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Abstract

Left ventricular assist devices (LVADs) are continuous flowpumps that are employed in
patients with severe heart failure. Although their emergence has significantly improved
therapeutic options for patients with heart failure, detailed studies of the impact of LVADs
on hemodynamics are notably lacking. To this end we initiatea computational study of
the Jarvik 2000 LVAD model employing isogeometric fluid-structure interaction analysis.
We focus on a patient-specific configuration in which the LVADis implanted in the de-
scending thoracic aorta. We perform computations for threepump settings and report our
observations for several quantities of hemodynamic interest.
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1 Introduction

Cardiovascular disease is the number one killer of men and women in the US and is
the primary cause of congestive heart failure (CHF), which afflicts over 5.2 million
Americans. There are 550,000 new cases of CHF reported annually. Cardiovascular
diseases produce a number of physiological changes to the tissue of the cardiovas-
cular system (e.g., loss of elasticity of the arteries as in arteriosclerosis, ischemic
damage and cardiomyopathies). These change the hemodynamics of the cardiovas-
cular system with potentially disastrous consequences. When other treatments fail,
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implanted circulation support devices can be used to reestablish interrupted or inad-
equate flow. The emergence of axial flow assist devices has significantly advanced
therapeutic options for patients with severe heart failure. These devices deliver con-
tinuous blood flow and provide distinct advantages with regard to reduction in size,
weight, and energy demands, simplified implantation technique, and device control
[18].

New, small, efficient non-pulsatile axial flow left ventricle assist devices (LVADs)
are currently being studied as bridges to transplant, destination therapy and recov-
ery for CHF. These pumps are highly engineered, optimized devices, but the design
of their most effective implant configurations and operating conditions has been
more difficult. This is unfortunate because LVADs greatly alter the hemodynamics
of the heart and aorta, which can be either helpful, as intended, or harmful, leading
to significant complications. Tools to optimize LVAD devicedesign and placement
are notably lacking, though both have a significant effect onhemodynamics. Of
particular concern regarding hemodynamics is the occurrence of regions in which
the blood is stagnant, thought to be a key factor leading to thrombogenesis [53].
Flow stasis was seen clinically using trans-esophageal echo technology in patients
with the pump outlet graft in the descending aorta and the LVAD on high speed.
Stasis or mild wall shear stress has been correlated with thrombotic events [32].

In this work we perform fluid-structure numerical simulation of a patient-specific
model of the aorta, from the aortic valve to the descending thoracic aorta, including
flow into branch vessels, and include the effect of the LVAD. The effect of an LVAD
on hemodynamics is complex and demands a locally three-dimensional model of
the flow in the aortic valve and aorta. We focus on this sectionof the aorta because
this is the region in which the hemodynamics are most affected by the introduction
of an LVAD. It is also the region in which hemodynamics has thegreatest effect
on the health of the heart. Our modeling and simulation efforts are motivated by
ongoing clinical studies, which suggest that it is the grossfeatures of the configu-
ration and operating conditions of the device that are in most need of assessment
and optimization [26].

For this study we constructed a patient-specific model of thethoracic aorta with an
added LVAD branch in the descending location. We consider three different flow
conditions: 1) LVAD is off and all the blood flow occurs through the aortic root;
2) LVAD is operating in the regime where over one half of the blood supplied to
the aorta comes from the pump; 3) LVAD is operating in the regime where nearly
all the flow comes from the LVAD. Inflow data for our patient-specific model was
obtained from a lumped-parameter closed-loop multiscale model of the cardiovas-
cular system that was developed in [15]. The latter allows for the inclusion of assist
devices.

We use NURBS-based isogeometric analysis for geometry modeling and simula-
tion. (See references [5, 9, 22] for the basics of isogeometric analysis and refer-
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ences [3, 54] for application of NURBS-based isogeometric analysis to modeling
and simulation of fluid-structure interaction applied to vascular flows.) We use nu-
merical procedures developed in [2] with the following modification to the coupled
system solution strategy: at the nonlinear iteration stagewe omit the so-called shape
derivatives from the left-hand-side tangent matrix, resulting in a simplified coupled
solution procedure. No significant influence of this on the nonlinear convergence
was observed.

The paper is organized as follows. In Section 2 we present thecoupled fluid-
structure interaction formulation of vascular blood flow atthe continuous level. In
this formulation, the blood is modeled as an incompressibleviscous fluid and the
arterial wall is modeled as a hyperelastic solid. The formulation allows for large
structural motions. In Section 3 the semi-discrete formulation of the coupled prob-
lem is given and the algorithm to advance the fluid-structureequations in time is
described. In Section 4 we present the setup and numerical results of the simulation
of blood flow and arterial wall motion in the model of a patient-specific thoracic
aorta with LVAD implanted in the descending location. We give a detailed discus-
sion of imposition of initial and boundary conditions. In particular, we present a
stable modification of the outflow boundary condition to account for possible cases
of locally reversed flow through outflow boundaries. Numerical results obtained for
the descending aortic distal anastomosis are in agreement with clinical observations
and findings for this configuration. In Section 5, we draw conclusions and outline
future research directions.

2 Variational formulation of the coupled fluid-structure in teraction problem
at the continuous level

In this section we formulate the coupled fluid-structure interaction problem at the
continuous level. The current section is a shorter summary of significantly more
detailed developments in [2].

2.1 Preliminaries

LetΩ0 ⊂ R
d, d = 2, 3, represent the combined fluid (blood) and solid (arterial wall)

domain in the initial configuration, which serves simultaneously as the reference
configuration. LetΩt ⊂ R

d denote a configuration ofΩ0 at a current timet, namely,

Ωt = {x | x = φ̂t(y) ∀ y ∈ Ω0}, (1)

where the ALE mappinĝφt : Ω0 → Ωt denotes the motion of the fluid-solid
domain. We label withy andx coordinates inΩ0 andΩt, respectively. We assume
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Fig. 1. Abstract setting for the fluid-structure interaction problem. Depiction of the initial,
the “nearby”, and the current configurations related through the ALE mapping. The initial
configuration also serves as the reference configuration.

the mappinĝφt is invertible and denote bŷφ
−1

t : Ωt → Ω0 its inverse.

Give the current time timet, we takẽt < t, and denote byΩt̃ a configuration ofΩ0

at timet̃, namely

Ωt̃ = {x̃ | x̃ = φ̂t̃(y) ∀ y ∈ Ω0}. (2)

We think ofΩt̃ as a configuration “nearby”Ωt that in numerical calculations repre-
sents the final configuration at the previous time step. We label with x̃ coordinates
in Ωt̃.

