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Abstract

This article reviews 25 years of research on stabilized methods for

compressible flow computations. An historical perspective is adopted

to document the main advances from the initial developments to

modern approaches.
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1 Introduction

The development of stabilized methods began in the late 1970s. A number
of papers appeared in conference proceedings and in books emanating from
conferences. The first journal paper was that of Brooks and Hughes [5],
which summarized early work on the subject. The application areas were
advection–diffusion equations and the incompressible Navier–Stokes equa-
tions. The first stabilized method was SUPG, an acronym for streamline
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upwind/Petrov-Galerkin. At about the same time, the opportunity arose
to extend the method to the compressible Euler equations. Airframe man-
ufacturers and aerospace agencies, such as NASA, were making significant
investments in computational fluid dynamics and this provided funding.
This was occurring at the time shortly after one of us, T. Hughes, had
joined Stanford University as a faculty member. Funding support from
NASA Ames and NASA Langley was obtained and the challenge of de-
veloping a successful SUPG generalization began. Another one of us, T.
Tezduyar, had come to Stanford from Caltech to write his thesis. In it Tez-
duyar developed the first finite element compressible flow formulation based
on conservation variables (Tezduyar and Hughes [91, 92] and Hughes and
Tezduyar [40]). During Tezduyar’s postdoctoral stay at Stanford, Hughes
and Tezduyar developed the first iterative solution strategy for the SUPG
finite element computation of compressible flows utilizing the Element-by-
Element (EBE) factorization of the coupled linear equation systems in-
volved (Hughes, Winget, Levit and Tezduyar [41]).

A realization emerged from the first SUPG computation of compress-
ible flows reported in [40, 91, 92] and that was that a more robust for-
mulation would be needed to capture strong shocks. Work on this aspect
of the problem was pursued in subsequent thesis work of Michel Mallet,
in which entropy variables were also introduced. This provided a link
with non-equilibrium thermodynamics (see the work of Hughes, Mallet and
Franca [31]) and the first shock-capturing operators were developed (see
Hughes, Mallet and Mizukami [35], Hughes and Mallet [34] and Tezduyar
and Park [94]). Another contribution of this work was the refinement of the
concept of the SUPG operator, facilitated by the use of entropy variables
(see Hughes and Mallet [33]). During the time Mallet was performing his
thesis research, Hughes and Mallet joined forces with Dassault Aviation to
produce flow solvers that could be industrialized and put into production
at Dassault. The main advocates of this collaboration on the Dassault side
were Jacques Periaux and the world famous aeronautical engineer Pierre
Perrier. This began a long and fruitful collaboration between the Stanford
and Dassault teams.

Gerald Jay Le Beau, as part of his thesis work supervised by Tezduyar at
University of Minnesota, revisited the original SUPG formulation of com-
pressible flows introduced in [40, 91, 92] for conservation variables. Le Beau
and Tezduyar [56] supplemented the formulation with a shock-capturing
operator in conservation variables. For the shock-capturing parameter em-
bedded in that operator, they used an expression in conservation variables,
derived from the shock-capturing parameter embedded in the operator de-
scribed in the above paragraph. They showed in [56] that, with the added
shock-capturing operator, the original SUPG formulation of compressible
flows in conservation variables is very comparable in accuracy to the SUPG
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formulation in entropy variables. Shortly after that, the 2D test compu-
tations for inviscid flows reported by Le Beau [55] showed that the SUPG
formulation in conservation and entropy variables yielded indistinguishable
results.

Mallet was followed at Stanford by Zdenek Johan and Frederic Chalot,
all of whom became key players in the development of Dassaults production
Navier–Stokes software capabilities. The three remain, as of this writing,
at Dassault and are still active in the development of advanced capabili-
ties and their application to the design of aircraft. Johan was a pioneer
in the development of massively parallel flow solvers, as documented in
Johan et al. [48, 49, 50], and Chalot demonstrated the superiority of the
entropy variables formulation in chemically reacting flows. A summary
of the research that has produced the Dassault flow solvers is presented
in the Encyclopedia of Computational Mechanics article by Chalot [9].
Shakib pursued refinements of earlier stabilized method work in compress-
ible flows in his thesis work and this was further developed in the com-
mercial software Spectrum from Centric, and subsequently in other com-
mercial software. Shakib’s thesis research was published in [71, 72], and
the work emphasized the second stabilized method to achieve popularity,
namely, Galerkin/least-squares, or GLS (see Hughes, Franca and Hulbert
[30]). Ken Jansen was the first to apply stabilized methods to turbulent
compressible flows. In his thesis work, he developed an entropy-consistent
formulation of the Norris–Reynolds RANS model (see Jansen, Johan and
Hughes [46], Jansen and Hughes [45], and Jansen [44]). This work was
followed by the thesis research of Guillermo Hauke who extended the ideas
to the κ–ε turbulence model [23], and who generalized stabilized compress-
ible flow methods to an arbitrary set of variables (see Hauke and Hughes
[25, 26]). He also showed the utility of physical variables in transonic flows
with shocks. This work once and for all dispelled myths from the finite
difference literature that only conservation variables were appropriate for
representing shock waves.

Over the years, significant progress was made by Tezduyar and his team
at Minnesota, and later at Rice, on compressible flows. These include
time-accurate local time stepping techniques [57], methods for flows with
moving boundaries and interfaces [2, 81, 89, 90], methods for viscous flows
[1], large-scale, parallel 3D computations [79, 80, 88], simulation of high-
speed trains in relative motion [79], unified formulations for compressible
and incompressible flows [60], shock capturing with multi-scale spatial dis-
cretization (two-level grid) [59], and new stabilization and shock-capturing
parameters [85, 86, 95–97]. An overview of the stabilization and shock-
capturing parameters, including these new ones, are given in Section 11.

Since the late 1990s the Boeing computational fluid dynamics team has
been performing research on stabilized methods (see, e.g., Venkatakrishnan
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et al. [98]), and has more recently been developing production software.
Among the most recent work on compressible flows with stabilized

methods is that of G. Scovazzi, a Stanford Ph.D. who completed his thesis
work at UT Austin after Hughes moved there in 2002. Scovazzi’s research
was sponsored by Sandia Laboratories, and in 2004 he joined Sandia upon
completion of his Ph.D. Scovazzi extended the SUPG formulation to very
strong shocks in the context of Lagrangian hydrodynamics (with Mach
numbers in the range 103–109). This work was significant in that it was
the first successful formulation on unstructured triangular and tetrahedral
Lagrangian meshes and the first of any kind for very strong shocks [69, 70].

