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Abstract

Left ventricular assist devices (LVADs) are continuous floumps that are employed in
patients with severe heart failure. Although their emecgehas significantly improved
therapeutic options for patients with heart failure, dethstudies of the impact of LVADs

on hemodynamics are notably lacking. To this end we initet@omputational study of
the Jarvik 2000 LVAD model employing isogeometric fluidestiure interaction analysis.
We focus on a patient-specific configuration in which the LVADmplanted in the de-

scending thoracic aorta. We perform computations for tprgap settings and report our
observations for several quantities of hemodynamic istere
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1 Introduction

Cardiovascular disease is the number one killer of men amdeman the US and is
the primary cause of congestive heart failure (CHF), whiflices over 5.2 million

Americans. There are 550,000 new cases of CHF reported iynriterdiovascular

diseases produce a number of physiological changes tostheetof the cardiovas-
cular system (e.g., loss of elasticity of the arteries agte@ri@sclerosis, ischemic
damage and cardiomyopathies). These change the hemoadygwaiithie cardiovas-
cular system with potentially disastrous consequence&n/dther treatments fail,



implanted circulation support devices can be used to reksttanterrupted or inad-
equate flow. The emergence of axial flow assist devices ha#isantly advanced
therapeutic options for patients with severe heart faillireese devices deliver con-
tinuous blood flow and provide distinct advantages with régareduction in size,
weight, and energy demands, simplified implantation teqingiand device control
[18].

New, small, efficient non-pulsatile axial flow left ventecassist devices (LVADS)
are currently being studied as bridges to transplant, rtsdn therapy and recov-
ery for CHF. These pumps are highly engineered, optimizettds, but the design
of their most effective implant configurations and opemtoonditions has been
more difficult. This is unfortunate because LVADs greatlgathe hemodynamics
of the heart and aorta, which can be either helpful, as irgenar harmful, leading

to significant complications. Tools to optimize LVAD devidesign and placement
are notably lacking, though both have a significant effechemodynamics. Of

particular concern regarding hemodynamics is the occaerein regions in which

the blood is stagnant, thought to be a key factor leading riantbogenesis [53].

Flow stasis was seen clinically using trans-esophageal exthnology in patients
with the pump outlet graft in the descending aorta and the\¢h high speed.

Stasis or mild wall shear stress has been correlated wibimibotic events [32].

In this work we perform fluid-structure numerical simulatiof a patient-specific
model of the aorta, from the aortic valve to the descendinggitic aorta, including
flow into branch vessels, and include the effect of the LVABe Effect of an LVAD
on hemodynamics is complex and demands a locally threerdiimeal model of
the flow in the aortic valve and aorta. We focus on this seatidhe aorta because
this is the region in which the hemodynamics are most afteloyethe introduction
of an LVAD. It is also the region in which hemodynamics has gheatest effect
on the health of the heart. Our modeling and simulation &ffare motivated by
ongoing clinical studies, which suggest that it is the gffessures of the configu-
ration and operating conditions of the device that are intmesd of assessment
and optimization [26].

For this study we constructed a patient-specific model offibeacic aorta with an
added LVAD branch in the descending location. We considezethlifferent flow
conditions: 1) LVAD is off and all the blood flow occurs thrduthe aortic root;
2) LVAD is operating in the regime where over one half of thedal supplied to
the aorta comes from the pump; 3) LVAD is operating in themegivhere nearly
all the flow comes from the LVAD. Inflow data for our patientegjfic model was
obtained from a lumped-parameter closed-loop multiscaldehof the cardiovas-
cular system that was developed in [15]. The latter allowsHe inclusion of assist
devices.

We use NURBS-based isogeometric analysis for geometry lingdend simula-
tion. (See references [5, 9, 22] for the basics of isogeamatralysis and refer-



ences [3, 54] for application of NURBS-based isogeometnalysis to modeling
and simulation of fluid-structure interaction applied teaalar flows.) We use nu-
merical procedures developed in [2] with the following nfaxdtion to the coupled
system solution strategy: at the nonlinear iteration stagemit the so-called shape
derivatives from the left-hand-side tangent matrix, résglin a simplified coupled
solution procedure. No significant influence of this on thaelmear convergence
was observed.

The paper is organized as follows. In Section 2 we presentthmpled fluid-
structure interaction formulation of vascular blood flowtfs continuous level. In
this formulation, the blood is modeled as an incompressitdeous fluid and the
arterial wall is modeled as a hyperelastic solid. The foatiah allows for large
structural motions. In Section 3 the semi-discrete foritaeof the coupled prob-
lem is given and the algorithm to advance the fluid-structgeations in time is
described. In Section 4 we present the setup and numerstdts®f the simulation
of blood flow and arterial wall motion in the model of a patispeecific thoracic
aorta with LVAD implanted in the descending location. Weegasdetailed discus-
sion of imposition of initial and boundary conditions. Inrpeular, we present a
stable modification of the outflow boundary condition to agtdor possible cases
of locally reversed flow through outflow boundaries. Numarfesults obtained for
the descending aortic distal anastomosis are in agreenitbntlimical observations
and findings for this configuration. In Section 5, we draw dosions and outline
future research directions.

2 Variational formulation of the coupled fluid-structure in teraction problem
at the continuous level

In this section we formulate the coupled fluid-structureiattion problem at the
continuous level. The current section is a shorter summasjgmificantly more
detailed developments in [2].

2.1 Preliminaries

LetQ, C R?, d = 2, 3, represent the combined fluid (blood) and solid (arteridljwa
domain in the initial configuration, which serves simultangly as the reference
configuration. Lef2, C R denote a configuration 6f, at a current time, namely,

O ={z|z=d(y)Vy e Y} (1)

where the ALE mappingAbt . Qy — €, denotes the motion of the fluid-solid
domain. We label withy andx coordinates irf2, and(2;, respectively. We assume
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Fig. 1. Abstract setting for the fluid-structure interantjgroblem. Depiction of the initial,
the “nearby”, and the current configurations related thihotlge ALE mapping. The initial
configuration also serves as the reference configuration.

the mappingp, is invertible and denote b, : Q, — Q its inverse.