The domainΩ0 admits the decomposition

Ω0 = Ωf
0 ∪ Ωs

0, (3)

whereΩf
0 is the subset ofΩ0 occupied by the fluid, andΩs

0 is the subset ofΩ0

occupied by the solid. The decomposition is non-overlapping, that is

Ωf
0 ∩ Ωs

0 = ∅. (4)

Likewise,

Ωt = Ωf
t ∪ Ωs

t , (5)

with

Ωf
t ∩ Ωs

t = ∅, (6)
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and

Ωt̃ = Ωf
t̃
∪ Ωs

t̃
, (7)

with

Ωf
t̃
∩ Ωs

t̃ = ∅, (8)

Let Γfs
0 denote the interface between the fluid and the solid regions in the initial

configuration, and, analogously, letΓfs
t andΓfs

t̃
be its counterpart in the current

and “nearby” configurations, respectively. A diagram depicting the configurations
and the relationship between them is shown in Figure 1.

The material or Lagrangian description is adopted for the solid. To this end, we
sety = X ∈ Ωs

0, a “particle” in the material domain,̂φt(y) = φt(X) the map-
ping of the material domain, and useX to denote coordinates inΩs

0. In contrast to
the solid domain, the motion of the fluid domain is not the particle motion of the
fluid. It does, however, conform to the particle motion of thesolid at the fluid-solid
interface.

2.2 The solid problem

This section gives a weak formulation of the solid in the Lagrangian description.
Let u denote the displacement of the solid with respect to the initial configuration,

u(X , t) = φt(X) − X ∀ X ∈ Ωs
0, (9)

and letws be the weighting function for the linear momentum equation.We as-
sume that the displacement satisfies the boundary condition, u = gs on Γs,D

0 ,
the Dirichlet part of the solid domain boundary. We also assume thatws = 0

onΓs,D
0 . LetVs = Vs(Ωs

0) denote the trial solution space for displacements and let
Ws = Ws(Ωs

0) denote the trial weighting space for the linear momentum equations.
Dirichlet boundary conditions onu andws are assumed to be built into the respec-
tive function spaces. The variational formulation of the solid problem is stated as
follows: Findu ∈ Vs such that∀ws ∈ Ws,

Bs(ws,u) = F s(ws) (10)

where

Bs(ws,u) =

(

ws, ρs
0

∂2u

∂t2
|X

)

Ωs
0

+ (∇Xws,FS)Ωs
0

, (11)

and

F s(ws) = (ws, ρs
0f

s)Ωs
0
+ (ws,hs)Γs,N

0

, (12)

6



whereF is the deformation gradient defined as

F =
∂φt(X)

∂X
, (13)

S is the second Piola-Kirchhoff stress tensor,Γs,N
0 is the Neumann part of the solid

boundary,hs is the boundary traction vector,ρ0
s is the density of the solid in the

initial configuration,f s is the body force per unit mass, and(·, ·)D is theL2 inner
product with respect to domainD. The above relations are written over the initial
configurationΩs

0, which is also the material configuration. The subscriptX on the
partial derivative operators indicates that the derivatives are taken with respect to
the material coordinatesX. The second partial time derivative in the first term on
the right-hand-side of equation (11) is taken with respect to the material coordinate
X held fixed.

The details of the constitutive model used in this work are asfollows:

S = 2
∂ψ

∂C
, (14)

C = F T F , (15)

ψ = ψiso + ψdil, (16)

ψiso =
1

2
µs(trC − 3), (17)

ψdil =
1

2
κs(

1

2
(J2 − 1) − lnJ), (18)

C = F
T
F , (19)

F = J−1/3F , (20)

and

J = det F . (21)

Equations (14) - (21) describe a generalized neo-Hookean model with penalty (see,
e.g., [10, 41]). This constitutive model fulfills all the normalization conditions nec-
essary for well-posedness (see Marsden and Hughes [33], Holzapfel [20]). In par-
ticular, the lnJ term in the definition ofψdil precludes material instabilities for states
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of strong compression. Parametersµs andκs may be determined by the Lamé con-
stants of the linear elastic model, denotedµl andλl, by considering the case when
the current and the reference configurations coincide. Then, by inspection,

µs = µl (22)

κs = λl +
2

3
µl. (23)

Thus,µs andκs are the shear and bulk moduli, respectively.

2.3 Motion of the fluid subdomain problem

This section gives a weak formulation of the motion of the fluid subdomain. Partial
differential equations of linear elastostatics subject toDirichlet boundary condi-
tions coming from the displacements of the solid region are employed to define
the arbitrary Lagrangian-Eulerian (ALE) mappinĝφt(y) of the fluid domain. In
the discrete setting, the fluid subdomain motion problem is referred to as “mesh
moving.”

Analogously to the solid problem, we define the displacementof the fluid domain
as

û(y, t) = φ̂t(y) − y ∀ y ∈ Ωf
0 (24)

and writeût(y) = û(y, t). Note thatût is defined onΩf
0 and represents the dis-

placement of the reference configuration at timet. We likewise define the displace-
ment of the fluid domain at timẽt < t as

û(y, t̃) = φ̂t̃(y) − y ∀ y ∈ Ωf
0 (25)

and write ût̃(y) = û(y, t̃). To determineφ̂t we will construct a linear elastic

boundary problem for̂ut ◦ φ̂
−1

t̃ and utilize

φ̂t(y) = φ̂t̃(y) +
(

ût ◦ φ̂
−1

t̃

)

(

φ̂t̃(y)
)

, (26)

whereφ̂t̃ andût̃ are considered known.

Let Vm = Vm(Ωf
t̃
) denote the trial solution space of displacements and letWm =

Wm(Ωf
t̃
) denote the weighting space for the elastic equilibrium equations. As usual,

kinematic boundary conditions are built into the definitions of the spaces, namely,

Vm = {um | um ∈
(

H1(Ωf
t̃
)
)d
, um = ut ◦ φ̂

−1

t̃ onΓfs
t̃
} (27)

Wm = {wm | wm ∈
(

H1(Ωf
t̃
)
)d
, wm = 0 onΓfs

t̃
} (28)
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whereut is the particle displacement at timet. Becauseut is an unknown in our
formulation, it will be solved for simultaneously along with ût in a coupled fashion.