2 The compressible Navier–Stokes problem

The compressible Navier–Stokes equations can be cast in system form as

∂tU +∇ · F + G = 0 , in Ω ⊂ R
d , t > 0 , (1)

U(U) = Ug , on ∂Ωg , t > 0 , (2)

F n = h , on ∂Ωh , t > 0 , (3)

U = U0(x) , in Ω , t = 0 . (4)

Here, d indicates the number of space dimensions, ∂t the Eulerian time
derivative, ∂Ωg the Dirichlet boundary. U(·) is a boundary operator which,
for the purpose of generality, may mask some of the entries of the vector

U =







ρ
ρv

ρ(e + v · v/2)







. (5)

Ug is the vector of Dirichlet boundary conditions, which, in the most gen-
eral case, may be a function of the solution itself. Analogously, ∂Ωh is
the Neumann boundary, h is the (nd + 2)-dimensional vector of Neumann
conditions, and n is the unit outward normal vector on the boundary ∂Ω.
The (nd + 2)× nd-matrix F is termed the flux matrix, and is defined as

F = F
(c) + F

(p) + F
(d) , (6)

where

F
(c) = U⊗ v (7)

is the convective flux (U⊗ v = Uivj),

F
(p) =





0T

pI

vT p



 (8)
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is the pressure flux, and

F
(d) = −





0T

2ρν∇s
x
v

vT (2ρν∇s
x
v) + ρcpκ(∇θ)T



 (9)

is the diffusive flux. Also,

G =







0
ρb

ρ(b · v + r)







, (10)

is the source term. In definitions (5)–(10), ρ is the density, v is the velocity
vector, e is the internal energy, p is the thermodynamic pressure, θ is the
thermodynamic temperature, b is a body force (typically, gravity), r is
a heat source/sink term, ν is the kinematic viscosity coefficient, cp is the
specific heat at constant pressure, κ is the thermal diffusivity coefficient (in
a fluid, thermal diffusion is typically assumed to be an isotropic process),
∇s

x
= 1/2(∇+∇T ) is the symmetric part of the gradient, and I = δij is the

identity (or Kronecker) tensor. In the case of a compressible fluid, density,
thermodynamic pressure and internal energy are not independent of one
another, but are related by an equation of state of the type

p = p(ρ, e) , (11)

For most fluids, it is also possible to express the internal energy e in terms
of the temperature θ as follows

e = cv(θ)θ , (12)

with cv the specific heat at constant volume. Typically, cv and cp are
functions of θ.

3 The origins of the SUPG method:

Brooks and Hughes [5]

In 1982, Brooks and Hughes published the first journal article on the SUPG
method [5], summarizing five years of work on the subject. At the time,
a number of research groups in various academic institutions (see, e.g.,
Baba and Tabata [4], Tabata [75, 76, 77, 78]) were focusing their research
on incorporating upwinding into finite element approximations, to enhance
the stability of such methods in advection-dominated flow problems. The
SUPG method is a residual-based upwinding technique (hence, variation-
ally consistent), aimed at stabilizing Galerkin finite element methods based
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Figure 1: Behavior of ξ̃(α) defined in (17).

on equal-order interpolations. The effect of the SUPG term onto the equa-
tions is to transform the original Galerkin method into a physics-adaptive
Petrov-Galerkin formulation. In Brooks and Hughes [5], applications to the
scalar linear convection-diffusion problem and the incompressible Navier–
Stokes equations were considered. For a semi-discrete variational formu-
lation of the time-dependent, multi-dimensional, scalar advection-diffusion
problem, the SUPG method reads

0 =

∫

Ω

wh∂tφ
h +

∫

Ω

∇wh ·
(

−aφh + κ∇φh
)

−

∫

Ω

whf

+ SUPG(wh, φh) , (13)

with

SUPG(wh, φh) =

nel
∑

e=1

∫

Ωe

pe
(

∂tφ
h + a · ∇φh − κ∆φh − f

)

, (14)

pe = τea · ∇wh . (15)

Here Ω =
⋃nel

e=1 Ωe, and the Dirichlet boundary conditions are embedded
in the test and trial spaces. The term pe is called the perturbation to the
test-function space, since it modifies the original Galerkin method into a
Petrov-Galerkin method. The SUPG method is adaptive in the sense that
it leverages the residual of the base Galerkin formulation to modify the
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structure of the variational formulation, and that the parameter τe (an
intrinsic time scale) is chosen to adapt to both the convective and diffusive
limit correctly (see, e.g., Fig. 1). In particular, the following definition of
τe yields a nodally exact solution for the one-dimensional, steady case, for
all Péclet numbers α = (||a||2h)/(2κ):

τe =
2he

||a||2
ξ̃(α) , (16)

ξ̃(α) =

(

cothα−
1

α

)

, (17)

where he is the length of the eth element along the direction of advection
(see [5] for a precise definition in the multi-dimensional case). Many al-
ternative definitions of the parameter τe have been defined, sometimes of
easier implementation in multiple dimensions [5, 35].

Johnson et al. [52] proved that the SUPG method is stable for all Péclet
numbers, and that the order of convergence in the L2-norm for the hyper-
bolic (pure advection) case is p + 1/2, where p is the order of the polyno-
mial used in the finite element interpolation. Hence, the SUPG method
is sub-optimal with gap 1/2 in the order of convergence. However, it was
also observed in [52] that when the forcing term f is sufficiently smooth
(case which encompasses the vast majority of practical applications), the
numerically-observed order of convergence in the hyperbolic case is optimal
(i.e., p + 1).

4 The first SUPG method for compressible
flow: Hughes and Tezduyar [40, 91, 92]

Hughes and Tezduyar [40, 91, 92] made use of the quasi-linear form of
Navier–Stokes equations to generalize the SUPG operator to compressible
flow computations, with emphasis on the compressible Euler equations (i.e.,

F
(d) = 0). We present the main discussion in this context, although the

generalization to viscous compressible flows was already discussed in [40,

91, 92]. Let F = F
(c) +F

(p), and define by F
(·)
i the ith column of the matrix

F
(·). Thus, the compressible Euler system reads (from now on, repeated

index notation is implied unless otherwise stated):

∂tU + ∂xi
Fi + G = 0 . (18)

The quasi-linear advective form of (18), in terms of the vector U of conser-
vation variables, is

∂tU + Ai(U) ∂xi
U + G = 0 , (19)
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where Ai = ∇UFi is a (nd+2)×(nd+2)-matrix. The matrices Ai’s represent
generalized advection, a combination of convective and acoustic effects.
Hughes and Tezduyar [40, 91, 92] proposed a stabilized semi-discrete weak
form of (1)–(4):

0 =

∫

Ω

(

W
h ·
(

∂tU
h + ∂xi

F
h
i + G

h
))

+ SUPG(Wh,Uh) , (20)

where the Dirichlet boundary conditions of type (2) are embedded in the
definition of the function spaces, the superscript h indicates a discrete
approximate, and

SUPG(Wh,Uh) =

nel
∑

e=1

∫

Ωe

P(Wh)T
(

∂tU
h + ∂xi

F
h
i + G

h
)

, (21)

P(Wh) = T
h
i ∂xi

W
h , (22)

T
h
i = τe

i A
T
i (Uh) (no sum) . (23)

Remark 1 The proposed method was indeed globally conservative in view
of the application of a “group finite element” approach (see also Christie
et al. [11], Fletcher [15], Spradley et al. [73]), such that

F
h
i (x, t) =

∑

B

NB(x)Fi;B(t) , (24)

where Fi;B(t) represents evaluation of the flux F
h
i at node B, with NB(x)

the nd-linear shape function (nd is the number of space dimensions). This
approximation of the fluxes is compatible with a discrete Gauss divergence
theorem, and is therefore conservative.