Give the current time timg, we taket < ¢, and denote by); a configuration of2
at timet, namely

Q= {&|&=¢i(y) Yy € Y} 2)
We think of(2; as a configuration “nearby?, that in numerical calculations repre-
sents the final configuration at the previous time step. Wel lafih & coordinates
in Qg.
The domaint), admits the decomposition

Q= Q) UQ, 3)

where Q) is the subset of), occupied by the fluid, an€l} is the subset of2,
occupied by the solid. The decomposition is non-overlagdimat is

Qlnas=0. (4)
Likewise,

Q =0l UQ;, (5)
with

Ql NQ =0, (6)



and

Q=0 v, (7
with

Qf N =1, (8)

Let F{;S denote the interface between the fluid and the solid regiorisd initial
configuration, and, analogously, [Bf* and F{S be its counterpart in the current
and “nearby” configurations, respectively. A diagram depgthe configurations
and the relationship between them is shown in Figure 1.

The material or Lagrangian description is adopted for tH&l s®o this end, we
sety = X € O, a “particle” in the material domainp,(y) = ¢,(X) the map-
ping of the material domain, and udé to denote coordinates . In contrast to
the solid domain, the motion of the fluid domain is not the iplatmotion of the
fluid. It does, however, conform to the particle motion of sedid at the fluid-solid
interface.

2.2 The solid problem

This section gives a weak formulation of the solid in the laangjian description.
Let w denote the displacement of the solid with respect to thalmibnfiguration,

uw(X,t) = ¢(X) - X VX e, 9)

and letw?® be the weighting function for the linear momentum equat\e. as-
sume that the displacement satisfies the boundary conditioa: g* on ;™

the Dirichlet part of the solid domain boundary. We also assuhatw® = 0
onTy”. Let Vs = V() denote the trial solution space for displacements and let
wWs = W?(Q5) denote the trial weighting space for the linear momentunagqns.
Dirichlet boundary conditions on andw® are assumed to be built into the respec-
tive function spaces. The variational formulation of thédsproblem is stated as
follows: Findu € V° such that'w® € W,

B (w*,u) = F*(w?*) (10)
where
S S S Sa2u S
B (w*,u) = (w ,POW\X + (Vxw®, FS)qg, (11)
Q3
and
F*(w®) = (w®, p(s)fs)gg + (w?, hs)FS,N, (12)



whereF is the deformation gradient defined as

 06,(X)
F==x (13)

S is the second Piola-Kirchhoff stress tendgr is the Neumann part of the solid
boundaryh® is the boundary traction vectgs? is the density of the solid in the
initial configuration,f* is the body force per unit mass, afd.)p is the L? inner
product with respect to domaiR. The above relations are written over the initial
configuration(2;, which is also the material configuration. The subsckipon the
partial derivative operators indicates that the deriestiare taken with respect to
the material coordinateX . The second partial time derivative in the first term on
the right-hand-side of equation (11) is taken with respathé¢ material coordinate
X held fixed.

The details of the constitutive model used in this work arfodsws:

_ 00
S = 28—0, (14)
C=F"F, (15)
@D - wiso + wdilv (16)

1 _
¢iso = 5#8(”0 - 3), (17)
VYair = 1 8(1(J2 — 1) —InJ) (18)

dil — 2'% 2 )
C-FF, (19)
F=J'3F, (20)
and

J =det F. (21)

Equations (14) - (21) describe a generalized neo-Hookealehwath penalty (see,
e.g., [10, 41]). This constitutive model fulfills all the moalization conditions nec-
essary for well-posedness (see Marsden and Hughes [33apfel [20]). In par-
ticular, the In/ term in the definition of); precludes material instabilities for states



of strong compression. Parametgfsandx® may be determined by the Lamé con-
stants of the linear elastic model, denotédind \’, by considering the case when
the current and the reference configurations coincide. |Tihnemspection,

=t (22)
2
K= M+ gﬂl- (23)

Thus,;* andx® are the shear and bulk moduli, respectively.
2.3 Motion of the fluid subdomain problem

This section gives a weak formulation of the motion of thedflsiubdomain. Partial
differential equations of linear elastostatics subjecDinchlet boundary condi-
tions coming from the displacements of the solid region anpleyed to define
the arbitrary Lagrangian-Eulerian (ALE) mappiﬁg(y) of the fluid domain. In
the discrete setting, the fluid subdomain motion problenefsrred to as “mesh
moving.”

Analogously to the solid problem, we define the displacemétite fluid domain
as

u(y,t) = ¢,(y) —yVy e (24)

and writew,(y) = w(y,t). Note thata, is defined orf2) and represents the dis-
placement of the reference configuration at tim@/e likewise define the displace-
ment of the fluid domain at time< t as

u(y,t) = ¢i(y) —yVy e (25)

and write;(y) = @(y,?). To determinep, we will construct a linear elastic
~—1 -
boundary problem foti, o ¢p; and utilize

~ ~ ~—1

bily) = dily) + (w0 b ) (dlw). (26)
whereg; and; are considered known.

Let V™ = Vm(Q{) denote the trial solution space of displacements antMét=

Wm(Q{) denote the weighting space for the elastic equilibrium &goa. As usual,
kinematic boundary conditions are built into the definiiaf the spaces, namely,

VU ={u"|u" € (Hl(Qg))d, um:utoqAbg_l Onl"gs} (27)
W = {w" [w" € (B'(2)", w™ = 0onTf} (28)



wherew, is the particle displacement at timeBecauseu, is an unknown in our
formulation, it will be solved for simultaneously along Wi, in a coupled fashion.