The variational formulation of the problem is stated as follows: Findût◦φ̂
−1

t̃ ∈ Vm

such that∀wm ∈ Wm,

Bm(wm, ût ◦ φ̂
−1

t̃ ) = Fm(wm), (29)

where

Bm(wm,um) = (∇s
x̃w

m, 2µm∇s
x̃u

m)Ωf

t̃

+ (∇x̃ · w
m, λm∇x̃ · u

m)Ωf

t̃

, (30)

Fm(wm) = Bm(wm, ût̃ ◦ φ̂
−1

t̃ ), (31)

and∇x̃ is the gradient operator onΩt̃ and∇s
x̃ is its symmetrization. The fluid sub-

domain motion problem may be thought of as a succession of fictitious linear elas-
tic boundary-value problems designed simply to produce a smooth evolution of the
fluid mesh. Lamé parametersµm andλm of the fictitious linear elastic model should
be selected such that the fluid mesh quality is preserved for as long as possible. In
particular, mesh quality can be preserved by dividing the elastic coefficients by the
Jacobian determinant of the element mapping, effectively increasing the stiffness
of the smaller elements [34, 50], which are typically placedat fluid-solid interfaces.
More advanced mesh moving techniques may be found in [42, 43].

The above construction allows us to define the ALE mapping forthe entire domain
in a piece-wise fashion, namely

φ̂t(y) =











X + u(X, t) ∀X ∈ Ωs
0

y + û(y, t) ∀y ∈ Ωf
0

(32)

Note that due to (27), the ALE map̂φ in (32) is continuous at the fluid-solid inter-
face. The velocity of the fluid domain is obtained by taking a partial time derivative
of û with y held fixed, that is,̂v = ∂û/∂t|y.

2.4 The fluid problem

In this section we give a weak formulation of the incompressible Navier-Stokes
fluid on a moving domain in the ALE description. Motion of the fluid domain was
constructed in the previous section. LetVf = Vf(Ωf

t ) denote the trial solution
space of velocities and pressures and letWf = Wf (Ωf

t ) denote the trial weighting
space for the momentum and continuity equations. Let{v, p} denote the particle
velocity-pressure pair and{wf , qf} the weighting functions for the momentum and
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continuity equations. We also assume that the fluid particlevelocity field satisfies
the boundary condition,v = gf on Γf,D

t , the Dirichlet part of the fluid bound-
ary. The variational formulation is stated as follows: Find{v, p} ∈ Vf such that
∀{wf , qf} ∈ Wf ,

Bf({wf , qf}, {v, p}; v̂) = F f({wf , qf}) (33)

where

Bf({wf , qf}, {v, p}; v̂) =

(

wf , ρf ∂v

∂t
|y

)

Ωf
t

+
(

wf , ρf (v − v̂) · ∇xv
)

Ωf
t

(34)

+(qf ,∇x · v)Ωf
t
− (∇x · w

f , p)Ωf
t

+
(

∇s
xw

f , 2µf∇s
xv
)

Ωf
t

,

and

F f({wf , qf}) = (wf , ρff f )Ωf
t

+ (wf ,hf)Γf,N
t
, (35)

where∇x is the gradient operator onΩt, ∇s
x is its symmetrization,Γf,N

t is the
Neumann part of the fluid domain boundary,hf is the boundary traction vector,
f f is the body force per unit mass, andρf andµf are the density and the dynamic
viscosity of the fluid, respectively. The partial time derivative in the first term on the
right-hand-side of equation (34) is taken with respect to the referential coordinate
y held fixed.

2.5 The coupled problem

In this section we present the coupled fluid-structure interaction problem, which is
based on the individual subproblems introduced previously. The variational formu-
lation for the coupled problem is stated as: Find{v, p} ∈ Vf , u ∈ Vs, andû ∈ Vm

such that∀{wf , qf} ∈ Wf , ∀ws ∈ Ws, and∀wm ∈ Wm,

Bf ({wf , qf}, {v, p}; v̂) − F f({wf , qf}) +

Bs(ws,u) − F s(ws) +Bm(wm, û) − Fm(wm) = 0. (36)

with the following auxiliary relations holding in the senseof traces:

v =
∂u

∂t
|X ◦ φ̂

−1

t on Γfs
t , (37)

wf = ws ◦ φ̂
−1

t on Γfs
t . (38)

Relationship (37), the kinematic constraint, equates the fluid particle velocity with
that of the solid at the fluid-solid boundary. Implications of the coupled formulation
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(36), together with the compatibility condition (38), are:

Lf(v, p; v̂) − ρff f = 0 on Ωf
t , (39)

∇x · v = 0 on Ωf
t , (40)

Ls(u) − ρs
0f

s = 0 on Ωs
0, (41)

σσσfn
f
t + σσσsns

t = 0 on Γfs
t , (42)

where

Lf(v, p; v̂) = ρf ∂v

∂t
|y + ρf (v − v̂) · ∇xv −∇x · σσσ

f , (43)

σσσf = −∇xpI + 2µf∇s
xv, (44)

Ls(u) = ρs
0

∂2u

∂t2
|X −∇X · P . (45)

P = FS, (46)

σσσs = J−1PF T , (47)

andn
f
t andns

t are the unit outward normal vectors to the fluid and solid domains
in the current configuration. Equations (39) - (42) imply that the fluid and the solid
momentum equations and the fluid incompressibility constraint hold in the interior
of the appropriate subdomains, and surface tractions are inequilibrium at the fluid-
solid interface.

3 Formulation of the fluid-structure interaction problem at the discrete level

In this section we give a formulation of the fluid-structure interaction equation
(36) in the discrete setting. We begin by defining the spatialdiscretization of the
problem. It is exactly the same for finite elements and NURBS-based isogeomet-
ric analysis. Having defined the semi-discrete forms, we present the time stepping
algorithm, which is the generalized-α method [8, 24].

3.1 Approximation spaces for the coupled problem

Let N̂A denote a set of basis functions that define the discretization of Ω0 and let
I denote their index set.̂NA are “fixed” in space on the reference domain and
thus are time-independent. The discrete ALE mapping, also denoted byφ̂t(y) for
convenience, takes on the form

φ̂t(y) =
∑

A∈I

φ̂A(t)N̂A(y) =
∑

A∈I

(ÛA(t) + yA)N̂A(y) (48)
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In (48) ÛA(t)’s are the mesh displacement degrees of freedom andyA’s are the
control points in isogeometric analysis and nodal coordinates in standard finite el-
ements that define the reference geometry. The mapping (48) pertains to the entire
fluid-structure domain. The motion of the fluid subdomain is obtained from (48) by
restricting the index set to the fluid control variables (nodal variables in the case of
finite elements). We writeI = If

⋃

Is, whereIf andIs are the index sets of the
fluid and solid control variables, respectively.

