search Algorithm

12



1. Inputs: The variablesN,n and the set of all predefined rotationsRs,

QA(~x) =
M
∑

j=1

γAj e
(
B‖~x−~xj‖

2
2

R2
j

−B)
and QB(~x) =

M
∑

j=1

γBj e
(
B‖~x−~xj‖

2
2

R2
j

−B)
.

The first moleculeQA is fixed and the second moleculeQB will be rotated. For every rotation ofQB,
the 3D translational scoring ofQA andQB will be computed and the maximum obtained.

2. Preprocessing: For eachR ∈ Rs compute

(a) Rotation:

QA(~x) = ΛR





M
∑

j=1

γAj e
(
B‖~x−~xj‖

2
2

R2
j

−B)



 =
M
∑

j=1

γAj e
(
B‖~x−ΛR(~xj )‖22

R2
j

−B)

(b) NFFT based Convolution

P̂R(x, y, z) = QA⊗̂QB,

where⊗̂ indicates the approximate NFFT based fast translational convolution algorithm.

3. Maximum: For all rotations inRs and translation location~x compute

arg max
~x,R

P̂R(x, y, z).

For a total ofrs rotations the total computational cost isO(rs(α
3M logM + n3 log n+ (2m+ 1)3N̄ +

N logN)) andO(max (α3M,β3M) +N) storage.

For an exhaustive rotational search the number of orientations will be of the order ofrs = N3, where
N represents the number of steps in a 1-D full rotation. Due to the smoothness of the convolution operator
we sample the output profile at̄N = M points. Since we needO (M logM) computations for each of the
rotational steps, the total complexity cost for a full search isO(N3M logM) andO(M) storage requirements.
Notice that for a grid based methods like Zdock [10], each translational search requiresO(N3 logN) for aN3

grid. Thus a total ofO(N6 logN) operations andO(N3) storage are needed. –A comparison with the most
popular FFT and/or Spherical Harmonic methods is shown in the Appendix A.–

4 Error Estimates

In this section we derive error estimates on the accuracy of our method for solving the optimization problem
2. In section 3 the search problem is based on obtaining the maximum of the convolution map̂P (x, y, z) with

13



respect to all translationsT and rotationsΛR. A suitable relative objective function and estimates shall be
derived forP̂ (x, y, z).

As pointed out in the introduction, the correlation problem(1) can be recast as a fitting (2) of two maps.
This is easy to see.

‖T (ΛR(QA))−QB‖2L2 =

∫

R3

[T (ΛR(QA))−QB ][T (ΛR(QA))∗ − (QB)∗] d~x

=

∫

R3

T (ΛR(QA))T (ΛR(QA))∗ d~x+

∫

R3

QB(QB)∗ d~x

−
∫

R3

T (ΛR(QA))(QB)∗ d~x−
∫

R3

T (ΛR(QA))∗QB d~x

= ‖QA‖2 + ‖QB‖2 −
∫

R3

T (ΛR(QA))(QB)∗ − T (ΛR(QA))∗QB d~x. (6)

The last equality is true sinceT andΛR are linear operators. Now, decomposeT (ΛR(QA)) andQB into their
real and imaginary parts as

T (ΛR(QA)) = T (ΛR(QARe) + iT (ΛR(QAIm)),

whereQA = QARe + iQAIm and similarly forQB . Substituting into Equation (6) we obtain

‖T (ΛR(QA))−QB‖2 = ‖QA‖2 + ‖QB‖2 − 2





∫

R3

T (Λ(QARe))Q
B
Re + T (Λ(QA))QBIm d~x



 .

This implies that solving the optimization correlation problem

arg max
T,ΛR

∫

R3

T (Λ(QARe))Q
B
Re + T (Λ(QAIm))QBIm) d~x (7)

is equivalent to minimizing the difference of the between the two molecular affinity function maps under the
L2 norm

arg min
T,ΛR

‖T (ΛR(QA))−QB‖.

We cannot, however, computeQA andQB exactly. The approach we follow in this paper is to represent
QA andQB in terms of a reduced set of frequencies. Each frequency is approximately computed with the

14



NFFTT (n, α1,m1). Thus the approximation to the mapQ(~x) =
∑

k∈I∞
α~kh~ke

2πix·~k takes the formQ̂(~x) =
∑

k∈In
α′
khke

2πix·k. ExpressingQA andQB in terms ofQ̂A andQ̂B we obtain

QA = Q̂A + e1, Q
B = Q̂B + e2,

for some errore1 ande2. The optimization problem is expressed in terms of the approximate mapŝQA andQ̂B
as

arg min
T,ΛR

‖T (ΛR(Q̂A))− Q̂B)‖. (8)

Notice that asj, k, or z → ∞, thenlimj,k,z→∞T
j,k,z(Q̂B(x, y, z)) → 0 for any (x, y, z) ∈ [−1

4 ,
1
4)3. Thus

the maximum achieved under the objective function (7) tendsto
√

‖QA‖2 + ‖QB‖2. A suitable relative error
of the objective function (8) is then expressed as

∣

∣

∣

∣

∣

minT,ΛR
‖T (ΛR(QA))−QB‖ −minT ′,ΛR′ ‖T ′(ΛR′(Q̂A))− Q̂B‖

√

‖QA‖2 + ‖QB‖2

∣

∣

∣

∣

∣

.