The variational formulation of the problem is stated asoiol: Findfa,tofb;1 cym
such thatw™ € W,

~ 51 m m
Bm(,u)m’ Ut © ¢f ) =F (w )7 (29)
where

B (w™, u™) = (Viw™, 2u"Viu™)gr + (Vi -w™ A"Vz-u™)qr,  (30)

P w™) = B"(w", @0 7 ), (31)
andV; is the gradient operator d; and V3 is its symmetrization. The fluid sub-
domain motion problem may be thought of as a succession iidict linear elas-
tic boundary-value problems designed simply to produce@osimevolution of the
fluid mesh. Lamé parameterd and\™ of the fictitious linear elastic model should
be selected such that the fluid mesh quality is preservedsftorg as possible. In
particular, mesh quality can be preserved by dividing thstét coefficients by the
Jacobian determinant of the element mapping, effectivetyeiasing the stiffness
of the smaller elements [34, 50], which are typically plaaefiuid-solid interfaces.
More advanced mesh moving techniques may be found in [42, 43]

The above construction allows us to define the ALE mappinghiferentire domain
in a piece-wise fashion, namely

¢:(y) = (32)

. X +u(X,t) VX e

y+a(yt) Vyeq)
Note that due to (27), the ALE mapin (32) is continuous at the fluid-solid inter-
face. The velocity of the fluid domain is obtained by takingagtial time derivative
of w with y held fixed, that isp = du/0t|,.

2.4 The fluid problem

In this section we give a weak formulation of the incompriglesNavier-Stokes
fluid on a moving domain in the ALE description. Motion of theifl domain was
constructed in the previous section. Dét = V/(Q/) denote the trial solution
space of velocities and pressures and&t = Wf(Q{) denote the trial weighting
space for the momentum and continuity equations.{kep} denote the particle
velocity-pressure pair ando’, ¢/} the weighting functions for the momentum and



continuity equations. We also assume that the fluid partielecity field satisfies
the boundary conditiony = g/ on I'/**, the Dirichlet part of the fluid bound-
ary. The variational formulation is stated as follows: Fif p} € V/ such that
V{w’, ¢’} € W/,

B ({w', ¢'}, {v,p};0) = F/ ({w/,¢'}) (33)
where
15}
Bf({wf’qf}’{v7p}7f)) = wfvpf_v|y + (wfapf(v_f)) vxv) f
ot of Q
(34)
+(¢',V, - U)Qtf — (V- wf,p)Q{ + (Viwf, 2,us§'v)Qf ,
and

FI({w! q}) = (! o gy + (w! 1) pyov, (35)

where V, is the gradient operator o, V¢ is its symmetrization]/"" is the
Neumann part of the fluid domain boundahy, is the boundary traction vector,
£/ is the body force per unit mass, aptiand . are the density and the dynamic
viscosity of the fluid, respectively. The partial time dative in the first term on the
right-hand-side of equation (34) is taken with respect ®oréferential coordinate
y held fixed.

2.5 The coupled problem

In this section we present the coupled fluid-structure adegon problem, which is
based on the individual subproblems introduced previol$lg variational formu-
lation for the coupled problem is stated as: Fjadp} € V/, u € V¢, anda € V™
such that/{w/, ¢/} € W/, Vw* € W*, andvw™ € W™,

BI({w',q¢"}, {v,p};0) — FI({w’, ¢'}) +
B (w*, w) — F(w*) + B™(w™, @) — F™(w™) = 0.  (36)

with the following auxiliary relations holding in the sensktraces:

v=L404" onrf (37)

w’ =w'o¢p,  onTf (38)

Relationship (37), the kinematic constraint, equates thd flarticle velocity with
that of the solid at the fluid-solid boundary. Implicatiorishee coupled formulation

10



(36), together with the compatibility condition (38), are:

L (v, p;o) —p'fF =0 onQf, (39)
V,-v=0 onQ, (40)
L5(u) — pyf° =0 on €, (41)
o'nl +o°n; =0 onT}, (42)
where
f . sOv f . f
E(U,p;v):p a|y+p(v_v)'vl‘v_vx'a‘v (43)
o/ = —V,pI + 2/ Vv, (44)
0*u
L(u) = PSWH —Vx - P. (45)
P=FS, (46)
o =J 'PF7T, (47)

andn/ andn? are the unit outward normal vectors to the fluid and solid doma
in the current configuration. Equations (39) - (42) implytttiee fluid and the solid
momentum equations and the fluid incompressibility comstieold in the interior
of the appropriate subdomains, and surface tractions aguitibrium at the fluid-
solid interface.

3 Formulation of the fluid-structure interaction problem at the discrete level

In this section we give a formulation of the fluid-structurgeraction equation
(36) in the discrete setting. We begin by defining the spdisdretization of the
problem. It is exactly the same for finite elements and NURBRSed isogeomet-
ric analysis. Having defined the semi-discrete forms, wegarethe time stepping
algorithm, which is the generalizedmethod [8, 24].

3.1 Approximation spaces for the coupled problem

Let N, denote a set of basis functions that define the discretizati6), and let

I denote their index setV, are “fixed” in space on the reference domain and
thus are time-independent. The discrete ALE mapping, atsoigd by{bt(y) for
convenience, takes on the form

DY) =D dat)Na(y) = D (Ua(t) + y4)Na(y) (48)

Ael Ael

11



In (48) ﬁA(t)’s are the mesh displacement degrees of freedomgrslare the
control points in isogeometric analysis and nodal cooteé&n standard finite el-
ements that define the reference geometry. The mapping é&ips to the entire
fluid-structure domain. The motion of the fluid subdomainbtained from (48) by
restricting the index set to the fluid control variables (alodhriables in the case of
finite elements). We writd = I, I, wherel; and [, are the index sets of the
fluid and solid control variables, respectively.