Because the solid problem (10) is posed over the reference configuration with
the unknown fields expressed as functions of the material coordinatesX, we use
{N̂A}A∈Is

to approximate the solid displacements in the material domain. On the
other hand, the fluid problem (33) is posed over the current configuration with un-
known fields expressed as functions of the spatial coordinatesx. In order to approx-
imate the unknown velocity and pressure fields in the currentdomain, we employ

{NA(x, t) = N̂A ◦ φ̂
−1

t (x)}A∈If
. Finally, the mesh motion problem make use of

yet another set of basis functions,{ÑA(x̃) = N̂A ◦ φ̂
−1

t̃ (x)}A∈If
, defined over the

“nearby” configuration. It is a simple matter to show that thefluid mesh velocity
in the current configuration, used in the formulation of the fluid problem, becomes
(see [2] for details):

v̂(x, t) =
∑

A∈If

∂ÛA

∂t
(t)NA(x, t). (49)

We assume that all basis functions in the reference configuration are at leastC0-
continuous, which automatically makes themH1-conforming. In this work, we also
require that the discretization at the fluid-solid interface is conforming, that is,̂NA’s
areC0-continuous acrossΓfs

0 . As a result, by construction, basis functions in all
configurations areH1-conforming andC0-continuous across the fluid-solid inter-
face.

3.2 The semi-discrete problem

Let Vf
h ,V

s
h,V

m
h andWf

h ,W
s
h,W

m
h be the finite dimensional subspaces correspond-

ing to their infinite dimensional counterparts. We approximate the coupled fluid-
structure interaction problem (36) as follows: Find{v, p} ∈ Vf

h , u ∈ Vs
h, and

û ∈ Vm
h such that∀{wf , qf} ∈ Wf

h , ∀ws ∈ Ws
h, and∀wm ∈ Wm

h ,

Bf
MS({wf , qf}, {v, p}; v̂) − F f

MS({wf , qf})

+Bs(ws,u) − F s(ws)

+Bm(wm, û) − Fm(wm) = 0, (50)
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where

Bf
MS({wf , qf}, {v, p}; v̂) = Bf ({wf , qf}, {v, p}; v̂)

+
(

(v − v̂) · ∇xw
f ,v′

)

Ω̃f
t

+ (∇xq
f ,

1

ρf
v′)Ω̃f

t

+ (∇x · w
fρfτC ,∇x · v)Ω̃f

t
− (wf ,v′ · ∇xv)Ω̃f

t

− (∇xw
f ,

1

ρf
v′ ⊗ v′)Ω̃f

t
+ (v′ · ∇xw

fτ ,v′ · ∇xv)Ω̃f
t

(51)

and

F f
MS({wf , qf}) = F f({wf , qf}). (52)

The following definitions of terms are employed in (51):

v′ = τM(Lf(v, p; v̂) − ρff f) (53)

τM = (
Ct

∆t2
+ (v − v̂) · G(v − v̂) + CI(

µf

ρf
)2G : G)−1/2 (54)

τC = (τMg · g)−1 (55)

τ = (v′ · Gv′)−1/2 (56)

Gij =
d
∑

k=1

∂ξk
∂xi

∂ξk
∂xj

(57)

G : G =
d
∑

i,j=1

GijGij (58)

(v − v̂) · G(v − v̂) =
d
∑

i,j=1

(vi − v̂i)Gij(vj − v̂j) (59)

gi =
d
∑

j=1

∂ξj
∂xi

, (60)

g · g = gigi. (61)
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In the above,∂ξ
∂x is the inverse Jacobian of the mapping between the isoparametric,

or parent, and physical domains,∆t is the time step, andCI is a positive constant,
independent of the mesh size, derived from an element-wise inverse estimate (see,
e.g., Johnson [25]). In (50) the symbolΩ̃f

t is used to denote the fact that integrals
are taken over element interiors.

Galerkin’s method is employed for the solid and mesh motion problems. The fluid
formulation (51) emanates from the variational multiscaleresidual-based turbu-
lence modeling paradigm [1, 4, 6]. Residual-based formulation of fluid flow may be
viewed as an extension of well-known stabilized methods, such as SUPG [7]. How-
ever, the last term of (51) is not motivated by multiscale arguments, but merely pro-
vides additional residual-based stabilization (see Taylor, Hughes, and Zarins [45]).

Remark 3.1 Our coupled semi-discrete formulation (50) satisfies global conser-
vation of mass and linear momentum (see [2]). Note that the convective term in
(50) is written in the advective form. The advantage of the advective form is that it
trivially satisfies the so-called Discrete Geometric Conservation Law (DGCL). The
DGCL states that for solenoidal material particle velocityfields, in the absence of
body forces and surface tractions, the discrete scheme mustpreserve the state of
constant solution. Discussion of the importance of conservation and satisfaction of
the DGCL for moving domain problems is given in [11, 13, 28]

3.3 Time integration of the FSI system

In this section we present the time integration scheme for the semi-discrete equa-
tions (50), namely, the generalized-α method (see [2, 8, 24]). The algorithm pre-
sented here is essentially the same procedure as proposed in[2], with a modification
introduced at the level of the nonlinear iteration. The modification consists of re-
moving the so-called shape derivatives from the left-hand-side tangent matrix, thus
decoupling the mesh motion solve from the rest of the nonlinear system.

Let U , U̇ , Ü , andP denote the vectors of nodal or control variable degrees of
freedom of displacement, velocity, acceleration and pressure, respectively, of the
fluid-structure system1 . Let V , V̇ , andV̈ denote the vectors of nodal or control
variable degrees of freedom of mesh displacement, velocity, and acceleration, re-
spectively. We first define three residual vectors corresponding to the momentum,
continuity, and mesh motion equations by substituting individual basis functions in

1 This interpretation is strict in the solid, and in the fluidU̇ represents the particle velocity,
but Ü represents its derivative holding the mesh point fixed and soit is not actually the
particle acceleration. Furthermore, in the fluid,U plays no role whatsoever.
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place ofwf , ws, qf , andwm in (50) as follows:

Rmom = [Rmom
A,i ] (62)

Rmom
A,i = Bf

MS({NAei, 0}, {v, p}; v̂) − F f
MS({NAei, 0})

+Bs(N̂Aei,u) − F s(N̂Aei) (63)
Rcont = [Rcont

A ] (64)

Rcont
A = Bf

MS({0, NA}, {v, p}; v̂) − F f
MS({0, NA}) (65)

Rmesh = [Rmesh
A,i ] (66)

Rmesh
A,i = Bm(ÑAei, û), (67)

whereei is theith Cartesian basis vector.