Now, the convolution map of̂QA andQ̂B is computed with the NFFT(n, α2,m2) and related to the approximate
convolution mapP̂R(~x) as

∫

R3

T (Λ(Q̂ARe))Q̂
B
Re + T (Λ(Q̂AIm))Q̂BIm d~x = P̂R(~x) + ε(~x),

for some errorε(~x). Let F (R, Q̂A, Q̂B) =
∣

∣

∣‖Q̂A‖2 + ‖Q̂B‖2 − 2P̂R(~x)
∣

∣

∣

1/2
, then the objective function is

re-formulated as

∣

∣

∣

∣

∣

minT,ΛR
‖T (ΛR(QA))−QB‖ −minT ′,ΛR′ F (R, Q̂A, Q̂B)

√

‖QA‖2 + ‖QB‖2

∣

∣

∣

∣

∣

. (9)

We now derive error bounds for the objective functions (8) and (9), which depend onn, the number of frequen-
cies approximated of the mapsQA andQB , the NFFTT (n, α1,m1) and NFFT(n, α2,m2).

4.1 Preliminary Estimates

We first derive useful error estimates to the NFFT approximation of the radial basis function mapQ. The
L2(R3) error becomes
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‖e‖ = ‖Q− Q̂‖ = ‖
∑

~k∈I∞

α~kh~ke
2πi~k·~x −

∑

~k∈In

α′
~k
h~ke

2πi~k·~x‖

= ‖
∑

~k∈In

(α~k − α
′
~k
)h~ke

2πi~k·~x +
∑

~k∈I∞\In

α~kh~ke
2πi~k·~x‖

≤ ‖
∑

~k∈In

(α~k − α
′
~k
)h~ke

2πi~k·~x‖+ ‖
∑

~k∈I∞\In

α~kh~ke
2πi~k·~x‖.

≤
√

∑

~k∈I∞\In

|α~kh~k|
2 +

√

∑

~k∈In

|(α~k − α′
~k
)h~k|2 = ε1 + ε2.

The last step is true since{e2πi~k·~x} forms an orthonormal set. We first obtain an estimate to the lower bound to
‖Q‖.

Preposition 1. LetQ =
∑M

j=1 γje
−σ‖~x−~xj‖

2
, γj ∈ C, σ > 0, then

‖Q‖2 ≥M mini|γi|2 e−3σ−3/4.

Proof.

‖Q‖2 =

∫

~x∈[− 1
4
, 1
4
)3

(
M
∑

j=1

γjK(~x − ~xj))2d~x ≥
∫

~x∈[− 1
4
, 1
4
)3

M
∑

j=1

γ2
jK2(~x− ~xj)d~x

≥ minj |γj|2
∫

~x∈[− 1
4
, 1
4
)3

M
∑

j=1

K2(~x− ~xj)d~x ≥ 8e−3Mσ−3/4 minj|γj |2.

We next compute the errorε1, which is dependent on the number of frequenciesn.

Lemma 1.

ε1 ≤ max
v=1···M

|γv|M
[

σ

2nπ2
e−n

2π2/2σ +
8σ2

3π4n3
e−σ/2 +

8

n3

√

σ3

π7
e−π

2n2/4σ−σ/4

]3/2

Proof.

∑

~k∈I∞\In

|α~kh~k|
2 ≤ max

~k∈In

|α~k|
2
∑

~k∈I∞\In

|h~k|
2 ≤ ‖γ‖2l1

∑

~k∈I∞\In

|h~k|
2 = ‖γ‖2l1(

∞
∑

k=n/2+1

|hk|2)3.

Recall thath~k = hk1hk2hk3 , wherehk =
∫

Π e
−σx2

e−2πikx dx. From [33] |hk| ≤
√

π
σe

−k2π2/σ + σ
k2π2 e

−σ/4

whenk 6= 0 and
∫∞
a e−cx

2
dx ≤ e−ca2

2ac whena, c > 0 then
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∞
∑

k=n/2+1

|hk|2 ≤
∞
∑

k=n/2+1

(

π

σ
e−2k2π2/σ +

σ2

k4π4
e−σ/2 + 2

√

σ

π3

e−k
2π2/σ−σ/4

k2

)

,

and

∞
∑

k=n/2+1

π

σ
e−2k2π2/σ ≤

∫ ∞

n/2

π

σ
e−2k2π2/σ dk ≤ σ

2nπ2
e−n

2π2/2σ

2e−σ/4
√

σ

π3

∞
∑

k=n/2+1

e−k
2π2/σ

k2
≤ 2e−σ/4

√

σ

π3

∫ ∞

n/2

e−k
2π2/σ

k2
dk ≤ 8

n3

√

σ3

π7
e−π

2n2/4σ−σ/4

∞
∑

k=n/2+1

σ2

k4π4
e−σ/2 ≤ σ2

π4
e−σ/2

∫ ∞

k=n/2
k−4 dk =

8σ2

3π4n3
e−σ/2.

The previous lemma is a modification of Theorem 3.4 in [33] to thel2 norm and inR3.

Lemma 2. Suppose the NFFTT (n, α1,m1) is used to compute the frequenciesα′
k, wheren,m1 ∈ Z+ and

α1 ≥ 1, then

ε2 ≤ 215/2
√
M max

v=1···M
|γv |

(

1

2α− 1

)6m
(

ne−2π2/σ π

2σ
+ 24σ

2e−σ/2

n4π4
+ 22σ

1/2e−σ/4−π
2/σ

n2π3/2

)3/2

.