Because the solid problem (10) is posed over the referenoBgooation with
the unknown fields expressed as functions of the materiadouates X, we use
{NA}AE[S to approximate the solid displacements in the material dlon@n the
other hand, the fluid problem (33) is posed over the currentigoration with un-
known fields expressed as functions of the spatial coorenatin order to approx-
imate the unknown velocity and pressure fields in the cumentain, we employ

{Na(x,t) = Nyo (Aﬁt_l(CE)}AE[f. Finally, the mesh motion problem make use of
yet another set of basis functiofsy (&) = N, o gb;l(m)}Agf, defined over the
“nearby” configuration. It is a simple matter to show that thied mesh velocity

in the current configuration, used in the formulation of tldflproblem, becomes
(see [2] for detalils):

oU 4
ot

oz, t) = >

AEIf

(t)Na(z,t). (49)

We assume that all basis functions in the reference configarare at least°-
continuous, which automatically makes thém-conforming. In this work, we also
require that the discretization at the fluid-solid integfé&&conforming, that isV 4’s
are C°-continuous acrosk}®. As a result, by construction, basis functions in all
configurations aréi*-conforming and_°-continuous across the fluid-solid inter-
face.

3.2 The semi-discrete problem

Let V), Vi, Vim andW/, Wi, Wi be the finite dimensional subspaces correspond-
ing to their infinite dimensional counterparts. We apprcadenthe coupled fluid-
structure interaction problem (36) as follows: Fifid,p} € V/, u € V;, and

@ € V" such that'{w’, ¢/} € W/, Vaw® € Wi, andvw™ € Wy,

Biis({w’,¢'}, {v,p};9) = Flis({w?,¢'})

+ B*(w?®,u) — F*(w?)
+ B"(w™,u) — F™(w™) = 0, (50)

12



where

Bf,;s({w’, ¢’} {v,p};0) = B/ ({w',¢'}, {v,p}; 9)
1
+((0=9)- Vol 0) o+ (Vad!, o)y

+ (Va-w!pl10,V, - ’U)Q{ — (w!, v’ va)ﬁtf

1
— (Vow!, S0 @ @)y + (o Vol T 0 Vv

(51)
and
The following definitions of terms are employed in (51):
o' = 1y (L (v, p;0) — p! f7) (53)
™V = (& +(v—2)-Glv—v)+C (’u—f)2G . G)~V? (54)
M = AL I pf :
Tc=(tmg-g)"" (55)
7= (v Gv)/? (56)
40k 0k
G = — (57)
J kgl 8&72 827]-
d
i,j=1
d
(v—20)-G(v—2) =) (i —0)Gi;(v; — V) (59)
i,j=1
d agj
j_
99 = 9iJi- (61)



In the aboveg~ ag is the inverse Jacobian of the mapping between the isopétiame
or parent, and physical domainst is the time step, and’; is a positive constant,
independent of the mesh size, derived from an element-wmsge estimate (see,
e.g., Johnson [25]). In (50) the symH@y is used to denote the fact that integrals
are taken over element interiors.

Galerkin’s method is employed for the solid and mesh moti@blems. The fluid
formulation (51) emanates from the variational multiscasidual-based turbu-
lence modeling paradigm [1, 4, 6]. Residual-based fornanaif fluid flow may be
viewed as an extension of well-known stabilized methodsh st SUPG [7]. How-
ever, the lastterm of (51) is not motivated by multiscalaiargnts, but merely pro-
vides additional residual-based stabilization (see Tajdlaghes, and Zarins [45]).

Remark 3.1 Our coupled semi-discrete formulation (50) satisfies glatmaser-
vation of mass and linear momentum (see [2]). Note that thevective term in
(50) is written in the advective form. The advantage of theeative form is that it
trivially satisfies the so-called Discrete Geometric Camagon Law (DGCL). The
DGCL states that for solenoidal material particle velodiglds, in the absence of
body forces and surface tractions, the discrete scheme pnesérve the state of
constant solution. Discussion of the importance of coretex and satisfaction of
the DGCL for moving domain problems is given in [11, 13, 28]

3.3 Time integration of the FSI system

In this section we present the time integration scheme #®@is#mi-discrete equa-
tions (50), namely, the generalizedmethod (see [2, 8, 24]). The algorithm pre-
sented here is essentially the same procedure as propd&édnith a modification
introduced at the level of the nonlinear iteration. The rfiodiion consists of re-
moving the so-called shape derivatives from the left-hsid@-tangent matrix, thus
decoupling the mesh motion solve from the rest of the noatlisgstem.

Let U, U, U, and P denote the vectors of nodal or control variable degrees of
freedom of displacement, velocity, acceleration and pressespectively, of the
fluid-structure systerh. Let V, V', andV denote the vectors of nodal or control
variable degrees of freedom of mesh displacement, ve|auity acceleration, re-
spectively. We first define three residual vectors corregpgnto the momentum,
continuity, and mesh motion equations by substitutingviadial basis functions in

1 This interpretation is strict in the solid, and in the flliiirepresents the particle velocity,
but U represents its derivative holding the mesh point fixed anid sonot actually the
particle acceleration. Furthermore, in the fluid plays no role whatsoever.

14



place ofw/, w?*, ¢/, andw™ in (50) as follows:

R™™ = [RY7"] (62)
g BMS({NABMO} {v,p};0) — FJJVCJSA({NABuO})

+ B*(Nae;, u) — F*(Nae;) (63)

Rcont [ Rcont] (6 4)

R{™ = Bi;s({0, N}, {v, p}; ®) — Fis({0, Na}) (65)

Rmesh [Rmesh] (66)

RS = B™(Nae;, @), (67)

wheree; is thei* Cartesian basis vector.

We now state the equations of the generaliaetime integration method: given
U, Un, v, v, V,V »), the solution at the previous time step, firld,{;,,
Un+1a Un+1a Pn—i—ls Vn—i—ls Vn—i—ls Vn—i—ls Un-i-af’ Un-i-af’ Un-i-am’ Vn-i-af’ Vn-i-af’
Vn+am), the solution at the current and intermediate time stepd) that

Rmom<Un+af7 Un+af7 Un+am7 Pn+17 Vn+0£f7 Vn+0£f7 Vn—i-am) = 07 (68)
Rcont(Un—l—ozfa Un—l—ozfa Un—l—ozma Pn-i—la Vn-‘,-afa Vn-‘rocfa Vn-l—ozm) = 07 (69)
Rm85h<Un+af7 UTL+CYf7 Un—l—amu Pn+17 Vn+af7 Vn+af7 Vn—i-am) = 07 (70)
Un-l—ocf =U, + Oéf( n+l — )7 (71)
Un+af — U + af( n+1 = )7 (72)
Un-‘,-am U + am( n+l )7 (73)
Vn—i-af V + Oéf( n+1 — )7 (74)
Vn-i-Otf - V + Oéf( n+1 )7 (75)
Vn—i-am V + am( n+1 = n>7 (76)
Unir = Un + At((1 = N)U, + U 10), (77)
At?