The parameter τe
i was designed in [40, 91, 92] according to a temporal

or a spatial criterion, similar to how this was done in [5]. The following
definitions were tested:

τe
i = cτ∆t , (temporal criterion) , (25)

τe
i = cτ

h

aρ
ξ̃ , (spatial criterion # 1) , (26)

τe
i = cτ

hi

ρ(Ai)
ξ̃ , (no sum) (spatial criterion # 2) , (27)

where aρ is the discrete l2-norm of the vector of components ρ(Ai), the

spectral radii of the matrices Ai. The term ξ̃, defined in (17), takes the value
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1 for the compressible Euler equations. In addition, hi = 2||∇ξxi||, with ∇ξ

the gradient in the iso-parametric reference domain, and h = hiρ(Ai)/aρ

(equal to zero if aρ = 0). The multiplicative constant cτ was set equal to
1/2 (optimal choice) in most tests, but, due to the lack of a discontinuity
capturing operator, it was observed in [40, 91, 92] that some test results
would improve for different choices.

Remark 2 The fundamental idea in [40, 91, 92] is the use of the quasi-
linear form (19) to interpret the matrices Ai in the context of generalized
advection operators. This is the crucial step that opened an entire new
field of application of the SUPG method. The choice Ti = τe

i A
T
i was

justified in [40, 91, 92] as the one that leads to the correct transformation
properties for the stabilization term, when diagonalization of the Euler
system is possible, as in the one-dimensional case. This form for Ti is
also consistent with the variational multi-scale analysis of the compressible
flow equations (see Hauke and Hughes [25, 26], Hughes [28], Hughes et al.
[29, 39], Scovazzi [69]).

Remark 3 Already in this early work, it was recognized the importance
of designing the “τ” as a function of the time-step size, in the case of
transient flows as indicated in (25). In later developments, the definition
of τ for unsteady flows was derived using space-time concepts, in which
the time and space axis are considered as generalized advection axes (see
Section 8).

Remark 4 Various τs were proposed after those in [5] and [40, 91, 92],
followed by the one introduced in [94], and those proposed in the subse-
quently reported SUPG-based methods. Defining a separate τ for each
degree-of-freedom (i.e. for each equation, leading to a matrix form of the
τ), was proposed in [33], and generalized in [72].

Hughes and Tezduyar [40, 91] also presented a thorough analysis of the ef-
fect of SUPG stabilization on stability and order of convergence, for a class
of predictor/multi-corrector time integrators adopted in the computations.
The numerical results showed good performance of the method in the case
of steady shocks, and noisier results in the case of transient shocks. The
results were in any case very encouraging, considering that no discontinuity
capturing operator was applied, and the SUPG stabilization was required
to control both linear and non-linear instabilities.
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5 Entropy variables: Hughes et al. [31]

In the work of Hughes et al. [31, 32], a new formulation using entropy
variables was presented. Similarly to Harten [22], the change from con-
servation to entropy variables is realized by constructing a convex entropy
functional η(U) with convex fluxes γi, satisfying ∇Uγi = ∇Uη Ai. In view of

(1), assuming for the moment F
(d)
i = 0 and G = 0,

∂tη + ∂xi
γi = ∇Uη (∂tU + Ai∂xi

U) = 0 . (28)

Applying the Legendre transform to the entropy/entropy-flux pair, the
symmetrizing transformation of variables V = (∇Uη)T can be obtained as
the solution to a maximization problem (see Godunov [21], Moch [61]).

Defining F
(d)
i = Kij ∂xj

U (where Kij is symmetric positive semi-definite by
definition), equation (1) can be reduced to

Ã0 ∂tV + Ãi ∂xi
V− ∂xi

(

K̃ij ∂xj
V

)

+ G = 0 , (29)

where Ã0 = ∇VU = ∇UUη and Ãi = AiÃ0 = ∇UUγi, are symmmetric positive
definite, and K̃ij = KijÃ0 is symmetric positive semi-definite. Hughes et al.
[31, 32] used the physical entropy variables, namely

V = (∇Uη)T =
1

ρe























−U5 + ρe(γ + 1− s)
U2

U3

U4

−U1























(30)

where

η = − ρs , (31)

s = ln

(

(γ − 1)ρe

U
γ
1

)

, (32)

ρe = U5 −
UiUi

2U1
, (33)

with γ the isotropic constant for ideal gases. The importance of the devel-
opment of a SUPG formulation for symmetric system was twofold:

1. On the one hand, it was shown by Hughes et al. [31, 32], testing the
weak Galerkin formulation of the Navier–Stokes equations against
V, that a Galerkin method with symmetric variables embeds the
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Clausius-Duhem entropy inequality. In the case of the Euler equa-
tions, Hughes et al. [31, 32] proved that the base Galerkin method
embeds only an entropy equality, and entropy is conserved (this is
evident upon multiplication of (28) by the admissible test function
∇Uη = V

T , and integration over Ω). This result led to the understand-
ing that, in the presence of shocks, additional dissipative mechanisms
(possibly) in the form of artificial viscosities were needed.

2. On the other hand, Johnson and Szepessy [53], Johnson et al. [54],
Szepessy [74], and Hughes et al. [32] were able to prove convergence
to entropy solutions of symmetric systems of conservation laws, when
the SUPG method was augmented with a discontinuity-capturing vis-
cosity.

Remark 5 The development of stabilized methods with entropy variables
helped understanding many fundamental aspects of SUPG methods, of
great importance also for other sets of variables. Le Beau and Tezduyar [56]
and Le Beau et al. [55] showed in a large number of tests that entropy and
conservation variables, complemented by appropriate discontinuity captur-
ing viscosities, yield virtually indistinguishable numerical solutions, greatly
improved compared to what was reported in [40, 91, 92]. We will return to
this point when discussing the later work of Hauke and Hughes [25, 26], in
Section 10.