Proof. The NFFT takes 2 parametersα,m. Modifying Equation (2.12) forR3 in [39], the errorε22 =
∑

~k∈In

|(α~k−

α′
~k
)h~k|2 is equal to

ε22 =
∑

~k∈In

∣

∣

∣

∣

∣

∣

h~k(
M
∑

v=1

γ~ve
−2πi~k·~xv − 1

c~k

M
∑

v=1

∑

~r∈Z3

γvc~k+n̄~re
−2πi(~k+n̄~r)·~xv)

∣

∣

∣

∣

∣

∣

2

=
∑

~k∈In

∣

∣

∣

∣

∣

∣

h~k
c~k

M
∑

v=1

∑

~r∈Z3\{0}

γvc~k+n̄~re
−2πi(~k+n̄~r)·~xv

∣

∣

∣

∣

∣

∣

2

≤ M max
v=1···M

|γv |2
∑

~k∈In

∣

∣

∣

∣

∣

∣

∑

~r∈Z3\{0}

h~kc~k+n̄~r
c~k

e−2πi(~k+n̄~r)·~xv

∣

∣

∣

∣

∣

∣

2

≤M max
v=1···M

|γv|2
∑

~k∈In





∑

~r∈Z3\{0}

|
h~kc~k+n̄~r
c~k

|





2

wheren̄ = αn, andc~k =
∫

ϕ(~x)e−2πi~k·~x d~x. Recall thath~k = hk1hk2hk3 , wherehk =
∫

Π e
−σx2

e−2πikx dx

and|hk| ≤
√

π
σe

−k2π2/σ + σ
k2π2 e

−σ/4.
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ε22 ≤ M max
v=1···M

|γv|2
∑

~k∈In





∑

~r∈Z3\{0}

|hk1hk2hk3ck1+n̄r1ck2+n̄r2ck3+n̄r3
ck1ck2ck3

|





2

≤ M max
v=1···M

|γv|2




n/2−1
∑

k=−n/2

∣

∣

∣

∣

∣

∣

∑

r∈Z\{0}

hkck+n̄r
ck

∣

∣

∣

∣

∣

∣

2



3

. (10)

Now,

cki
=







1/n̄ ki = 0

1/n̄
(

sin(kiπ/n̄)
kiπ/n̄

2m)

Otherwise

(cki+n̄ri

cki

)

=







1 ki = 0
[

sin(kiπ/n̄+riπ)kiπ/n̄
(ki+n̄ri)π/n̄sin(kiπ/n̄)

]2m
=
[

ki

ki+n̄ri

]2m
Otherwise

. (11)

Substituting (11) into (10) we obtain

ε22 ≤M max
v=1···M

|γv|2




n/2−1
∑

k=−n/2,k 6=0

[

e−k
2π2/σ

√

π

σ
+
σe−σ/4

k2π2

]2




∑

r∈Z\{0}

( k

k + n̄r

)2m





2



3

.

From lemma 4.1 in [39] we obtain

∑

r=Z\{0}

[ k

k + n̄r

]2m
≤ 2

(

k/n̄

k/n̄ − 1

)2m(

1 +
1− k/n̄
2m− 1

)

,

then

ε22 ≤M max
v=1···M

|γv |2




n/2−1
∑

k=−n/2,k 6=0

4

[

e−k
2π2/σ

√

π

σ
+
σe−σ/4

k2π2

]2(
k/n̄

k/n̄ − 1

)4m(

1 +
1− k/n̄
2m− 1

)2




3

.

We first show the following bounds:

n/2
∑

k=1

e−2k2π2/σ π

σ

(

k/n̄

k/n̄ − 1

)4m

≤ ne−2π2/σ π

2σ

(

1

2α− 1

)4m

.
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Let f =
(

k
k−αn

)4m
andg = 1

k4 . Settingd(fg)dk = 0 and solving fork we obtaink = αn(1−m). Thenfg is a

monotonic sequence fromk = 0, . . . n/2. Sincefg|k=1 ≤ fg|k=2 then it is increasing. This implies

n/2
∑

k=1

σ2e−σ/2

k4π4

(

k/n̄

k/n̄− 1

)4m

≤ 24σ
2e−σ/2

n4π4

(

1

2α − 1

)4m

.

Similarly for f g̃, wheref =
(

k
k−αn

)4m
andg̃ = 1

k2 . Then

n/2
∑

k=1

σ1/2e−σ/4−k
2π2/σ

k2π3/2

(

k/n̄

k/n̄ − 1

)4m

≤ 22σ
1/2e−σ/4−π

2/σ

n2π3/2

(

1

2α− 1

)4m

.

The result follows.

This last lemma is useful to compute the final error of the approximate convolution ofQA andQB , using
the the NFFT and NFFTT approximation as described in section 3.

Lemma 3. LetQ̂A =
∑

~k∈In

α′
~k
h~ke

2πi~k·~x, Q̂B =
∑

~k∈In

β′~k
h~ke

2πi~k·~x, andP (x, y, z) = Q̂A⊗Q̂B . LetP̂ (x, y, z) =

Q̂A⊗̂Q̂B be the approximate convolution map computed from the NFFT(n, α2,m2), wheren,m ∈ Z+ and
α2 ≥ 1, then the error|ε(~x)| = |P (~x)− P̂ (~x)| is bounded by

|ε(~x)| ≤ max
~k∈In

|α′
~k
β′~k|2

15

(

1

2α− 1

)12m
(

ne−2π2/σ π

2σ
+ 24σ

2e−σ/2

n4π4
+ 22σ

1/2e−σ/4−π
2/σ

n2π3/2

)3

.