U,1=U, +AtU, + 7((1 —28)U,, + 28U ,,1), (78)
Vo=V, + At((1 - )V + ’YVn+1)7 (79)

At?

whereAt = t,4, — t, is the time stepg;, o, 7, andj3 are real-valued param-
eters that define the method and are selected to ensure se@®rcaccuracy and
unconditional stability (see [2] for details).

To solve the nonlinear system of equations (68)-(80), weleynihe following
modified version of the predictor-multicorrector algontipresented in [2]:

15



Predictor stage.Set

U0 =U,, (81)

. —1) ..

Un—i—l,(O) = L)Una (82)
. At? .. ..

Un+17(0) - Un + AtUn + T((l - Qﬁ)Un + 26Un+1,(0))7 (83)

Pn—i—l,(O) = Pm (84)

Vn-l—l,(O) =V, (85)

.. —1) ..

Vn—i—l,(O) = (7 )Vn (86)
. At? .. ..

Vn+17(0) - Vn + AtVn + 7((1 - 26)Vn + 26Vn+1,(0)), (87)

where the subscrifit on the left-hand-side quantities is the iteration index.
Multi-corrector stage. Repeat the following steps for= 1,2, . . ., [z

(1) Evaluate iterates at the intermediate time levels as

Un_,_af,(l) =U, + Ozf(U,H_l (1-1) Un) (88)
Uniap =Un+ ap (Ui — Us) (89)
Untam@) = Un + n(Unsr,-1) = Un) (90)
Vn_,_af,(l) =V,+ af(Vn—i-L(l—l) Vn) (91)
Vn+af,(z) =V,+a; (Vg — V) (92)
Vn_,_am,(l) = Vn + Ozm(‘“/n_,_l,(l_l) — Vn) (93)

P,.1o= P (94)

(2) Use the intermediate solutions to assemble the residdidhe continuity and
momentum equations, and the corresponding matrices imbarIsystem

aRmOm . aRmOm
Y AT, o+ AP, ., 1 = —R"™ 95
U, 1 L0 0P, 11 +1.0) ® (95)
8Rcon 8RCO77/
AUn — AP, oo 96
8Un+1 11,0 T P +1,( 0 (96)

Solve this linear system using a preconditioned GMRES élyor(see Saad
and Shultz [39]) to a specified tolerance.
(3) Having solved the linear system, update the iterates as

Ui,y = Unirg-1) + AU 11 ) (97)
Un+1,(l) U, (-1 +7AtAUn+1 (98)
U,i10) = Upi1,a-1) + B(AL)? AUn+1, 0 (99)
Py =Prig-1) + AP (100)

16



(4) Equate the solid and mesh displacement, velocity, acel@@tion degrees of
freedom for the fluid-solid interface, and evaluate meshionotariables at
the intermediate time level as

Vant1,0-1) = Usangr,q) YA Iy (101)
Voanini-1) = Uanir VA I (102)
VA,n+1,(l 1) = =U, 1,y VA ]fs (103)
Vitap) = Vi +ap(Vias,a-1) — Vi) (104)
Vitas = Vata f(VnH,(l_l) -V, (105)
Vn_,_a”“(l) = Vn + am(Vn+17(l_1) — Vn) (106)
(207)

(5) Use the intermediate solutions to assemble the resiciidhe mesh motion
equations and the corresponding matrix in the linear system

8Rm85h
a‘“/n-i—l

AV 10 = R (108)
(109)
Solve this linear system using a preconditioned Conjugaseliént algorithm

(see, e.g., [16]) to a specified tolerance.
(6) Having solved the linear system, update the mesh makoates as

Vn—i—l,(l) Vn+1 I-1) +Avn+1 (110)
Vosna = Vi, (1-1) +7AtAVn+1 ) (111)
Votr,o) = Vigr,g-n + ﬂ(At) AVN+17(l) (112)

Remark 3.2 As mentioned earlier in this section, the above modificatmthe
originally proposed method consists of omitting the infeeenf the mesh motion
variables on the residuals of the fluid mechanics equationthe left-hand-side
matrix. This modification leads to two uncoupled linear sstvone for the cou-
pled fluid-solid system and another for the mesh motion. lieiseficial from the
standpoint of linear equation solving, since one needs keestwo smaller linear
systems rather than one large one.

Remark 3.3 Although this strategy leads to an inconsistent tangentisfdr the
coupled nonlinear equation system, we did not observefgigni decrease in non-
linear convergence. In fact, we recommend using this gjyafter blood flow com-
putations.

Remark 3.4 Tezduyar et al. [48, 49, 51] refer to this strategy as “qudsiect”
coupling and advocate its use in many applications, ineigdirterial flows.

17



4  Flow in a patient-specific thoracic aorta with an implantedleft ventricular
assist device

Added LVAD branch

/

(a) Patient-specific model of (b) Solid NURBS mesh of
the thoracic aorta the thoracic aorta

Fig. 2. Flow in a patient-specific thoracic aorta with LVAR) (Patient-specific model con-
structed from imaging data; (c) Smoothed solid NURBS model mesh with the LVAD
branch added. For more details of geometrical modelingstmyéometric analysis of blood
flow the reader is referred to [54].

Patient-specific geometry of the thoracic aorta of an o@ey&ar-old healthy vol-
unteer was obtained from 64-slice CT angiography. The géwakmodel is shown

in Figure 2(a) . The computational mesh, consisting of 44@39&dratic NURBS
elements, is shown in Figure 2(b), where an additional bramas added to the
model to represent the inflow from the left ventricular asgevice. Wall thickness
for this model is taken to be ¥6 of the nominal radius of each cross-section of
the fluid domain model. Two quadratic NURBS elements and fducontinuous
basis functions are used for through-thickness resolutidhe arterial wall.