6 Developments in the design of the SUPG

operator: Hughes and Mallet [33]

Using the symmetric form of the Navier–Stokes equations, Hughes and
Mallet [33] developed a design paradigm for the SUPG operator alternative
to [40, 91, 92]. The work of Hughes and Mallet for symmetric variables
stems as a generalization of their joint work with Mizukami [35], for the
case of the scalar advection-diffusion problem (13). According to Hughes
et al. [35], the definition of τe in (15) is replaced by

τe =
ξ̃(αe)

||be||p
, (34)

be = (a · ∇)ξe , (35)

αe =
||a||22

κ||be||p
, (36)
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where ξ is the coordinate in the isoparametric parent domain, ξ̃ is de-
fined analogously to (17), and p = 2 is a typical choice for the norms in
the previous definitions. Note that the vector be collapses to 2a/h when
a is aligned with the edge of length h of an element of square or cubic
shape. Hughes and Mallet adopted diagonalization techniques to extend
this concept to symmetric systems of conservation laws. To stabilize the
semi-discrete weak form

0 =

∫

Ω

W
h ·
(

Ã0(V
h) ∂tV

h + Ãi(V
h) ∂xi

V
h + G

h
)

+ SUPG(Wh,Vh) , (37)

the design of the SUPG operator was developed in two steps (again, for
simplicity, and without lack of generality, we consider only the Euler sys-
tem): First, the one-dimensional case for a system of conservation laws was
considered, and then, a generalization to multiple dimensions was sought.
The quite involved details of the simultaneous diagonalization of the ma-
trices Ã0, Ãi, and K̃ij can be found in [33], and are not reported here,
for the sake of brevity. In the purely hyperbolic case, however, the use of
Cayley-Hamilton theorem allows to by-pass the eigenvalue problem, and to
obtain a simple expression for the stabilization parameter:

SUPG(Wh,Vh) =

nel
∑

e=1

∫

Ωe

(

τ̃ e
Ãi∂xi

W
h
)T (

Ã0 ∂tV
h + Ãi ∂xi

V
h + G

h
)

(38)

τ̃ e = Ã
−1

0

(

nd
∑

i=1

B
2
i

)−1/2

(39)

where Bi = ∂ξi/∂xjÃj(V
h) plays a similar role to the the term be in (35),

and τ̃ e is a symmetric matrix.

Remark 6 Many subsequent designs of the stabilization matrix were pro-
foundly influenced by the work of Hughes and Mallet, and can be thought
of as generalizations and extensions of such methodology. As an exam-
ple, the reader is prompted to compare (39) with the definition (55) of τ̃ ,
proposed by Shakib et al. [72], or the one proposed by Hauke and Hughes
[25, 26].

7 Discontinuity capturing operators

The studies on entropy variables showed the necessity of additional dis-
sipation mechanisms when shock waves form in compressible flows. The
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development of discontinuity capturing operators was then undertaken, by
observing that oscillations may be present when stabilized methods are
applied to linear advection-diffusion problems, near sharp boundary lay-
ers or internal interfaces. The latter, in the context of the compressible
Euler equations, are termed contact discontinuities (or equivalently, linear
waves). Hughes et al. [35] proposed to use the projector in the direction of
the solution gradient

Π =
∇φh(∇φh)T

||∇φh||22
(40)

to augment the right hand side of equation (13) (considered, for the sake
of simplicity, in the steady flow case) with

DC(wh, φh) =

nel
∑

e=1

∫

Ωe

τe
‖a‖ · ∇wh

(

a · ∇φh − κ∆φh − f
)

, (41)

where a‖ is the projection of a along ∇φh, that is,

a‖ =

{

Πa , if ∇φh 6= 0 ,
0 , if ∇φh = 0 ,

(42)

and

τe
‖ =

ξ̃(αe
‖)

||be
‖||p

, (43)

be
‖ = (a‖ · ∇)ξe , (44)

αe
‖ =

||a‖||
2
2

κ||be
‖||p

. (45)

Hughes and Mallet [34] generalized the projector Π to the symmetric form
of the Navier–Stokes equations:

Π̃ij =
∂xi

V
h (∂xj

V
h)T

Ã0(V
h)

∑nd

k,l=1(∂xk
V

h)T Ã0(V
h) ∂xl

V
h

, (46)

where the matrix Ã0, used to scale correctly the projector, has the meaning
of the Riemannian metric. Hence, (37) was augmented with the term

DC(Wh,Vh) =

nel
∑

e=1

∫

Ωe

(

τ̃ e
‖Ãi;‖∂xi

W
h
)T (

Ã0 ∂tV
h + Ãi ∂xi

V
h + G

h
)

,

(47)

13



where, similarly to (42),

Ã
T

i;‖ = Ã
T

j Π̃ji . (48)

For the sake of brevity, we omit the definition of τ̃ e
‖, which is analogous to

(43) and involves an eigenvalue/eigenvector problem.

Remark 7 Since the paper of Hughes and Mallet [34], the research aimed
at improving discontinuity capturing operators has been quite intense. In
particular, Shakib et al. [72] used similar generalized projection techniques
in the context of a space-time formulation of the Galerkin/Least-Squares
stabilized method of Hughes et al. [30] (for a detailed discussion, see Section
9). The work of Hauke and Hughes [25, 26] and Hauke [24] extended
this type of discontinuity capturing operators to general sets of solution
variables (see also Section 10).

Remark 8 A different approach to discontinuity capturing was presented
by Le Beau and Tezduyar [56] and Le Beau et al. [55], and was more
recently improved by Tezduyar et al. [85, 86, 95–97]. The much simplified
approach in these references consists of defining a residual-based artificial
viscosity νDC . Namely, for conservation variables,

DC(Wh,Uh) =

nel
∑

e=1

∫

Ωe

νDC ∂xi
W

h · ∂xi
U

h . (49)

A full discussion on such operators is presented in Section 11.2. A some-
what similar design approach was found particularly effective by Scovazzi
et al. [70] and Scovazzi [69], for the highly-transient and very intense shock
structures of Lagrangian hydrodynamics problems.