Proof.

|ε(~x)| =

∣

∣

∣

∣

∣

∣

∑

~k∈In

αkβkh
2
~k

c~k

∑

~r∈Z3\{0}

c~k+n̄~re
−2πi(~k+n̄~r)·~x

∣

∣

∣

∣

∣

∣

(Modifying Equation (2.9) forR3 in [39])

≤ max
~k∈In

|α′
~k
β′~k|

∣

∣

∣

∣

∣

∣

∑

~k∈In

h2
~k

c~k

∑

~r∈Z3\{0}

c~k+n̄~r

∣

∣

∣

∣

∣

∣

≤ max
~k∈In

|α′
~k
β′~k|





n/2−1
∑

k=−n/2,k 6=0

4

[

e−k
2π2/σ

√

π

σ
+
σe−σ/4

k2π2

]2(
k/n̄

k/n̄ − 1

)4m(

1 +
1− k/n̄
2m− 1

)2




3

The result follows.
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4.2 Accuracy Estimates

Theorem 1.
∣

∣

∣

∣

∣

minT,ΛR
‖T (ΛR(QA))−QB‖ −minT ′,ΛR′ ‖T ′(ΛR′(Q̂A))− Q̂B‖

√

‖QA‖2 + ‖QB‖2

∣

∣

∣

∣

∣

is bounded by

e3/2σ3/2 maxv=1···M |γv|
minv=1···M |γv|





(

ne−2π2/σ π

2σ
+ 24σ

2e−σ/2

n4π4
+ 22σ

1/2e−σ/4−π
2/σ

n2π3/2

)3/2
(

1

2α− 1

)6m

+
√
M/4

(

σ

2nπ2
e−n

2π2/2σ +
8σ2

3π4n3
e−σ/2 +

8

n3

√

σ3

π7
e−π

2n2/4σ−σ/4

)3/2


 .

Proof. We first prove a few inequalities. First

‖T (ΛR(QA))−QB‖ = ‖T (ΛR(Q̂A + e1))− (Q̂B + e2)‖
= ‖T (ΛR(Q̂A)) + T (ΛR(e1))− Q̂B − e2‖
≥ ‖T (ΛR(Q̂A))− Q̂B‖ − ‖T (ΛR(e1))− e2‖ (12)

The last step is due to the triangle inequality of norms. Similarly, the following inequality is true:

‖T (ΛR(QA))−QB‖ ≤ ‖T (ΛR(Q̂A))− Q̂B‖+ ‖T (ΛR(e1))− e2‖. (13)

Let (T ∗,ΛR∗) = arg minT,ΛR
‖T (ΛR(QA))−QB‖, then

min
T ′,Λ′

R

‖T ′(ΛR′(Q̂A))− Q̂B‖ − min
T,ΛR

‖T (ΛR(QA))−QB‖

≤ ‖T ∗(ΛR∗(Q̂A))− Q̂B‖ − ‖T ∗(ΛR∗(QA))−QB‖ (From Eqn. (12))

≤ ‖T ∗(ΛR∗(e1))− e2‖
≤ ‖e1‖+ ‖e2‖.

Let (T ∗∗,ΛR∗∗) = arg minT,ΛR
‖T (ΛR(Q̂A))− Q̂B‖, then

min
T,ΛR

‖T (ΛR(QA))−QB‖ − min
T ′,ΛR′

‖T ′(ΛR′(Q̂A))− Q̂B‖

≤ ‖T ∗∗(ΛR∗∗(QA))−QB‖ − ‖T ∗∗(ΛR∗∗(Q̂A))− Q̂B‖
≤ ‖T ∗(ΛR(e1))− e2‖ (From Eqn. (13))

≤ ‖e1‖+ ‖e2‖.
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This implies

∣

∣

∣

∣

min
T,ΛR

‖T (ΛR(QA))−QB‖ − min
T ′,Λ′

R

‖T (ΛR′(Q̂A))− Q̂B‖
∣

∣

∣

∣

≤ ‖e1‖+ ‖e2‖,

then Equation (8) is bounded by

‖e1‖+ ‖e2‖
√

‖QA‖2 + ‖QB‖2
.

From Lemma 1 and 2 the result follows.

Preposition 2. For any two complex numbersa andb the following inequalities are satisfied

|a+ b|1/2 ≤ |a|1/2 + |b|1/2 (14)

and

|a− b|1/2 ≥ | |a|1/2 − |b|1/2| (15)

Proof. From the triangular inequality|a+ b|1/2 ≤ (|a|+ |b|)1/2. Now, |a|+ |b| ≤ |a|+ |b|+ 2|a|1/2|b|1/2 =
(|a|1/2 + |b|1/2)2 thus proving the first inequality. The second follows trivially from the first.

Theorem 2.
∣

∣

∣

∣

∣

minT,ΛR
‖T (ΛR(QA))−QB‖ −minT ′,ΛR′ F (R, Q̂A, Q̂B)

√

‖QA‖2 + ‖QB‖2

∣

∣

∣

∣

∣

is bounded by

e
3
2σ

3
2
maxv=1···M |γv|
minv=1···M |γv|





(

ne−2π2/σ π

2σ
+ 24σ

2e−σ/2

n4π4
+ 22σ

1/2e−σ/4−π
2/σ

n2π
3
2

) 3
2 ( 1

2α− 1

)6m



2
11
2 + 26

max~k∈In

√

|α′
~k
β′~k
|

maxv=1···M |γv|


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√
M

4

(
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2nπ2
e−n
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8σ2

3π4n3
e−σ/2 +

8

n3

√

σ3

π7
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)
3
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

 .
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Proof.

‖T (ΛR(Q̂A))− Q̂B‖2L2 = ‖Q̂A‖2 + ‖Q̂B‖2 − 2

∫

R3

T (Λ(Q̂ARe))Q̂
B
Re + T (Λ(Q̂A))Q̂BIm d~x

= ‖Q̂A‖2 + ‖Q̂B‖2 − 2P̂R(~x)− 2ε(~x).

From Eqn. (14) we obtain

‖T (ΛR(QA))−QB‖ ≤ F (R, Q̂A, Q̂B) +
√

2|ε(~x)|1/2.

Let (T ∗, R∗) = arg minT,ΛR
‖T (ΛR(QA))−QB‖, then

min
T,ΛR

‖T (ΛR(QA))−QB‖ −min
ΛR′

F (R′, Q̂A, Q̂B)

≤ min
T,ΛR

‖T (ΛR(QA))−QB‖ − ‖T ∗(ΛR∗(Q̂A))− Q̂B‖+ |2ε(·)|1/2

≤ ‖e1‖+ ‖e2‖+ |2ε(·)|1/2.