We now state the equations of the generalized-α time integration method: given
(Un, U̇n, Ün, V n, V̇ n, V̈ n), the solution at the previous time step, find (Un+1,
U̇n+1, Ün+1, P n+1, V n+1, V̇ n+1, V̈ n+1, Un+αf

, U̇n+αf
, Ün+αm

, V n+αf
, V̇ n+αf

,
V̈ n+αm

), the solution at the current and intermediate time steps, such that

Rmom(Un+αf
, U̇n+αf

, Ün+αm
,P n+1,V n+αf

, V̇ n+αf
, V̈ n+αm

) = 0, (68)

Rcont(Un+αf
, U̇n+αf

, Ün+αm
,P n+1,V n+αf

, V̇ n+αf
, V̈ n+αm

) = 0, (69)

Rmesh(Un+αf
, U̇n+αf

, Ün+αm
,P n+1,V n+αf

, V̇ n+αf
, V̈ n+αm

) = 0, (70)

Un+αf
= Un + αf(Un+1 − Un), (71)

U̇n+αf
= U̇n + αf(U̇n+1 − U̇n), (72)

Ün+αm
= Ün + αm(Ün+1 − Ün), (73)

V n+αf
= V n + αf(V n+1 − V n), (74)

V̇ n+αf
= V̇ n + αf(V̇ n+1 − V̇ n), (75)

V̈ n+αm
= V̈ n + αm(V̈ n+1 − V̈ n), (76)

U̇n+1 = U̇n + ∆t((1 − γ)Ün + γÜn+1), (77)

Un+1 = Un + ∆tU̇n +
∆t2

2
((1 − 2β)Ün + 2βÜn+1), (78)

V̇ n+1 = V̇ n + ∆t((1 − γ)V̈ n + γV̈ n+1), (79)

V n+1 = V n + ∆tV̇ n +
∆t2

2
((1 − 2β)V̈ n + 2βV̈ n+1), (80)

where∆t = tn+1 − tn is the time step,αf , αm, γ, andβ are real-valued param-
eters that define the method and are selected to ensure second-order accuracy and
unconditional stability (see [2] for details).

To solve the nonlinear system of equations (68)-(80), we employ the following
modified version of the predictor-multicorrector algorithm presented in [2]:
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Predictor stage.Set

U̇n+1,(0) = U̇n, (81)

Ün+1,(0) =
(γ − 1)

γ
Ün, (82)

Un+1,(0) = Un + ∆tU̇n +
∆t2

2
((1 − 2β)Ün + 2βÜn+1,(0)), (83)

P n+1,(0) = P n, (84)

V̇ n+1,(0) = V̇ n (85)

V̈ n+1,(0) =
(γ − 1)

γ
V̈ n (86)

V n+1,(0) = V n + ∆tV̇ n +
∆t2

2
((1 − 2β)V̈ n + 2βV̈ n+1,(0)), (87)

where the subscript0 on the left-hand-side quantities is the iteration index.

Multi-corrector stage. Repeat the following steps forl = 1, 2, . . . , lmax.

(1) Evaluate iterates at the intermediate time levels as

Un+αf ,(l) = Un + αf(Un+1,(l−1) − Un) (88)

U̇n+αf ,(l) = U̇n + αf(U̇n+1,(l−1) − U̇n) (89)

Ün+αm,(l) = Ün + αm(Ün+1,(l−1) − Ün) (90)
V n+αf ,(l) = V n + αf(V n+1,(l−1) − V n) (91)

V̇ n+αf ,(l) = V̇ n + αf(V̇ n+1,(l−1) − V̇ n) (92)

V̈ n+αm,(l) = V̈ n + αm(V̈ n+1,(l−1) − V̈ n) (93)
P n+1,(l) = P n+1,(l−1) (94)

(2) Use the intermediate solutions to assemble the residuals of the continuity and
momentum equations, and the corresponding matrices in the linear system

∂Rmom

∂Ün+1

∆Ün+1,(l) +
∂Rmom

∂P n+1

∆P n+1,(l) = −Rmom
(l) (95)

∂Rcon

∂Ün+1

∆Ün+1,(l) +
∂Rcon

∂P n+1
∆P n+1,(l) = −Rcon

(l) (96)

Solve this linear system using a preconditioned GMRES algorithm (see Saad
and Shultz [39]) to a specified tolerance.

(3) Having solved the linear system, update the iterates as

Ün+1,(l) = Ün+1,(l−1) + ∆Ün+1,(l) (97)

U̇n+1,(l) = U̇n+1,(l−1) + γ∆t∆Ün+1,(l) (98)

Un+1,(l) = Un+1,(l−1) + β(∆t)2∆Ün+1,(l) (99)
P n+1,(l) = P n+1,(l−1) + ∆P n+1,(l) (100)
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(4) Equate the solid and mesh displacement, velocity, and acceleration degrees of
freedom for the fluid-solid interface, and evaluate mesh motion variables at
the intermediate time level as

V A,n+1,(l−1) = UA,n+1,(l) ∀A Ifs (101)

V̇ A,n+1,(l−1) = U̇A,n+1,(l) ∀A Ifs (102)

V̈ A,n+1,(l−1) = ÜA,n+1,(l) ∀A Ifs (103)
V n+αf ,(l) = V n + αf(V n+1,(l−1) − V n) (104)

V̇ n+αf ,(l) = V̇ n + αf(V̇ n+1,(l−1) − V̇ n) (105)

V̈ n+αm,(l) = V̈ n + αm(V̈ n+1,(l−1) − V̈ n) (106)
(107)

(5) Use the intermediate solutions to assemble the residuals of the mesh motion
equations and the corresponding matrix in the linear system

∂Rmesh

∂V̈ n+1

∆V̈ n+1,(l) = −Rmesh
(l) (108)

(109)

Solve this linear system using a preconditioned Conjugate Gradient algorithm
(see, e.g., [16]) to a specified tolerance.