8 Space-time variational formulations

Hughes et al. [32] presented a space-time variational formulation for the
compressible Navier–Stokes equations. The origin of the space-time formu-
lation in the context of SUPG methods can be traced back to the work of
Johnson et al. [52] for the unsteady case of scalar, linear, advection-diffusion
problems. Consider a space-time domain Q = Ω×]0, T [⊂ R

nd × R
+ with

lateral boundary P = ∂Ω×]0, T [, as illustrated in the left-hand side of
Figure 2. P is further divided into the Dirichlet portion of the lateral
boundary Pg, and the Neumann portion of the lateral boundary Ph, such
that Pg ∩Ph = ∅, and Pg ∪ Ph = P. In order to derive a space-time numer-
ical method, discrete test and trial function spaces have to be defined over

time slabs Qn = Ω×]tn−1, tn[ such that [0, T ] =
⋃N+1

n=1 Qn. This approach
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Figure 2: Space-time domain (left) and slicing into space-time slabs (right).

yields a time-stepping methodology, depicted on the right-hand side of Fig-
ure 2, which is prismatic in time, that is, each time slab Qn is extruded
from the domain Ω. Neumann boundary conditions are accounted for us-
ing integration by parts, while Dirichlet boundary conditions are imposed
strongly. The space-time weak form of (1), in the case of symmetric entropy
variables, reads:

0 =

∫

Ω

W
h(t−n+1) ·U(Vh(t−n+1))−

∫

Ω

W
h(t+n ) ·U(Vh(t−n ))

−

(
∫

Qn

(∂t|W
h) ·U(Vh) +∇W

h : F(Vh)

)

+

∫

Qn

W
h ·G(Vh)

+

∫

P
g
n

W
h ·
(

F(Vh)n
)

+

∫

Ph
n

W
h · h

+ SUPG(Wh,Vh) + DC(Wh,Vh) , (50)

where DC(Wh,Vh) is a discontinuity capturing operator to be defined sub-
sequently, together with the SUPG operator. Also, t± = limε→0±(t + ε),
and h is the vector of Neumann boundary conditions. Imposing the Dirich-
let boundary conditions strongly means that the corresponding entries of
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the vector W
h vanish at the Dirichlet boundary, where the boundary value

of the solution is enforced.

Remark 9 (Euler-Lagrange equations) The Euler-Lagrange equations
of the Galerkin part of the variational form (50) provide understanding of
the nature of the variational formulation. They are obtained assuming
that the solution is sufficiently smooth, so that integration by parts can be
performed. If this is the case, (50) yields

0 =

∫

Qn

W
h ·
(

∂tU(Vh) +∇· F(Vh) + G
h
)

+

∫

Ω

W
h(t+n ) · [[U(Vh(tn))]]−

∫

Ph
n

W
h ·
(

F(Vh)nx − h

)

, (51)

which enforces the Navier–Stokes equations on the interior of Qn, Neumann
boundary conditions on the boundary Ph

n, initial conditions at time tn,
through causality of the solution, that is, the weak continuity condition
[[U(Vh(tn))]] = U(Vh(t+n ))−U(Vh(t−n )) = 0.

Remark 10 (Conservation properties) Global conservation of the for-
mulation (50) is readily proved by choosing W

h constant over Qn, as-
suming homogenous Neumann boundary conditions, and neglecting any
source/sink terms (Gh = 0). Hence (50) yields

∫

Ω

U(Vh(t−n+1)) =

∫

Ω

U(Vh(t−n )) , (52)

which expresses global conservation between time t−n+1 and t−n .

The first comprehensive study on space-time time integrators for the com-
pressible Navier–Stokes was published in the work of Shakib and Hughes
[71] and Shakib et al. [72], where first- and third-order time integrators
were analyzed and applied to a number of compressible flow computations.
The first-order time integrator was obtained using a discontinuous-in-time,
piecewise-constant interpolation for both the test and trial space, while
the third-order time integrator was obtained using discontinuous-in-time,
piecewise-linear interpolation. In general, a discontinuous Galerkin method
in time is of order 2k + 1, where k is the order of the interpolation.

It is also worth mentioning the fact that Petrov-Galerkin space-time
integrators are also available, in which discontinuous polynomials of order
k are used for the test space (in time) and continuous polynomials of order
k+1 are used for the trial space (again, in time). This choice leads to meth-
ods of accuracy 2k, and dates back to Hulme [42], Jamet [43], and Aziz
and Monk [3]. More recently, Johnson [51], French [17, 18], French and
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Jensen [19], Estep and French [14], and French and Peterson [20] revived
the interest in such integrators. The most common example is the method
obtained in the case k = 1, which resembles a mid-point integrator, and
leads to the Crank-Nocholson method for linear problems. This approach
was successfully adopted by Scovazzi et al. [70] for explicit stabilized com-
putations of Lagrangian shock-hydrodynamic flows and by Hoffman and
Johnson [27] in adaptive Eulerian compressible flow computations.

9 The Galerkin/least-squares method

Hughes et al. [30] developed the Galerkin least/squares (GLS) stabilization
method as a generalization of the SUPG approach, and applied it to scalar
advection-diffusion problems in multiple dimensions and systems of sym-
metric conservation laws. Shakib et al. [72] applied GLS to a space-time
formulation of the compressible Navier–Stokes equations, augmenting the
right hand side of (52) with

SUPG(Wh,V) =

nel
∑

e=1

∫

Qe

(L̃Wh) · τ̃ e(L̃Vh) (53)

L̃ = Ã0 ∂t + Ãi ∂xi
− ∂xi

(

K̃ij ∂xj

)

+ C̃ (54)

τ̃ e = Ã
−1

0

(

C̃
2
+

(

∂ξ0

∂x0

)2

I +

(

∂ξi

∂xj

∂ξi

∂xk

)

ÃjÃk

+

(

∂ξi

∂xk

∂ξj

∂xl

∂ξj

∂xm

∂ξi

∂xn

)

K̃klK̃mn

)(−1/2)

, (55)

and

DC(Wh,Vh) =

nel
∑

e=1

∫

Qe

νDC(∇[t,ξ]W
h) · diag[Ã0](∇[t,ξ]V

h) , (56)

where I is the identity matrix, ξ is the coordinate in the element’s parent
domain, G

h = C̃V
h, diag[Ã0] is a block-diagonal matrix in which the block

Ã0 is repeated as many times as necessary along the diagonal, and ∇[t,ξ] is
a space-time generalized gradient which involves zeroth/first derivatives in
space and time, and second derivatives in space. For a precise definition of
∇[t,ξ], the reader can refer to Shakib et al. [72], while it suffices to say that
the proposed discontinuity capturing operator is acting along the direction
of the Navier–Stokes operator, interpreted as a generalized gradient.

Remark 11 The GLS method was an important step in the development
of stabilized methods for compressible flows since the stabilization term
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can be proved to be strictly dissipative. This an important aspect, since
the base Galerkin formulation augmented with the GLS term satisfies a
discrete entropy inequality, even in the inviscid limit. At the same time,
when strong shocks are present, it was found important to introduce an
additional discontinuity capturing operator.

Remark 12 The expression for τ̃ e is obtained with a methodology similar
to [33] for (39), leveraging diagonalization of the Navier–Stokes system.