From Eqn. (15) we obtain

min
ΛR′

F (R′, Q̂A, Q̂B)− min
T,ΛR

‖T (ΛR(QA))−QB‖

≤ ‖T ∗(ΛR∗(Q̂A))− Q̂B‖ − min
T,ΛR

‖T (ΛR(QA))−QB‖+ |2ε(·)|1/2

≤ ‖e1‖+ ‖e2‖+ |2ε(·)|1/2,

then Equation (9) is bounded by

‖e1‖+ ‖e2‖+ |2ε|1/2
√

‖QA‖2 + ‖QB‖2
.

From Lemma 1, 2 and 3 the result follows.

5 Results of our Protein-Protein Docking

In this section we report on the computational efficiency of our fast adaptive docking method on three com-
plexes: Hyhel-5 fab complexed with bobwhite quail lysozyme(PDB:1BQL.PDB), Idiotype-anti-idiotype fab
complex (PDB: 1IAI. PDB) and an influenza virus hemagglutinin complexed with a neutralizing antibody
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(a) Complex 1:Hyhel-5 fab
complexed with bobwhite quail
lysozyme (PDB:1BQL.PDB)

(b) Complex 2:Idiotype-
anti-idiotype fab com-
plex(PDB:1IAI.PDB)

(c) Complex 3:influenza virus
hemagglutinin complexed
with a neutralizing antibody
(PDB:2VIR.PDB)

Figure 4: The three complexes we have used as test cases. The first molecule is colored using standard
atom colors while the atoms in the second molecule are colored by their residue type to differentiate
the two molecules in the complex.

(PDB: 2VIR .PDB). We will simply refer to these complexes ascomplex 1, complex 2, complex 3respec-
tively (see figure 4). In all experiments, we perform the translational search using the NFFT based method for
a fixed set of orientations.

Shape complementarity is the only term in our scoring function, for this experiment. This is a good com-
parison given that the fast Fourier method is the best known algorithm for convolution in terms of speed and
memory. Our results demonstrate faster docking with lower memory requirements while providing accurate
results.

Test Conditions For all three complexes we shall compare our method to the FFTgrid based approach to
test the accuracy of our NFFT fast search algorithm. The molecules are embedded in a grid of1283. Zero
padding is also done to avoid any warp around during the convolution step.

We define theProfile as aP [·, ·, ·] matrix, where each element represents the overlap of the twomolecules
for a unique translation.EnergyEP of the profile is the norm:EP = ‖P [·, ·, ·]‖l2 .

All experiments where performed on a Sun E25K with 128 processors and 512 G of shared memory. Only
one processor was used for a translational search. Different orientations are computed in parallel. The FFT was
performed with the optimized flag of the Fastest Fourier Transform of the West (FFTW) package [18],

Energy retained in profile The energy retained in the profile is a value the users can specify to determine
the number of fourier series coefficients they need to use. Wetabulate the energy retained for different rates of
decays of the input Gaussians for the three test cases. It is seen that as we go to a lower resolution, fewer number
of frequencies are required to obtain the same accuracy, providing one method of performing a hierarchical
docking search.

The convolution of smooth functions like the electron density yields a profile that is largely composed
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Number of freq. β = −0.5 β = −1
l2 l∞ l2 l∞

163 6.3364 3.0409 9.9454 3.5909
203 3.9761 1.2994 7.9016 1.7434
323 1.1991 0.2889 5.3285 0.5909

Table 1: Fraction of energy lost, in %, forcomplex 1, with α = m = 2 as the NFFT parameters

Number of freq. β = −0.5 β = −1
l2 l∞ l2 l∞

163 4.5203 3.5743 6.8897 4.2208
203 2.5131 1.4592 5.1096 1.8793
323 0.8462 0.2480 3.6941 0.5297

Table 2: Fraction of energy lost, in %, forcomplex 2, with α = m = 2 as the NFFT parameters

Number of freq. β = −0.5 β = −1
l2 l∞ l2 l∞

163 4.8228 2.0457 7.7806 2.3983
203 2.7570 0.8029 6.0601 1.0721
323 0.9504 0.2017 4.6343 0.4111

Table 3: Fraction of energy lost, in %, forcomplex 3, with α = m = 2 as the NFFT parameters
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Figure 5: A slice of the profiles containing the peak for a given orientation for each of the three test
cases is shown. In the top row, the FFT profiles are given whilethe corresponding Fast docking results
are given below.

of low frequencies. In Figure 5 we show one slice of each of thethree profiles of our test cases where the
maximum was found. Notice that since most of the energy of theprofile is located at the lower frequencies
(Table 1, 2 and 3), most of the profile can be reconstructed with a few frequencies.

Full Rotational Search The rotational search is currently a full 3 degree search. Wepresent results for
a low sampling of the space. For each of the three test cases, we used1283 FFT results to compare to. We
performed the search using only structure as the affinity function. In each case, we used163 frequencies and
α = m = 2 as the NFFT parameters. In table 4 we present the average deviation of the closest in the top ten of
our peaks to the peak of the FFT method.

Since we are currently using only the shape or electron density as our scoring function, the docking position
is limited to shape complementarity. Other important scoring functions like hydrophobicity matching and
electrostatics complementarity will be considered in future experiments.