We employ the following material properties in our compiatas. The fluid density
and dynamic viscosity are’ = 1.06g/cm? andy/ = 0.04 g/lcm s, respectively. The
solid has the density’ = 1 g/cm?, Young’s modulusf = 4.144 x 10° dyn/cn?,

and Poisson’s ratio; = 0.45. The density and Young’s modulus material data are
taken from [2]. The solid model coefficient$ andx* are obtained using standard
relationships for the Lamé constants (see, e.g., Goulp).[17
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4.1 Imposition of initial and boundary conditions

0,=Cq+p,

Inflow with
period 7 (s)

Inflow with
period 7T (s)

/'

O-n = Clq+p0

Fig. 3. Flow in a patient-specific thoracic aorta with LVADo@dary conditions for the
fluid domain.C,,a = 1,2, 3, 4, are the resistance constantsg,is the normal component
of the traction vectorg is the volumetric flowrate, ang, is responsible for setting the
physiological pressure level in the blood vessels.

We fix the solid at the inlet and at all outlets. The t&y% of the right and left
innominate and subclavian arteries are also constrainetbmoove. This is done
So as to avoid the non-physical swinging motion of the thigraorta during the
simulation. Constraining these portions of these artaresics the effect of the
surrounding tissue in a very crude way. Further researchdoumnting for the sur-
rounding tissue is necessary, with respect to both matheahatodeling and com-
putation. The LVAD branch is also assumed rigid.

Our model has two inflow boundaries, the inlet of the ascepdorta and the in-
let of the LVAD branch, where we specify a periodic flow wavefio These in-
flow waveforms are provided by the lumped-parameter modtHetardiovascu-
lar system that also includes ventricular assist. Our matk has various out-
lets where resistance boundary conditions are applied.i&f description of the
lumped-parameter model and its output for patient-spesiffiilations performed
in this paper, as well as imposition of resistance boundangditions, is given in
the following sections. See Figure 3 for a sketch of the ptea@ of boundary
conditions.
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4.1.1 Lumped-parameter model of the cardiovascular systednnflow bound-
ary conditions

A lumped-parameter closed-loop multiscale model of thelicaascular system
has been developed in [15] based on the framework of Oluf3&n Both the sys-
temic and pulmonary circulation have been modeled to cllosddop around the
area of focus, the aorta and large arteries. Several mgdelaihniques have been
employed to complete the loop. A varying elastance reptasen has been used
to describe the beating heart. A dynamic aortic valve modslbdeen developed to
capture valve motion which allows for regurgitant flow dgriclosure at the onset
of diastole. Pressure and flow along the length of the systéanje arteries are
determined using the quasi-one-dimensional Navier-Stekgiations for Newto-
nian flow in an elastic tube coupled with a pressure/area sttation (see, e.g.,
Hughes [21], Hughes and Lubliner [23], Lighthill [31], O&&h [37]). The small
arteries are represented with a complex impedance baseddeondtameter and
elastic properties [36]. The systemic venous return anchpobry circulation have
been represented using lumped parameter models. The cpameries are mod-
eled using a lumped parameter model with varying resistaaocd intramyocardial
pressure fluctuations.

The lumped-parameter cardiovascular model allows for tickusion of the left
ventricular assist device. In this particular case, we &wdysng the Jarvik 2000
model, which is a continuous-flow rotary blood pump. Becafgbe rotary nature
of Jarvik 2000, commonly employed pressure-flow curves @nded to describe
resultant flow rates over a range of pressures and pump spEselpump is in-
troduced into the model as the additional outflow from thé Vehtricle and the
additional inflow to the arterial tree. In this work, we caesi three pump settings:
1) pump is off; 2) pump is operating at the angular speed @@rPm; 3) pump is
operating at the angular speed of 10,000 rpm. Periodic flesthrough the aorta
and the LVAD inlets, with period” = 0.6667 s, are computed using the lumped-
parameter cardiovascular model, and the results arerdhest in Figure 4. In the
case when the pump is off, all the flow comes through the inflith@aorta. In the
case of 8,000 rpm, the LVAD supplies more th#¥ of the flow. Finally, in the
case of 10,000 rpm, almost all of the flow comes from the LVADx the latter case
that is of most concern with respect to complications agZnom flow stasis. We
note that the case when the pump is off corresponds to thalkm¢weak heart”
condition, because the volume of blood supplied by the rtharhg a heart cycle
is somewhat smaller that it would be in the heathy case.

We use the model outputs for the three pump settings as bouondaditions for
our patient-specific model, which results in a simple, ormg~aoupled simulation.
A more faithful representation of reality would consist offteedding our patient-
specific model inside the lumped-parameter cardiovasecntatel discussed here
with a full two-way coupling. We hope to pursue this in theuigt.
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Fig. 4. Inflow flowrate curves obtained by computing
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4.1.2 Outflow boundary conditions

In order to ensure physiologically-realistic responssjstance boundary condi-
tions must be applied in such a way that physiological preskavels are present
in the system at all times. This is accomplished by makingaigée following
variant of the resistance boundary condition (see alsodranet al.[12], Vignon-
Clementelet al. [52], and Heywoockt al. [19]). We assume that all outlet faces,
denoted byl',, wherea is the outflow boundary index, are fixed in space. At every
outlet facel’', we set

n’én+ C, /F v-ndly + po = 0, (113)
) Ten =0, (114)
Tlén =0 (115)
where
on = —pn +2u'Viv-n—p'({v-n}_ )v, (116)

the term{v - n}_ denotes the negative partof n, that is

{{'v~n}'u-n if v-n<0
(117)
{v-n}_=0 otherwise,

n is the outward unit normal, angl, andr, are mutually orthogonal unit tangent
vectors on the outlet face. In case of reversed flow througiu#diitow boundary the
last term on the right-hand-side in (116) is active. Otheewit is identically zero

and, thus, equation (113) reverts to the resistance boyedadition described in

[2].