Remark 13 The artificial viscosity νDC is a function of appropriate norms
of the residual, which yields a linear or quadratic dependence [72]. The
proposed approach stems from and extends the ideas in [34].

10 Computations with primitive variables:

Hauke and Hughes [25, 26]

During the mid-to-late 1990s, Hauke and Hughes developed compressible
SUPG formulations on sets of variables other than conservation or entropy
variables. These formulations were derived from formulations with entropy
variables, applying an additional change of variables:

Â0 = Ã0∇̂YV , (57)

Âi = Ãi∇̂YV , (58)

K̂ij = K̃ij∇̂YV , (59)

τ̂
e = ∇̂YV τ̃ e . (60)

All the previous matrices are in general non-symmetric. Hauke and Hughes
[26] compared entropy and conservation variables with density primitive

variables Ŷ = [ρ, vT , θ]T , and pressure primitive variables Ŷ = [p, vT , θ]T .
The numerical results showed no significant differences in the case of com-
pressible flow computations. However, only the pressure primitive variables
are applicable to computations in the incompressible limit, since the matrix
Jacobians Â0, Âi, and K̂ij stay bounded as the speed of sound tends to
infinity.

Remark 14 Hauke and Hughes [25, 26] showed that the pressure primitive
variables were the pathway to design a generalized stabilized method, for
computations at all Mach numbers. In this context, it is important to
mention the contribution of Wong et al. [100], who proposed a scaling of
the matrix τ̂

e with the Mach number, to avoid degradation of accuracy in
the nearly incompressible limit.
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The GLS/SUPG stabilization term documented in [25, 26] reads

SUPG(Wh, Ŷ
h
) =

nel
∑

e=1

∫

Qe
n

(

L̂T
W

h
)

· τ̂ e(L̂Ŷ
h
) , (61)

with

L̂ = Â0(Ŷ
h
)∂t + Âi(Ŷ

h
)∂xi
− ∂xi

(

K̂ij(Ŷ
h
)∂xj

)

+ Ĉ , (62)

L̂T = Â
T

0 (Ŷ
h
)∂t + Â

T

i (Ŷ
h
)∂xi
− ∂xi

(

K̂
T

ij(Ŷ
h
)∂xj

)

+ Ĉ
T

, (63)

where G
h = CŶ

h
.

Remark 15 Another important contribution found in [25, 26] is the con-
sistent definition of the stabilizing perturbation to the test function in the
case of non-symmetric systems. This result is obtained using the trans-
formation ∇̂YV from entropy to non-symmetric variables, and confirms the
initial work of Tezduyar and Hughes [91, 92] and Hughes and Tezduyar
[40] for conservation variables (see eq. (23)). This definition is consistent
with the the multi-scale framework (see, e.g., Hughes [28], Hughes et al.
[29, 39], Scovazzi [69]).

Remark 16 In [25, 26] a simpler discontinuity capturing term DC(Wh, Ŷ
h
)

was used, namely

DC(Wh, Ŷ
h
) =

nel
∑

e=1

∫

Ωe

νDCgij(∂xi
W

h) · Â0(Ŷ
h
) ∂xj

Ŷ
h

, (64)

where

gij =

[

∂ξk

∂xi

∂ξk

∂xj

]−1

(65)

is the metric tensor. This definition proved robust in hypersonic computa-
tions performed by Chalot and Hughes [10].

More recently Hauke [24] developed simplified forms of the stabilization and
discontinuity capturing operators in the case of non-symmetric variables.

11 Stabilization and shock-capturing param-

eters

11.1 Stabilization parameters

For referential convenience, the original SUPG formulation of compressible
flows in conservation variables [40, 91, 92] will be called “(SUPG)82”. The
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set of τs introduced in [40, 91, 92] in conjunction with (SUPG)82 will be
called “τ82”. The τ definition introduced in [94] automatically yields lower
values for higher-order elements. The τ used in [56] with (SUPG)82 is a
slightly modified version of τ82. The shock-capturing parameter used in
[56] (defined with an expression in conservation variables, derived from the
shock-capturing parameter designed for entropy variables) will be called
“δ91” here. Subsequent minor modifications of τ82 took into account the
interaction between the shock-capturing and the (SUPG)82 terms in a
fashion similar to how it was done in [94] for advection–diffusion–reaction
equations. Until recently, all these slightly modified versions of τ82 have
always been used with the same δ91, and we will categorize them here all
under the label “τ82-MOD”.

More recently, τs which are applicable to higher-order elements were
proposed in [16] in the context of advective-diffusive systems. Calculat-
ing the τs based on the element-level matrices and vectors was introduced
in [93] in the context of the advection–diffusion equation and the Navier–
Stokes equations of incompressible flows. These definitions are expressed
in terms of the ratios of the norms of the matrices or vectors. They auto-
matically take into account the local length scales, advection field and the
element Reynolds number. Based on these definitions, a τ can be calculated
for each element or for each degree-of-freedom of each element, or, as it was
proposed in [83, 87], for each integration point of each element. It was pro-
posed in [84, 93] that the stabilization parameters to be used in advancing
the solution from time level n to n + 1 (including the parameter embed-
ded in a stabilization term that resembles a discontinuity-capturing term)
should be evaluated at time level n (i.e. based on the flow field already
computed for time level n). This way we are spared from another level
of nonlinearity. The element-matrix-based τ definitions (and their degree-
of-freedom versions) introduced in [93] were applied in [7] (and in [8]) to
(SUPG)82, supplemented with the shock-capturing term with δ91.

Various options for calculating the stabilization parameters in the con-
text of the (SUPG)82 formulation were introduced in [85, 86]. In this
section we describe those options. For this purpose, we first define the
acoustic speed as c, and define the unit vector j as

j =
∇ρh

‖ ∇ρh ‖
. (66)

In computing τSUGN1 (advection-dominated limit of the stabilization param-
eter we are starting to define) for each component of the test vector-function
W

h, the stabilization parameters τρ
SUGN1, τu

SUGN1 and τe
SUGN1 (associated

with the mass, momentum and energy balance equations) are defined by
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the following expression:

τρ
SUGN1 = τu

SUGN1 = τe
SUGN1 =

(

nen
∑

a=1

(

c |j · ∇Na|+ |v
h · ∇Na|

)

)−1

. (67)

where nen is the number of element nodes, vh is the flow velocity, and
Na is the shape functions associated with node a. In computing τSUGN2

(transient-dominated limit), the parameters τρ
SUGN2, τu

SUGN2 and τe
SUGN2

are defined as follows:

τρ
SUGN2 = τu

SUGN2 = τe
SUGN2 =

∆t

2
. (68)