Timings The FFT works on a grid. Hence we need to discretize our input data to a grid. The convolution re-
quires the grid to be a power of 2 in each dimension, and must belarge enough to accommodate both molecules.
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Test case Average error in peaks (Å)
Complex 1 2.64
Complex 2 3.10
Complex 3 3.11

Table 4: The average deviation of the peak in the full FFT method from the closest in the top ten of
our method, for each orientation, is tabulated for each of three cases. Since we have performed only
a coarse rotational sampling, there are orientations wherethe peak of the FFT is present in a slightly
different orientation for our method. We also do not weight the average by the value of the peak in
the FFT method. This results in some orientations where the distance between the peaks are large,
leading to the large average deviation. The rate of decay of the kernel functionsβ was set as -1.0. The
NFFT parameters used areα = m = 2 and163 fourier series coefficients were computed.

Thus, zero padding which typically will double the grid sizeis needed. For average size proteins (such as the
superoxide dismutase) and grid spacing of 1A for reasonableresolution, a volume of 2563 is necessary. For
docking of two larger molecules (>70 Åradius), one would need to go to grids beyond 5123. This is clearly a
very expensive operation with respect to time consumed. When we deal with flexible molecules, the need to
perform Fourier transforms through the pipeline prohibitsthe use of the FFT.

For our search NFFT based method, the low resolution frequencies can be obtained efficiently as shown
in Table 5. The second step of the NFFT based method is to run the NFFT and obtain the coefficients of the
Cardinal B-splines that describes the convolution profile.This step is significantly faster than the NFFT′ step.
The third is to actually to compute the maximum from the profile B-splines. If a low resolution grid of size
M is used, by using an FFT of sizeM we compute the inverse significantly faster than Step 1 with a1 %
Translation location error.

Frequencies, (α, β) α = 2, β = 2 α = 2, β = 3 α = 2, β = 4 α = 4, β = 4 FFT(2563)
1000 0.077414 0.142723 0.254004 0.347024 16.798823
4096 0.114369 0.182574 0.298170 0.662981 16.798823
8000 0.170260 0.240088 0.360787 1.214280 16.798823

Table 5: Time in seconds taken to estimate Fourier coefficients with the NFFT′ for different over-
sampling factorsα andβ for a molecule with 1100 atoms. The time to perform the FFT fora 2563

grid is also given. Note that the FFT was performed with the FFTW with the optimized flag on.

This is clearly a very expensive operation with respect to time consumed. When we deal with flexible
molecules, the need to perform Fourier transforms through the pipeline prohibits the use of the fast Fourier
transform. We see that even a FFT of a very low-resolution model of 1283 is more time consuming than our
method with sampling factorsα, β = 2, 2.
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Memory requirements The experimental results closely followed the theoreticalmemory requirement
that is linear in the number of expansion points. We used a memory over-sampling factor of 2. Hence for our
three test cases which had approximately 10000 to 15000 expansion points, we needed approximately 5MB of
space. This is in contrast to 268 MB for a2563 grid for the FFT Grid Based approaches. This is also very low
compared with the memory requirements of other methods discussed in Appendix A.

6 Conclusion

In this paper we introduce an adaptive irregular spaced Fourier method based on grid free smooth particle
representations to efficiently predict protein-protein docking sites. Our algorithm is significantly faster than
the grid based FFT docking algorithms by avoiding the construction of the volumetric grid. In the future, we
envision improving the speed, efficiency, generality and flexibility of predicting, visualizing, and analyzing
protein-protein interactions with significantly more degrees of freedom.

In the current form of the algorithm we have only docked shapewith the electron density. To further improve
the accuracy of our predictions we shall incorporate and calibrate our algorithm with associated molecular
properties such as electrostatics and hydrophobicity.

In section 5 the rotational search is discretized in uniformEuler angles, a better choice is to use the opti-
mized uniform sampling described in [27].

To increase the precision of the maximum search in our compressed convolution profiles, we shall develop
a local interpolation scheme to compute the convolution profile in an accurate and fast manner. Moreover, more
efficient non convex optimization schemes for peak detection shall be investigated.

Finally, we shall refine and calibrate our docking procedures and validate docking computations on a set
of known complexes, and subsequently on challenge problemsfrom CAPRI, and from collaborations with
experimental scientists.
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Appendix A: Computational Analysis of Previous Approaches

The method we develop in this paper is based on the grid FFT approaches. However, since are method is
grid free we significantly reduce the memory and time complexities. We are interested how this method also
measures with respect to more modern Docking approaches .

Current docking methods can be characterized into Fourier and/or Spherical harmonic approaches. To make
a fair comparison with these newer methods a complete complexity analysis is presented. In particular, we are
interested in complexity analysis of the FFT/Spherical harmonic approach of Kovacset al and the Spherical
harmonic method of Ritchieet al.
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A.1 FFT/Spherical Harmonic approach

The algorithm developed by Kovacset al [24] relies on relating the spherical harmonic expansion coefficients
on a sphere of radiusr to a Discrete Fourier Transform (DFT) representation by taking the Fourier transform
of the correlation function of (Equation (3) in [24]. Letf : R

3 → R andg : R
3 → R be two density functions

which are bounded and of compact support inside a volumeV ⊂ R
3. Expandingf by series of spherical

harmonic expansions on a sphere of radiusr we obtain:

f(ru) ≈
B−1
∑

l=0

l
∑

−l

f̂lm(r)Ylm(u) (A-1)

whereYlm are spherical harmonics,B the order of the expansion andu is a unit vector. Moreover, letΛRf be
a rotational operator in Euler angle representation(φ, θ, ψ). For a rotationR onf we have:

ΛRf(ru) =

B−1
∑

l=0

l
∑

m=−l

l
∑

n=−l

f̂lmD
l
mn(φ, θ, ψ)Ylm(u) (A-2)

where

Dl
mn(φ, θ, ψ) = e−imφdlmn(θ)e

−inψ,

and

dlmn(θ) = (−1)m

√

(l −m)!