The above boundary conditions state that normal stress @woulet face is an
affine function of the flowrate through the face, while bothgential stresses are
zero. TheC,’s are the so-called resistance constants. They are pmsihd are,
in principle, different from outlet to outlet, reflectingehresistances of various
blood vesselsp, in (113) is responsible for imposing a physiologically et
pressure level in the vessels, even at zero flow through tHetdaces. For the
computations reported in this sectign,is set to 85 mmHg, as in [2]. We impose
boundary conditions (113) weakly by adding the followingrs to the variational
formulation (36)

{ /'w ({v-n}_)vdl, /w -ndl,) (/ v-ndFa+po)},
(118)

where the sum is taken over all outlet faces with prescribststance conditions.

22



Remark 4.1 The term,— Y, [r. w/p/ ({v - n}_)vdl,, adds stability to the for-
mulation in the presence of locally reversed flow throughdh#low resistance
boundaries. Such reverse flow occurs due to the fact thatwglbuctuations are
convected out of the computational domain by the mean flowioWel that the
addition of this term is important for the overall stabiliby the computations. In
its absence we sometimes experience rapid divergenceuyttet of the descend-
ing branch of the aorta being the most vulnerable locatiariridiation of outflow
instabilities.

In the computations reported here, we 6gt = (1,500/4;) dyn s/cm, Cy =
(2,666/Az) dyn s/cm, C3 = (1,400/As3) dyn slcm, Cy = (1,400/A,) dyn s/cm,
whereA,,a = 1,2, 3,4, are surface areas of the outlet faces (see Figure 3). This
data was adapted from [38].

The constantg’, in (113) and (118) are large, and, as a result, implicit tresut
of the resistance terms is beneficial for stability. The dbation of the resistance
terms to the left-hand-side matrix for each outlet fRigdbecomes

apyALC, ( / NAnidFa)( NandFa), (119)
1 Ty

where the following index notation is employed:and B are the nodal/control
point indices andq; andn; are the Cartesian components of the unit outward nor-
mal vector to the outlet surface. Expression (119) is nangdrd from the stand-
point of finite element implementation in that each outleefaontributes a locally
dense matrix. In our implementation, because we use Nerptocedures and are
interested merely in the action of (119) on a right-hane siectoruz ;, we do not
assemble (119) directly. The action of (119) on the rightehaide vectot ; is ac-
complished by first multiplyinga ;v AtC,)'/? (fra NandFa2 ugp j, which yields a
scalar (summation on repeated indidesnd; is assumed), and is followed by a
post-multiplication by(a ;v AtC,)'/? (fra NAnidFa), which yields a vector that is

properly dimensioned. In our software, the vedt@fyAtC,)/? (fra NAnidFa) is
assembled at every outlet faCgand is passed into the linear algebra routine where
the multiplications take place. The procedure is perfaudisallelizable.

We initialize our computations as follows. We start with arpressurized config-
uration, then we set and maintain the inflow velocity comsiswith the inflow
flowrate att = 0, and gradually increase the pressure level in the systeraising
po in (113) from zero to the physiologically realistic value & mmHg. This is
done for a time equivalent to one or two cycles. Once the phygical pressure
level is attained, we begin computing with the time-varyintjow boundary con-
ditions until the periodic-in-time response is attainelde Tatter usually takes four
or five cycles.

Resistance boundary condition (113) may be generalizedytamther functional
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relationship between the normal-stress and blood flow nateflacing (113) with
n’en + f(Q.) =0 (120)

where(@), denotes the volumetric flowrate through the outlet fAgethat is,
0, = / v - ndl,, (121)

andf(Q,) is any functional dependence, which may also include ptesvastory,
such as for impedance boundary conditions (see, e.qg... [BRihis case, (120) is
imposed by adding the following terms at all the outlet faces

S {- [ w (o npyedr, + ([ v ondr)f@)f . @22)

a

and the linearization corresponding to the second term28)(becomes

apyAtf'(Qq) </Fa NAnidFa) </Fa NandFa> : (123)

wheref’((),) denotes the first derivative gfwith respect to its argument evaluated
at@),. The affine resistance of (113) is obtained by setting

f(Qa) = CaQa +p0- (124)
4.2 Numerical results

We simulate the flow-structure interaction in the patigreesfic thoracic aorta with
LVAD for several heart cycles. Solution data was collecteddostprocessing af-
ter a nearly periodic-in-time response was attained. Eg&r7 show the velocity
magnitude on a planar cut of the model at early systole, pgstble, and late di-
astole. The figures clearly indicate the manner in whichllbtzod flow features
are altered due to the presence of the heart pump. Note thatdalgnitude of flow
velocity for the cases when the pump is on is greatly incieéasthe vicinity of the

LVAD branch. Also note the presence of very thin boundargtayassociated with
the pump-assisted cases. Figure 7 shows the presence lyftneamlent structures
in late diastole for the cases when the heart pump is on, \ilndidlow structures
for the unassisted simulation are unsteady, but laminar.

Figures 8-10 focus on the flow in the aortic arch. In the usésdicase, a heli-
cal flow pattern is obtained in early systole and late diastwwhile in peak systole
the flow vectors are aligned with the arterial path. The la¢lilow pattern in the
aortic arch is a well-known phenomenon. For example, in,[B&lical flow struc-
tures were observed in a human thoracic aorta imaged by magesonance. The
medium pump setting does not produce the helical flow pattebserved in the
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(a) Pump off (b) 8,000 rpm (c) 10,000 rpm

0 50 >100
_ru
Flow speed (cm/s)

Fig. 5. Flow in a patient-specific thoracic aorta with LVAD alghitude of the flow velocity
on a planar longitudinal cut in early systole.

unassisted case and some flow stagnation is present in tieach in early sys-
tole and late diastole. For the highest pump setting the fiothie arch is stagnant
throughout theentire heart cycle. This is consistent with clinical observatiansl
preliminary numerical simulations reported in [26]. Flotgnation is known to
increase uptake of atherogenic blood particles as a coasequof increased resi-
dence time, and is believed to be one of the mechanisms thedpsnsible for the
development of atherosclerosis [14].