In computing τSUGN3 (diffusion-dominated limit), the parameter τu
SUGN3 is

defined by using the expression

τu
SUGN3 =

h2
RGN

4ν
, (69)

where

hRGN = 2

(

nen
∑

a=1

|r · ∇Na|

)−1

, r =
∇‖vh‖

‖ ∇‖vh‖ ‖
. (70)

The parameter τe
SUGN3 is defined as

τe
SUGN3 =

(he
RGN)2

4κe
, (71)

where

he
RGN = 2

(

nen
∑

a=1

|re · ∇Na|

)−1

, re =
∇θh

‖ ∇θh ‖
. (72)

The parameters (τρ
SUPG)UGN, (τu

SUPG
)UGN and (τe

SUPG
)UGN are calculated from

their components by using the “r-switch” [93]:

(τρ
SUPG)UGN =

(

1

(τρ
SUGN1)r

+
1

(τρ
SUGN2)r

)− 1
r

, (73)

(τu
SUPG)UGN =

(

1

(τu
SUGN1)r

+
1

(τu
SUGN2)r

+
1

(τu
SUGN3)r

)− 1
r

, (74)

(τe
SUPG)UGN =

(

1

(τe
SUGN1)r

+
1

(τe
SUGN2)r

+
1

(τe
SUGN3)r

)− 1
r

, (75)

where, typically, r = 2.
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11.2 New shock-capturing technology and the Y Zβ ap-
proach

In the context of shock-capturing, the Discontinuity-Capturing Directional
Dissipation (DCDD) stabilization was introduced in [82, 84] for incom-
pressible flows with sharp gradients. The DCDD takes effect where there
is a sharp gradient in the velocity field and introduces dissipation in the
direction of that gradient. The way the DCDD is added to the formula-
tion precludes augmentation of the SUPG effect by the DCDD effect when
the advection and discontinuity directions coincide. The DCDD involves
a second element length scale, which was also introduced in [82, 84] and
is based on the solution gradient. This new element length scale is used
together with the element length scales defined earlier in [94]. Recognizing
this second element length as a diffusion length scale, new stabilization
parameters for the diffusive limit were introduced for incompressible flows
in [84, 86]. Partly based on the ideas underlying the new τs for incom-
pressible flows, new ways of calculating the τs for compressible flows were
introduced in [85, 86], and these new stabilization parameters were re-
viewed in Section 11.1. More significantly, new ways of calculating the
shock-capturing parameters for compressible flows were also introduced
in [86]. The objective was to have shock-capturing parameters that are
simpler, and less costly to compute with, than δ91. Some versions of these
new shock-capturing parameters are based on ideas underlying the DCDD.
Other versions, which were categorized as “Y Zβ Shock-Capturing”, are
based on scaled residuals and are defined with options for smoother or
sharper shocks. This approach is described next.

First, the “shock-capturing viscosity” νSHOC is defined as

νSHOC =
∥

∥Y
−1

Z
∥

∥

(

nd
∑

i=1

∥

∥

∥
Y

−1∂xi
U

h
∥

∥

∥

2
)β/2−1

(

hSHOC

2

)β

, (76)

where Y is a diagonal scaling matrix constructed from the reference values
of the components of U:

Y =













(U1)ref 0 0 0 0
0 (U2)ref 0 0 0
0 0 (U3)ref 0 0
0 0 0 (U4)ref 0
0 0 0 0 (U5)ref













, (77)

Z = ∂tU
h + Ai∂xi

U
h (78)

or

Z = A
h
i ∂xi

U
h (79)
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and

hSHOC = hJGN , (80)

hJGN = 2

(

nen
∑

a=1

|j · ∇Na|

)−1

. (81)

The parameter β is set as β = 1 for smoother shocks and β = 2 for sharper
shocks. In a variation of the expression given by Eq. (76), νSHOC is defined
by the following expression:

νSHOC =
∥

∥Y
−1

Z
∥

∥

(

nd
∑

i=1

∥

∥

∥
Y

−1∂xi
U

h
∥

∥

∥

2
)β/2−1

∥

∥

∥
Y

−1
U

h
∥

∥

∥

1−β
(

hSHOC

2

)β

. (82)

The compromise between the β = 1 and β = 2 selections is defined as the
following averaged expression for νSHOC :

νSHOC =
1

2

(

(νSHOC)β=1 + (νSHOC)β=2

)

. (83)

Versions of νSHOC that take into account the Mach number and shock in-
tensity across a shock was proposed in [96, 97]. In that, νSHOC given by
Eqs. (76) and (82) are modified as follows:

νSHOC ← νSHOC

(

1 +

(

‖ ∇ρh ‖ hSHOC

ρref

)

< M1/bM − 1 >

)2/bF

, (84)

where M is the Mach number and “< · · · >” is the Macaulay bracket:

< x− y > =

{

0, x ≤ y
x− y, x > y

. (85)

The reference density ρref is defined as

ρref = ρinf

(

ρsca

ρinf

)bR/2

, (86)

where ρinf is the density at the inflow and ρsca is a scaling density. In defin-
ing ρsca, one of the options we consider is ρsca = ρinf. For flows with shocks,
we also consider the options ρsca = ρ2 and ρsca = ρ2 − ρ1, where ρ1 and
ρ2 are the density values before and after a normal shock corresponding
to the inflow Mach number. The parameters bM, bF and bR can each be
set to 1 for smoother shocks and 2 for sharper shocks. Eq. (84), without
the exponent 2/bF, was originally introduced in [96]. With this expression,
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the definition of the shock-capturing viscosity takes into account the Mach
number and shock intensity across a shock. The shock intensity is repre-

sented by the term
(

‖ ∇ρh ‖ hSHOC

ρref

)

, which is a scaled measure of the jump

in density. The Mach number is represented by the term < M1/bM − 1 >,
which becomes active for M > 1.

Based on Eq. (76), a separate νSHOC can be calculated for each compo-
nent of the test vector-function W

h:

(νSHOC)I =
∣

∣

(

Y
−1

Z
)

I

∣

∣

(

nd
∑

i=1

∣

∣

∣

(

Y
−1∂xi

U
h
)

I

∣

∣

∣

2
)β/2−1

(

hSHOC

2

)β

, I = 1, 2, . . . nd + 2. (87)

Similarly, a separate νSHOC for each component of W
h can be calculated

based on Eq. (82):

(νSHOC)I =
∣

∣

(

Y
−1

Z
)

I

∣

∣

(

nd
∑

i=1

∣

∣

∣

(

Y
−1∂xi

U
h
)

I

∣

∣

∣

2
)β/2−1

∣

∣

∣

(

Y
−1

U
h
)

I

∣

∣

∣

1−β

(

hSHOC

2

)β

, I = 1, 2, . . . nd + 2. (88)

Given νSHOC, the shock-capturing term is defined as

SSHOC =

nel
∑

e=1

∫

Ωe

∇W
h :
(

κκκSHOC · ∇U
h
)

dΩ , (89)

where κκκSHOC is defined as κκκSHOC = νSHOC I. As a possible alternative, it is
defined as κκκSHOC = νSHOC jj. If the option given by Eq. (87) or Eq. (88)
is exercised, then νSHOC becomes an (nd + 2) × (nd + 2) diagonal matrix,
and the matrix κκκSHOC becomes augmented from an nd × nd matrix to an
(nd × (nd + 2))× ((nd + 2)× nd) matrix.