(l +m)!
Pml (cosθ).

Finally, letTρ be the translation operator such that

Tρg(x, y, z) := g(x, y, z − ρ) ∀(x, y, z) ∈ R
3

The correlation function can now be built from the density functions(f, g) with their respective rotations
(R,R′) and intermolecular distance translation operatorTρ. This leads us to the 6D degrees of freedom corre-
lation

c(R,R′; ρ) =
∑

ll′mm′nn′

∫

R3

ΛRf · TρΛR′g. (A-3)

Replacing the operators(ΛR, λR′ , Tρ) into Equation (A-3) and making the following change of variables

σ = φ− π

2
, η = π − θ, ω = ψ − π

2
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σ′ = φ′ − π

2
, η′ = π′ − θ, ω′ = ψ′ − π

2

and lettingσ = η − η′ we obtain the following correlation function

c(φ, θ, ψ, φ′, θ′, ψ′, ρ) =

B−1
∑

l=0

B−1
∑

l′=0

l
∑

m=−l

l
∑

n=−l

l′
∑

m′=−l′

l′
∑

h′=−l′

l
∑

h=−l

(−1)n (A-4)

· dlnhd
l
hmd

l′

−nh′d
l′

h′m′ei(nσ+hη+mω+h′η′+m′ω′)I ll
′

mnm′(ρ).

=: T (σ, η, ω, σ′, η′, ω′, ρ)

where

I ll
′

mnm′(ρ) =

√

(l +
1

2
)(l′ +

l

2
) ·
∫ π

0

[∫ ∞

0
f̂lm(r)ĝl′m′(r′)r2 dr

]

· dln0(β)sinβ dβ.

The previous correlation function is now in terms of the five Euler anglesσ, η, ω, η′, ω′ and the intermolec-
ular distanceρ. Taking the Fourier transform of the previous equation leads to

T̂ (n, j,m, h′,m′, ρ) = (−1)n
B−1
∑

l=0

B−1
∑

l′=0

dlnhd
l
hmd

l′

−nh′d
l′

h′m′I ll
′

mnm′(ρ). (A-5)

The correlation function in the sample domain is computed bytaking an Inverse Fast Fourier Transform (IFFT)
of equation A-5. This leads to a2B × 2B × 2B × 2B × 2B Cartesian grid for the five angles(σ, η, ω, η′, ω′)
and one fixed singular intermolecular distanceρ. It is easy to see from equation (A-5) thatO(B5) Fourier
coefficients are needed. Moreover, each entry requiresB2 computations thus the total computational cost for
the IFFT isO(B7 logB). Suppose thatρ is discretized intoDρ steps andr is discretizedDr steps, then the
total memory cost isO(B5) and the total computational cost isO(DrDρB

7 logB)
We can immediately observe several drawbacks to this algorithm. The most important being a lack of an

error bound on the spherical harmonic representation. Moreover, the width of the discretization of the Euler
angles is directly related to the number of spherical harmonic expansions. This is significant, since the output
of the correlation function is much smoother than the resolution of the data. This implies that the discretization
of the Euler angles can be made larger than the resolution of the original molecules with significant loss of
accuracy.

The algorithm is too rigid for adaptively solving the correlation function. For example, if we require a high
precision discretization of the Euler angles around a smallregion, then we are forced to solve it everywhere.
With O(B5) entries the memory requirements quickly become prohibitive. In practice about128B5 bytes are
needed. ForB = 32, the memory requirements become larger that 4 GB, placing well above many of today
workstations. This motives discussing the following flexible approach for fast scoring by Ritchie on the double
skin layer model.
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A.2 Double skin layer Approach

This method relies on correlation scoring of the overlap between the double skin later model of both the ligand
and the receptor molecules. This model involves to volumetric skins of the molecule. The interior skin is the
union of all the van Der Waals volumes of the surface atoms. The density of this skin is represented as

τ(r) =

{

1; r ∈ Surface atom
0; otherwise

.

The exterior skin is defined using the solvent-accessible and molecular surfaces and the density is represented
as

ρ̃(r) =

{

1; r ∈ Surface skin
0; otherwise

.

The correlation functions are expanded in terms of spherical harmonics. However, in contrast to Kovac’s
method, the skin is represented with real spherical harmonics and radial functions. Expanding the inner skins
we obtain

τ(r) ≈
N
∑

n=1

n−1
∑

l=0

l
∑

m=−l

anlmRnl(r)ylm(θ, φ); n > l ≥ |m| ≥ 0

whereRnl(r) is based on generalized Laguerre polynomials andN is the order of expansion. Please refer
to [34] for the different choices forRnl(r). The total number of coefficients in this expansion isO(N3). The
spherical harmonic representation can be easily rotated around the Euler angles(α, β, γ). The updated rotated
coefficientsa′nlm are computed as

a′nlm =
l
∑

m′=−l

anlm′Dl
mm′(α, β, γ), (A-6)

where

Dl
mm′(α, β, γ) = e−im

′αdlm′m(β)e−imγ .