(6) Having solved the linear system, update the mesh motion iterates as

V̈ n+1,(l) = V̈ n+1,(l−1) + ∆V̈ n+1,(l) (110)

V̇ n+1,(l) = V̇ n+1,(l−1) + γ∆t∆V̈ n+1,(l) (111)

V n+1,(l) = V n+1,(l−1) + β(∆t)2∆V̈ n+1,(l) (112)

Remark 3.2 As mentioned earlier in this section, the above modificationto the
originally proposed method consists of omitting the influence of the mesh motion
variables on the residuals of the fluid mechanics equations in the left-hand-side
matrix. This modification leads to two uncoupled linear solves: one for the cou-
pled fluid-solid system and another for the mesh motion. It isbeneficial from the
standpoint of linear equation solving, since one needs to solve two smaller linear
systems rather than one large one.

Remark 3.3 Although this strategy leads to an inconsistent tangent matrix for the
coupled nonlinear equation system, we did not observe significant decrease in non-
linear convergence. In fact, we recommend using this strategy for blood flow com-
putations.

Remark 3.4 Tezduyar et al. [48, 49, 51] refer to this strategy as “quasi-direct”
coupling and advocate its use in many applications, including arterial flows.
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4 Flow in a patient-specific thoracic aorta with an implantedleft ventricular
assist device

Fig. 2. Flow in a patient-specific thoracic aorta with LVAD. (a) Patient-specific model con-
structed from imaging data; (c) Smoothed solid NURBS model and mesh with the LVAD
branch added. For more details of geometrical modeling for isogeometric analysis of blood
flow the reader is referred to [54].

Patient-specific geometry of the thoracic aorta of an over-30-year-old healthy vol-
unteer was obtained from 64-slice CT angiography. The geometrical model is shown
in Figure 2(a) . The computational mesh, consisting of 44892quadratic NURBS
elements, is shown in Figure 2(b), where an additional branch was added to the
model to represent the inflow from the left ventricular assist device. Wall thickness
for this model is taken to be 15% of the nominal radius of each cross-section of
the fluid domain model. Two quadratic NURBS elements and fourC1-continuous
basis functions are used for through-thickness resolutionof the arterial wall.

We employ the following material properties in our computations. The fluid density
and dynamic viscosity areρf = 1.06g/cm3 andµf = 0.04 g/cm s, respectively. The
solid has the densityρs = 1 g/cm3, Young’s modulus,E = 4.144 × 106 dyn/cm2,
and Poisson’s ratio,ν = 0.45. The density and Young’s modulus material data are
taken from [2]. The solid model coefficientsµs andκs are obtained using standard
relationships for the Lamé constants (see, e.g., Gould [17]).
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4.1 Imposition of initial and boundary conditions

Fig. 3. Flow in a patient-specific thoracic aorta with LVAD. Boundary conditions for the
fluid domain.Ca, a = 1, 2, 3, 4, are the resistance constants,σn is the normal component
of the traction vector,q is the volumetric flowrate, andp0 is responsible for setting the
physiological pressure level in the blood vessels.

We fix the solid at the inlet and at all outlets. The top50% of the right and left
innominate and subclavian arteries are also constrained not to move. This is done
so as to avoid the non-physical swinging motion of the thoracic aorta during the
simulation. Constraining these portions of these arteriesmimics the effect of the
surrounding tissue in a very crude way. Further research in accounting for the sur-
rounding tissue is necessary, with respect to both mathematical modeling and com-
putation. The LVAD branch is also assumed rigid.

Our model has two inflow boundaries, the inlet of the ascending aorta and the in-
let of the LVAD branch, where we specify a periodic flow waveform. These in-
flow waveforms are provided by the lumped-parameter model ofthe cardiovascu-
lar system that also includes ventricular assist. Our modelalso has various out-
lets where resistance boundary conditions are applied. A brief description of the
lumped-parameter model and its output for patient-specificsimulations performed
in this paper, as well as imposition of resistance boundary conditions, is given in
the following sections. See Figure 3 for a sketch of the placement of boundary
conditions.
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4.1.1 Lumped-parameter model of the cardiovascular systemand inflow bound-
ary conditions

A lumped-parameter closed-loop multiscale model of the cardiovascular system
has been developed in [15] based on the framework of Olufsen [38]. Both the sys-
temic and pulmonary circulation have been modeled to close the loop around the
area of focus, the aorta and large arteries. Several modeling techniques have been
employed to complete the loop. A varying elastance representation has been used
to describe the beating heart. A dynamic aortic valve model has been developed to
capture valve motion which allows for regurgitant flow during closure at the onset
of diastole. Pressure and flow along the length of the systemic large arteries are
determined using the quasi-one-dimensional Navier-Stokes equations for Newto-
nian flow in an elastic tube coupled with a pressure/area state equation (see, e.g.,
Hughes [21], Hughes and Lubliner [23], Lighthill [31], Olufsen [37]). The small
arteries are represented with a complex impedance based on their diameter and
elastic properties [36]. The systemic venous return and pulmonary circulation have
been represented using lumped parameter models. The coronary arteries are mod-
eled using a lumped parameter model with varying resistances and intramyocardial
pressure fluctuations.

The lumped-parameter cardiovascular model allows for the inclusion of the left
ventricular assist device. In this particular case, we are studying the Jarvik 2000
model, which is a continuous-flow rotary blood pump. Becauseof the rotary nature
of Jarvik 2000, commonly employed pressure-flow curves can be used to describe
resultant flow rates over a range of pressures and pump speeds. The pump is in-
troduced into the model as the additional outflow from the left ventricle and the
additional inflow to the arterial tree. In this work, we consider three pump settings:
1) pump is off; 2) pump is operating at the angular speed of 8,000 rpm; 3) pump is
operating at the angular speed of 10,000 rpm. Periodic flowrates through the aorta
and the LVAD inlets, with periodT = 0.6667 s, are computed using the lumped-
parameter cardiovascular model, and the results are illustrated in Figure 4. In the
case when the pump is off, all the flow comes through the inflow of the aorta. In the
case of 8,000 rpm, the LVAD supplies more than50% of the flow. Finally, in the
case of 10,000 rpm, almost all of the flow comes from the LVAD. It is the latter case
that is of most concern with respect to complications arizing from flow stasis. We
note that the case when the pump is off corresponds to the so-called “weak heart”
condition, because the volume of blood supplied by the heartduring a heart cycle
is somewhat smaller that it would be in the heathy case.