Figure 11 and 12 show distribution of the cycle-averaged, (imean”) wall shear
stress magnitude on the luminal surface. In the arch, walisstress is much lower
for the cases when the pump is on. This observation is cem$isith the predicted
and observed flow stagnation in this area of the aorta. Inrastio the arch, in the
descending branch near the LVAD, wall shear stress signtficeaxceeds healthy
levels. Figures 13 and 14 focus on the arch and plot wall S$tesss vectors on the
luminal surface. In the unassisted case, the vectors falevelical pattern, which
is consistent with the behavior of the blood velocity in thése. For the pump-
assisted simulations, the magnitude of the wall shearsstseswuch lower in the
arch, and, furthermore, for the highest pump setting, thié sikar stress vectors
point in the direction that is opposite to the conventionasumed direction. This
signifies that flow reversal occurs in the arch for the majooit the heart cycle.
Figure 15 shows the so-called oscillatory shear index (@Btyibution at the lu-
minal surface. OSI measures the degree to which wall shemssbscillates during
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(2) Pump off (b) 8,000 rpm (¢) 10,000 rpm

0 50 >100
_=u
Flow speed (cm/s)

Fig. 6. Flow in a patient-specific thoracic aorta with LVAD alghitude of the flow velocity
on a planar longitudinal cut at peak systole.

the heart cycle and is defined as (see, e.g., [46, 47]):

1
OSI=~(1- Tmeany (125)

Tabs

where, denoting by, the wall shear stress vector,

1 T
Tmean = |?/0 Tsdt|> (126)

and
1 /T
e = — / |7, |dt. (127)
T Jo

From Figure 15(b), the OSI appears to be largest in the aantic for the medium
pump setting. We conjecture that this occurs due to the cotigpebetween the
flows coming from the inflow of the aorta and the LVAD. The relage of wall
shear stress and its temporal oscillations (as measuredSbyt® atherosclero-
sis is an active area of medical research (see [40] for a celmepsive review of
the subject). It was shown in [29, 30] that endothelial cellbjected to elevated
levels of wall shear stress tend to elongate and align in itteettbn of flow, and
that endothelial cells that experience low or oscillatorgllvehear stress remain
more rounded and have no preferred alignment pattern. Mergexposure of the
arterial wall to a relatively low wall shear stress may irase intercellular perme-
ability and consequently increase the vulnerability obtheegions of the vessel to
atherosclerosis [35].
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(a) Pump off (b) 8,000 rpm () 10,000 rpm
0 50 >100

Flow speed (cm/s)

Fig. 7. Flow in a patient-specific thoracic aorta with LVAD alghitude of the flow velocity
on a planar longitudinal cut in late diastole.

Figure 16 shows the distribution of flow among the outflow lorees. It is evident
that the flow distribution among the branches is very diffiéfeom one pump set-
ting to the next. This deviation of the flow distribution fdret pump-assisted cases
compared with the unassisted case may induce complicatioins peripheral parts
of the circulatory system.

5 Conclusions

Isogeometric fluid-structure interaction analysis is agplo a patient-specific model
of the thoracic aorta.

A simplification to a fully-coupled solution strategy is eloyed in which the mesh
motion is uncoupled from the rest of the system resultinganeéased efficiency of
the computational procedure for this type of problem. A danpodification to the
outflow boundary conditions is introduced that improvebidits of the numerical
formulation in the presence of reversed flow.

Computational results obtained for the pump-assistedsciaskcate deficiencies
associated with the implantation of the LVAD in the descagdiranch of the tho-
racic aorta, specifically, abnormally high mean wall shégss in the vicinity of

the implant and abnormally low and highly oscillatory wéilesir stress in the aortic

27



(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 25 >50

1

Flow speed (cm/s)

Fig. 8. Flow in a patient-specific thoracic aorta with LVADeldcity vectors colored by the
velocity magnitude in the ascending aorta and the arch iy sgstole.

(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 25 >50

| (_—
Flow speed (cm/s)

Fig. 9. Flow in a patient-specific thoracic aorta with LVADelgcity vectors colored by the
velocity magnitude in the ascending aorta and the arch & esiole.

arch. For the highest pump speed simulation, which is mdestaat in the clinical
setting, blood flow stagnation in the aortic arch is obsefeedhe entire heart cy-
cle. Computational results are in qualitative agreemetit alinical observations.
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(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 25 >50

N

Flow speed (cm/s)

Fig. 10. Flow in a patient-specific thoracic aorta with LVAIZlocity vectors colored by
the velocity magnitude in the ascending aorta and the artdtdrdiastole.

(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 4 >8
_----.

Mean WSS (dyn/cm?)

Fig. 11. Flow in a patient-specific thoracic aorta with LVA&ft lateral view of mean wall
shear stress.
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(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 4 >8

_-_---.
Mean WSS (dyn/cm?)

Fig. 12. Flow in a patient-specific abdominal aorta with ageon. Right lateral view of
mean wall shear stress.

(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 5 >10
—a

Mean WSS (dyn/cm?)

Fig. 13. Flow in a patient-specific thoracic aorta with LVAIdean wall shear stress vectors
superposed on the magnitude of the mean wall shear stress.
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(2) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 5 >10

| I

Mean WSS (dyn/cm?2)

Fig. 14. Flow in a patient-specific thoracic aorta with LVAdean wall shear stress vectors
superposed on the magnitude of the mean wall shear stress.

(a) Pump off (b) 8,000 rpm (c) 10,000 rpm
0 0.25 0.5
[ ——
OSI

Fig. 15. Flow in a patient-specific thoracic aorta with LVADscillatory shear index (OSI).
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Fig. 16. Flow in a patient-specific thoracic aorta with LVAElow rate distribution among
outflow branches during a heart cycle. Flow rate is normdlizg the maximum flow rate
at peak systole for the healthy case, and time is normaligedeoperiod of the heart cycle.
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