Also, leta
′′

nlm be the translated coefficients by the operatorTρ [34].
In the double skin model the scoring functionS(·) takes the form

S =

∫

ρ̃A(rA)τB(rB) dV +

∫

τA(rA)ρ̃B(rB) dV −Q
∫

τA(rA)τB(rB) dV
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where the final term acts as a steric penalty for the interior-interior skin. The scoring functionS(·) is written in
terms of the Euler anglesβ1, γ1, α2, β2, γ2 and the intermolecular distanceρ:

S(ρ, β1, γ1, α2, β2, γ2) =
L
∑

m=−L

Q+
m cosmα2 +Q−

m sin m̄α2; L = N − 1, (A-7)

where

Q+
m(ρ, β1, γ1, β2, γ2) =

N
∑

nlm′

(A
′ρ
nlm′(ρ)b

′τ
nlm′ +A

′τ
nlm′(ρ)b

′Q
nlm′)δmm′ , (A-8)

Q−
m(ρ, β1, γ1, β2, γ2) =

N
∑

nlm′

(A
′ρ
nlm′(ρ)b

′τ
nlm̄′ +A

′τ
nlm′(ρ)b

′Q
nlm̄′)δmm′ , (A-9)

and

A
′ρ̃
n′l′m′(ρ) =

N
∑

nlm

a
′ρ
nlmKnn′ll′|m|(ρ)δmm′ . (A-10)

See [34] for the termKnn′ll′|m|(ρ).
To make a complexity analysis of the algorithm, we assume first that all the six degrees of freedom dis-

cretized such that
Let

N2 = Number of discrete steps of(β1, γ1), (A-11)

N2 = Number of discrete steps of(β2, γ2),

Dρ = Discretization steps ofρ,

Dr = Number of Spherical Harmonic shells

Mα2 = N = Discretization steps ofα2.

The computational cost of Ritchie’s algorithm can be easilydetermined from the following equations (Equa-
tions (7.17-7.18) in [34]). The cost to compute equation (A-10) involvesO(N3) computations. This implies
that every time that(ρ, β1, α1) is updated, from equations (A-7), (A-8) and (A-9)O(N5) computations are
required. However, any update of(β2, γ2) only requiresO(N3). Moreover, due to the Fourier series represen-
tation of (A-8) we see thatO(N) computations are required for any update ofα2.

This implies that the total computational cost isO(DρN
7 +Dρ(N

2− 1)N5 +DρN
5(Mα− 1)). However,

the memory cost boils down toO(DρN
3). TheDρ factor is due the caching of the integralKnn′ll′|m|(ρ).
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Time complexity Space Complexity

Ritchieet al O(DρN
7 + Dρ(N − 1)N5 + DρN

5(2N − 1)) O(DρN
3)

Kovacsel al O(DrDρN
7 log N) O(DrN

5)

Grid Based Docking (Zdock) O(N6 log N) O(N3)
Our Method max(O(N3M log M),O(N3n3 log n)) max(O(n3),O(M))

Table 6: Complexity analysis results

However, this step can be made apriori, therefore the computational complexity is reduced toO(DρN
7 +

Dρ(N − 1)N5 +DρN
5(Mα − 1)). However, notice, that for even one single orientation calculation,O(N5)

computations are needed.
We can make a direct comparison between both methods and our own docking search algorithm. We shall

first establish a common notation to directly compare both methods. LetN = B (both methods having the same
order). And let discretized all five rotational angles with the same step size. In Table 6, the total computational
and memory costs for both methods are shown. Notice that we also place the complexity cost for the grid based
method Zdock, see [10].

From Table 6 we observe that Ritchie’s method is better than Kovacs’ with respect to asymptotic worst-case
space and time complexity. In particular, Kovacs method is very memory intensive. However, Ritchie’s method
is based on spherical harmonics, thus ill suited for representing non star shaped molecules. In addition, no error
estimators have been developed, thus the confidence on the accuracy of the results in lost. Our proposed method
has significantly better asymptotic worst-case space and time complexity. It performs a combination of 3-D
translational and 3-D rotational search. For each rotationa translational search is performed in O(M logM),
whereM of the order of the number of atoms in the largest molecule. SinceN3 rotations are performed then
we can compute the full six dimensional search in O(N3M logM) time and O(M) memory. Finally,M is
significantly smaller thanN3.

B Appendix B: Molecular Skin Population

We define the skin region of one molecule as the region belonging to the Solvent Accessible Surface Volume
(VSAS). Since we use the convolution of Gaussian functions over atom centers as our data structure for repre-
senting molecular structure, we define the skin implicitly as a set of spheres packing the region. The packing
density is itself chosen to approximately equal the packingof the atoms belonging to the molecular surface.

The region is defined over a trilinear grid in which the molecule is embedded. The grid spacingh is chosen
to preserve the features of the molecule. Assuming that the interatomic distance is∼ 1Å, we can useh = 0.5Å.
By finding the boundary vertices of theSAS, we can obtain potential centers for the skin spheres. To prevent
aliasing artifacts, we randomly choose potential centers to test for whether it should contain a sphere or not. A
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packing algorithm then decides, based on the packing density required, if a potential center should contain an
atom or not.
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Algorithm 1 Skin population
1: ProcedureAddAtom(cell c)
2:

3: c′ = {cell ∈ G : dist(c′, c) ≤ 2rp}
4: As(c

′) = set of skin atoms inc′

5: ifAs(c
′) ≡ {} then

6: return true;
7: end if
8: return false;

1: Inputs are: [M, Ai, ri,~ci, i = 1..M, rp, h]
2: Output is: Adaptive gridG with grid points classified as SES or not.
3:

4: {Construct adaptive octree for atoms}
5: for i = 1 to M do
6:

7: {InsertAi into grid.}
8: for all g ∈ G : |ci − g| ≤ ri + rp do
9: g ← VSAS

10: end for
11:

12: end for
13:

14: {Classify the boundary cells}
15: for all Cell c ∈ G do
16: v1..v8 ← vertices ofc.
17:

18: if (∃vi ∈ VSAS) ∧ (∃vj /∈ VSAS), i, j ∈ 1..8 then
19: c← SSAS
20: end if
21:

22: end for
23:

24: {Add skin region spheres}
25: for all Cellsc ∈ SSAS, chosen randomlydo
26:

27: if AddAtom(c)then
28: New Skin Probe( center=center(c), radius=rp ).
29: inc(MS)
30: end if
31:

32: end for 34
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