We use the model outputs for the three pump settings as boundary conditions for
our patient-specific model, which results in a simple, one-way coupled simulation.
A more faithful representation of reality would consist of embedding our patient-
specific model inside the lumped-parameter cardiovascularmodel discussed here
with a full two-way coupling. We hope to pursue this in the future.
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Fig. 4. Inflow flowrate curves obtained by computing
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4.1.2 Outflow boundary conditions

In order to ensure physiologically-realistic response, resistance boundary condi-
tions must be applied in such a way that physiological pressure levels are present
in the system at all times. This is accomplished by making useof the following
variant of the resistance boundary condition (see also Figueroaet al. [12], Vignon-
Clementelet al. [52], and Heywoodet al. [19]). We assume that all outlet faces,
denoted byΓa, wherea is the outflow boundary index, are fixed in space. At every
outlet faceΓa we set

nT σ̃n + Ca

∫

Γa

v · ndΓa + p0 = 0, (113)

τ T
1 σ̃n = 0, (114)

τ T
2 σ̃n = 0 (115)

where

σ̃n = −pn + 2µf∇sv · n − ρf ({v · n}−)v, (116)

the term{v · n}− denotes the negative part ofv · n, that is











{v · n}− = v · n if v · n < 0

{v · n}− = 0 otherwise,
(117)

n is the outward unit normal, andτ 1 andτ 2 are mutually orthogonal unit tangent
vectors on the outlet face. In case of reversed flow through anoutflow boundary the
last term on the right-hand-side in (116) is active. Otherwise, it is identically zero
and, thus, equation (113) reverts to the resistance boundary condition described in
[2].

The above boundary conditions state that normal stress on the outlet face is an
affine function of the flowrate through the face, while both tangential stresses are
zero. TheCa’s are the so-called resistance constants. They are positive, and are,
in principle, different from outlet to outlet, reflecting the resistances of various
blood vessels.p0 in (113) is responsible for imposing a physiologically realistic
pressure level in the vessels, even at zero flow through the outlet faces. For the
computations reported in this section,p0 is set to 85 mmHg, as in [2]. We impose
boundary conditions (113) weakly by adding the following terms to the variational
formulation (36)

∑

a

{

−
∫

Γa

wfρf ({v · n}−)vdΓa + (
∫

Γa

wf · ndΓa)Ca(
∫

Γa

v · ndΓa + p0)
}

,

(118)

where the sum is taken over all outlet faces with prescribed resistance conditions.
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Remark 4.1 The term,−
∑

a

∫

Γa
wfρf ({v · n}−)vdΓa, adds stability to the for-

mulation in the presence of locally reversed flow through theoutflow resistance
boundaries. Such reverse flow occurs due to the fact that velocity fluctuations are
convected out of the computational domain by the mean flow. Wefound that the
addition of this term is important for the overall stabilityof the computations. In
its absence we sometimes experience rapid divergence, the outlet of the descend-
ing branch of the aorta being the most vulnerable location for initiation of outflow
instabilities.

In the computations reported here, we setC1 = (1, 500/A1) dyn s/cm5, C2 =
(2, 666/A2) dyn s/cm5, C3 = (1, 400/A3) dyn s/cm5,C4 = (1, 400/A4) dyn s/cm5,
whereAa, a = 1, 2, 3, 4, are surface areas of the outlet faces (see Figure 3). This
data was adapted from [38].

The constantsCa in (113) and (118) are large, and, as a result, implicit treatment
of the resistance terms is beneficial for stability. The contribution of the resistance
terms to the left-hand-side matrix for each outlet faceΓa becomes

αfγ∆tCa

(
∫

Γa

NAnidΓa

)(
∫

Γa

NBnjdΓa

)

, (119)

where the following index notation is employed:A andB are the nodal/control
point indices andni andnj are the Cartesian components of the unit outward nor-
mal vector to the outlet surface. Expression (119) is non-standard from the stand-
point of finite element implementation in that each outlet face contributes a locally
dense matrix. In our implementation, because we use iterative procedures and are
interested merely in the action of (119) on a right-hand-side vectoruB,j , we do not
assemble (119) directly. The action of (119) on the right-hand-side vectoruB,j is ac-
complished by first multiplying(αfγ∆tCa)

1/2
(

∫

Γa
NBnjdΓa

)

uB,j, which yields a
scalar (summation on repeated indicesB andj is assumed), and is followed by a
post-multiplication by(αfγ∆tCa)

1/2
(

∫

Γa
NAnidΓa

)

, which yields a vector that is

properly dimensioned. In our software, the vector(αfγ∆tCa)
1/2
(

∫

Γa
NAnidΓa

)

is
assembled at every outlet faceΓa and is passed into the linear algebra routine where
the multiplications take place. The procedure is perfectlyparallelizable.

We initialize our computations as follows. We start with an unpressurized config-
uration, then we set and maintain the inflow velocity consistent with the inflow
flowrate att = 0, and gradually increase the pressure level in the system by raising
p0 in (113) from zero to the physiologically realistic value of85 mmHg. This is
done for a time equivalent to one or two cycles. Once the physiological pressure
level is attained, we begin computing with the time-varyinginflow boundary con-
ditions until the periodic-in-time response is attained. The latter usually takes four
or five cycles.

Resistance boundary condition (113) may be generalized to any other functional
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relationship between the normal-stress and blood flow rate by replacing (113) with

nT σ̃n + f(Qa) = 0 (120)

whereQa denotes the volumetric flowrate through the outlet faceΓa, that is,

Qa =
∫

Γa

v · ndΓa, (121)

andf(Qa) is any functional dependence, which may also include previous history,
such as for impedance boundary conditions (see, e.g., [52]). In this case, (120) is
imposed by adding the following terms at all the outlet faces

∑

a

{

−
∫

Γa

wf ({v · n}−)vdΓa + (
∫

Γa

wf · ndΓa)f(Qa)
}

, (122)

and the linearization corresponding to the second term in (122) becomes

αfγ∆tf
′(Qa)

(
∫

Γa

NAnidΓa

)(
∫

Γa

NBnjdΓa

)

, (123)

wheref ′(Qa) denotes the first derivative off with respect to its argument evaluated
atQa. The affine resistance of (113) is obtained by setting

f(Qa) = CaQa + p0. (124)

4.2 Numerical results

We simulate the flow-structure interaction in the patient-specific thoracic aorta with
LVAD for several heart cycles. Solution data was collected for postprocessing af-
ter a nearly periodic-in-time response was attained. Figures 5-7 show the velocity
magnitude on a planar cut of the model at early systole, peak systole, and late di-
astole. The figures clearly indicate the manner in which local blood flow features
are altered due to the presence of the heart pump. Note that the magnitude of flow
velocity for the cases when the pump is on is greatly increased in the vicinity of the
LVAD branch. Also note the presence of very thin boundary layers associated with
the pump-assisted cases. Figure 7 shows the presence of nearly turbulent structures
in late diastole for the cases when the heart pump is on, whilethe flow structures
for the unassisted simulation are unsteady, but laminar.