To preclude compounding, νSHOC can be modified as follows:

νSHOC ← νSHOC − switch
(

τSUPG

(

j · vh
)2

, τSUPG

(

|j · vh| − c
)2

, νSHOC

)

, (90)

where the “switch” function is defined as the “min” function or as the
“r-switch” used earlier in this section. For viscous flows, the above modifi-
cation would be made separately with each of τρ

SUPG, τu
SUPG and τe

SUPG, and
this would result in νSHOC becoming a diagonal matrix even if the option
given by Eq. (87) or Eq. (88) is not exercised.
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A preliminary set of test computations with these new shock-capturing
parameters were reported in [95] for inviscid supersonic flows. Those com-
putations were limited to very simple 2D geometries and quadrilateral
elements. A more comprehensive set of 2D test computations for invis-
cid supersonic flows were reported in [96]. Those tests with the Y Zβ
shock-capturing involved different element types and mesh orientations.
In [97], numerical experiments were carried out for inviscid supersonic
flows around cylinders and spheres to evaluate the performance of the Y Zβ
shock-capturing in more challenging test problems. In those numerical ex-
periments, in addition to comparing the Y Zβ results to those obtained
with δ91, for 2D structured meshes, the Y Zβ result were compared to the
results obtained with the OVERFLOW code [6]. All these test compu-
tations showed that, these new shock-capturing parameters are not only
much simpler than δ91, but also superior in accuracy.

In [66], the Y Zβ shock-capturing was used in combination with the
Variable Subgrid Scale (V-SGS) method, which was formulated for com-
pressible flows in conservation variables in [65]. The V-SGS method was
first introduced in [12] for the advection–diffusion–reaction equation and
for incompressible flows. It is based on an approximation of the class
of SGS models derived from the Hughes Variational Multiscale (Hughes-
VMS) method [28]. The results reported in [66] show that the Y Zβ shock-
capturing yields better performance also when it is used in conjunction
with the V-SGS method.

12 Stabilized ALE methods

Stabilized methods for compressible flows on arbitrary Lagrangian-Eulerian
(ALE) meshes were initially developed by Masud [58], Rifai et al. [62, 63],
for various engineering applications, among which fluid/structure interac-
tion problems. These methods are easily implemented by modifying the
advective flux F

(c) in (7) as follows:

F
(c) = U⊗ c , (91)

where c = v − v̂ is the convective velocity across the moving mesh and
v̂ is the mesh velocity. The stabilization operators have to be modified
accordingly.

Remark 17 The ALE framework is useful for the design of stabilized
methods in their most general form, and was recently adopted by Scov-
azzi [67] and Scovazzi [68] to study the Galilean invariance properties of
SUPG operators.
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13 Stabilized Lagrangian methods

Scovazzi et al. [70] and Scovazzi [69] successfully developed SUPG-stabilized
methods for compressible hydrodynamics computations (characterized by
highly unsteady flows with Mach numbers in excess of 103) on Lagrangian
meshes (i.e., c = 0). Algorithms of shock hydrodynamics (hydrocodes
in short) are traditionally developed on quadrilaterals/hexahedral meshes
and, because of the piecewise-constant discretization of the thermodynamic
fields, have never been successfully generalized to triangular/tetrahedral
meshes. The advantage of using simplex-type meshes is evident in terms of
automatic mesh generation, multi-material interface reconstruction, multi-
physics radiation-hydrodynamics applications.

The methodology developed in [70] represented the first example of
accurate and robust computations on simplex-type meshes of shock hydro-
dynamic flows, with comparable and sometimes superior quality to state-of-
the-art hydrocodes on brick meshes. This approach is significantly different
from mainstream stabilized methods for compressible flows, and the reader
is prompted to see [69, 70] for specific details. A brief description of the
main features is presented next:

1. The set of solution variables is given by the vector Ŷ = [ρ, vT , p]T .

2. An explicit predictor-multicorrector approach is adopted, since hy-
drocodes typically involve explicit time integration. The time integra-
tor is the second-order space-time Petrov-Galerkin method described
at the end of Section 8, and involves piecewise-linear, continuous trial
functions in time, and piecewise-constant, discontinuous test func-
tions in time. This methodology provides more compact storage and
less computational burden with respect to the third-order algorithm
proposed in [72].

3. To enhance performance and avoid either inverting matrices or solv-
ing eigenvalue/eigenvector problems on each element, a very simple
diagonal matrix τ̂ is used. Variational multi-scale interpretations are
embedded in the proposed design for τ̂ [69]. This simple appraoch
performed very well in highly transient flows.

4. The discontinuity operator was designed as an isotropic Laplace op-
erator acting on the current configuration gradients of the solution.
This property was found very important in the solution of highly tran-
sient shock waves. The structure of the artificial-viscosity/discontinuity-
capturing operator is isotropic in space, and somewhat similar to the
Y Zβ approach and (49).
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5. In addition, and differently from any other discontinuity capturing
approach in SUPG methods, the work done by the artificial stresses
was introduced in the energy equation: This term was found crucial
in the solution of piston-driven shock-wave problems.

14 Compressible turbulence

Compressible turbulence computations using pressure primitive variables
were studied by Jansen et al. [46] and Jansen [44], where κ− ε turbulence
models were used to provide a cost-effective computational procedure. In
later work of Hughes et al. [36, 37, 38], the variational multi-scale paradigm
was used to provide a large eddy simulation (LES) model of turbulence,
and was later incorporated by Whiting et al. [99] in a stabilized finite
element method for compressible flows. Jansen et al. [47] also developed
generalized-α time integrators for compressible turbulence computations,
with improved high-frequency dissipation.

At the same time, Corsini et al. [13], Rispoli et al. [64] developed a
number of residual-based eddy viscosity LES models aimed at stabilized
compressible computations of turbo-machinery flows. The key idea in this
work is the realization that a residual-based eddy viscosity dynamically
adjusts to the conditions of the turbulent flow, and switches off for smooth
(laminar) flow.

15 Summary

We reviewed 25 years of work on stabilized methods for compressible flows.
We presented a unified view by tracking over time the main ideas that
influenced the field, and by showing how these ideas evolved within the
different research groups, from the origins until present times.
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