Figures 8-10 focus on the flow in the aortic arch. In the unassisted case, a heli-
cal flow pattern is obtained in early systole and late diastole, while in peak systole
the flow vectors are aligned with the arterial path. The helical flow pattern in the
aortic arch is a well-known phenomenon. For example, in [27], helical flow struc-
tures were observed in a human thoracic aorta imaged by magnetic resonance. The
medium pump setting does not produce the helical flow patterns observed in the
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Fig. 5. Flow in a patient-specific thoracic aorta with LVAD. Magnitude of the flow velocity
on a planar longitudinal cut in early systole.

unassisted case and some flow stagnation is present in the aortic arch in early sys-
tole and late diastole. For the highest pump setting the flow in the arch is stagnant
throughout theentireheart cycle. This is consistent with clinical observationsand
preliminary numerical simulations reported in [26]. Flow stagnation is known to
increase uptake of atherogenic blood particles as a consequence of increased resi-
dence time, and is believed to be one of the mechanisms that isresponsible for the
development of atherosclerosis [14].

Figure 11 and 12 show distribution of the cycle-averaged (i.e., “mean”) wall shear
stress magnitude on the luminal surface. In the arch, wall shear stress is much lower
for the cases when the pump is on. This observation is consistent with the predicted
and observed flow stagnation in this area of the aorta. In contrast to the arch, in the
descending branch near the LVAD, wall shear stress significantly exceeds healthy
levels. Figures 13 and 14 focus on the arch and plot wall shearstress vectors on the
luminal surface. In the unassisted case, the vectors followthe helical pattern, which
is consistent with the behavior of the blood velocity in thiscase. For the pump-
assisted simulations, the magnitude of the wall shear stress is much lower in the
arch, and, furthermore, for the highest pump setting, the wall shear stress vectors
point in the direction that is opposite to the conventionally assumed direction. This
signifies that flow reversal occurs in the arch for the majority of the heart cycle.
Figure 15 shows the so-called oscillatory shear index (OSI)distribution at the lu-
minal surface. OSI measures the degree to which wall shear stress oscillates during
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Fig. 6. Flow in a patient-specific thoracic aorta with LVAD. Magnitude of the flow velocity
on a planar longitudinal cut at peak systole.

the heart cycle and is defined as (see, e.g., [46, 47]):

OSI =
1

2
(1 −

τmean

τabs
), (125)

where, denoting byτ s the wall shear stress vector,

τmean= |
1

T

∫ T

0
τ sdt|, (126)

and

τabs =
1

T

∫ T

0
|τ s|dt. (127)

From Figure 15(b), the OSI appears to be largest in the aorticarch for the medium
pump setting. We conjecture that this occurs due to the competition between the
flows coming from the inflow of the aorta and the LVAD. The relevance of wall
shear stress and its temporal oscillations (as measured by OSI) to atherosclero-
sis is an active area of medical research (see [40] for a comprehensive review of
the subject). It was shown in [29, 30] that endothelial cellssubjected to elevated
levels of wall shear stress tend to elongate and align in the direction of flow, and
that endothelial cells that experience low or oscillatory wall shear stress remain
more rounded and have no preferred alignment pattern. Moreover, exposure of the
arterial wall to a relatively low wall shear stress may increase intercellular perme-
ability and consequently increase the vulnerability of these regions of the vessel to
atherosclerosis [35].
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Fig. 7. Flow in a patient-specific thoracic aorta with LVAD. Magnitude of the flow velocity
on a planar longitudinal cut in late diastole.

Figure 16 shows the distribution of flow among the outflow branches. It is evident
that the flow distribution among the branches is very different from one pump set-
ting to the next. This deviation of the flow distribution for the pump-assisted cases
compared with the unassisted case may induce complicationsin the peripheral parts
of the circulatory system.

5 Conclusions

Isogeometric fluid-structure interaction analysis is applied to a patient-specific model
of the thoracic aorta.

A simplification to a fully-coupled solution strategy is employed in which the mesh
motion is uncoupled from the rest of the system resulting in increased efficiency of
the computational procedure for this type of problem. A simple modification to the
outflow boundary conditions is introduced that improves stability of the numerical
formulation in the presence of reversed flow.

Computational results obtained for the pump-assisted cases indicate deficiencies
associated with the implantation of the LVAD in the descending branch of the tho-
racic aorta, specifically, abnormally high mean wall shear stress in the vicinity of
the implant and abnormally low and highly oscillatory wall shear stress in the aortic
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Fig. 8. Flow in a patient-specific thoracic aorta with LVAD. Velocity vectors colored by the
velocity magnitude in the ascending aorta and the arch in early systole.

Fig. 9. Flow in a patient-specific thoracic aorta with LVAD. Velocity vectors colored by the
velocity magnitude in the ascending aorta and the arch at peak systole.

arch. For the highest pump speed simulation, which is most relevant in the clinical
setting, blood flow stagnation in the aortic arch is observedfor the entire heart cy-
cle. Computational results are in qualitative agreement with clinical observations.
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Fig. 10. Flow in a patient-specific thoracic aorta with LVAD.Velocity vectors colored by
the velocity magnitude in the ascending aorta and the arch inlate diastole.

Fig. 11. Flow in a patient-specific thoracic aorta with LVAD.Left lateral view of mean wall
shear stress.
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Fig. 12. Flow in a patient-specific abdominal aorta with aneurysm. Right lateral view of
mean wall shear stress.

Fig. 13. Flow in a patient-specific thoracic aorta with LVAD.Mean wall shear stress vectors
superposed on the magnitude of the mean wall shear stress.
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Fig. 14. Flow in a patient-specific thoracic aorta with LVAD.Mean wall shear stress vectors
superposed on the magnitude of the mean wall shear stress.

Fig. 15. Flow in a patient-specific thoracic aorta with LVAD.Oscillatory shear index (OSI).
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Fig. 16. Flow in a patient-specific thoracic aorta with LVAD.Flow rate distribution among
outflow branches during a heart cycle. Flow rate is normalized by the maximum flow rate
at peak systole for the healthy case, and time is normalized by the period of the heart cycle.
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