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Abstract

We present a new theoretical framework for the enforcement of constraints in varia-
tional multiscale (VMS) analysis. The theory is first presented in an abstract operator
format and subsequently specialized for the steady advection-diffusion equation. The
approach borrows heavily from results in constrained and convex optimization. An
exact expression for the fine-scales is derived in terms of variational derivatives of the
constraints, Lagrange multipliers, and a fine-scale Green’s function. The methodology
described enables the development of numerical methods which satisfy predefined at-
tributes. A practical and effective procedure for solving the steady advection-diffusion
equation is presented based on a VMS-inspired stabilized method, weakly enforced
Dirichlet boundary conditions, and enforcement of a maximum principle and conser-
vation constraint.

Key words. variational multiscale analysis, constrained optimization, convex op-
timization, Lagrange multipliers, projection, fine-scale Green’s function, advection-
diffusion, maximum principles, non-negativity, conservation, weak boundary conditions
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1 Introduction

The variational multiscale method [27, 29] was introduced as a framework for incorpo-
rating missing unresolved fine-scale effects into numerical problems governing coarse-
scale behavior. It has provided a rationale for stabilized methods and a platform for
the development of new computational technologies (see, e.g., [1, 4, 7, 14, 26, 31, 32,
33, 35, 38, 46] for application to turbulence modeling and simulation). Construction of
the method is simple: decompose the solution u to a partial differential equation into a
sum of two components, @ and ', determine the fine-scale component «’ analytically in
terms of the coarse-scale component @, and solve for @ numerically. The original instan-
tiation of the method was based on variational projection. That is, the decomposition
of the solution into a sum of coarse-scale and fine-scale components is uniquely specified
by identifying a projector from the space of all scales onto the coarse-scale subspace.
The fine-scale component can then be represented as the fine-scale Green’s function of
the coarse-scale residual. The structure of the fine-scale Green’s function was studied
extensively in [34]. It was discovered that different projectors give rise to different
fine-scale Greens functions, and their properties can vary considerably. For example,
in the context of a steady advection-diffusion problem, it was found that the projector
induced by the H}-seminorm results in a highly-attenuated fine-scale Green’s function
with local support whereas the projector induced by the Lo-norm does not. This moti-
vated the construction of local approximations to the fine-scale Green’s function for the
H&—projector [15], and indeed it was shown that the H&—optimal variational multiscale
method has many features in common with classical stabilized methods [9, 23, 30] and,
in particular, SUPG [10].

While a variational multiscale method based on projection guarantees an optimally
accurate coarse-scale approximation in terms of the chosen projection, it does not en-
sure that the numerical approximation exhibits certain characteristics of the solution.
For example, an approximation obtained using the H&—optimal variational multiscale
method may not satisfy maximum principles or non-negativity constraints. Such an
approximation may also exhibit undershoots and overshoots, as shown in the two-
dimensional example in [34], about transition and boundary layers. This is undesirable
for many applications. For example, in transport simulations, one seeks an approx-
imation with non-negative density or concentration. Indeed, most compressible flow
calculations terminate upon negative density values which occur due to undershoots
about a shock wave. Shock-capturing or discontinuity-capturing procedures are of-
ten employed to add enough dissipation to remove these oscillations. Such schemes
are usually ad hoc procedures involving artificial diffusion, but previous work in varia-
tional multiscale analysis has suggested the potential of studying these issues in a more
fundamental way.

In [24], an approximation technique was introduced where the LP-norm of the
coarse-scale residual is minimized. Numerical tests in L' showed that the technique
could handle discontinuities arising in solutions to first-order partial differential equa-
tions without resorting to limiting procedures. Inspired by this work, Demarco et al.
introduced a variational multiscale method in [16] where the coarse-scale component
u was defined through a non-linear optimization problem. In particular, & was defined
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to be the best fit to w in terms of the Wll-seminorm. However, numerical results
revealed that such numerical approximations are not necessarily monotone, especially
in the case of higher-order finite element basis functions. To complicate matters, both
of the procedures above involve the solution of a difficult nonlinear problem.

In this paper, we develop a new class of variational multiscale methods which al-
lows for the direct enforcement of equality and inequality constraints. The constraints
could be, for example, that the coarse-scale solution satisfies a maximum principle,
conserves a quantity over a region, or is monotone. In these multiscale methods, the
decomposition of a solution into its coarse-scale and fine-scale components is defined
through an optimization problem over a subset of the coarse-scale space, the so-called
constraint set. Fach function in this constraint set satisfies the given equality and
inequality constraints. Provided the constrained optimization problem is well-posed,
the chosen decomposition is uniquely specified, and an exact expression can be at-
tained for the fine-scales in terms of the coarse-scale residual, variational derivatives
of the constraints, Lagrange multipliers, and a fine-scale Green’s function. The theory
summarizing these ideas is presented in Section 2 in an abstract operator format for a
general linear isomorphism.

These ideas are applied to the steady advection-diffusion problem in Section 3. A
variational multiscale method is introduced in which maximum principles are enforced.
We review the structure of the fine-scale Green’s functions in two dimensions for the
L?-norm and Hj-seminorm and, following this, we apply our method to two model
problems. Numerical results reveal the quality of our coarse-scale approximations. We
end this section with a discussion of conservation and weak boundary conditions and
present an additional numerical result.

We draw conclusions in Section 4.
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2 The abstract setting

2.1 The abstract problem

Let V be a Hilbert space, endowed with a scalar product (-, -)y and induced norm |||y .
Let V* be the dual of V and let y+(-, -)y be the pairing between them. Let £:V — V*
be a linear isomorphism. Given F € V*, we consider the abstract problem: find u € V'
such that

Lu=F. (1)

The variational formulation of (1) is: find u € V' such that
v (Lu,v)y = y«(F,v)y, YveW. (2)

The solution u can be formally expressed as u = GF, where G : V* — V is the Green’s
(or solution) operator. That is, G = £~

2.2 Approximation and constrained optimization

We are interested in finding an approximation % belonging to a closed finite-dimensional
subspace V' C V to the solution u of (1). In the variational multiscale (VMS) approach,
V represents the space of computable coarse scales. Previous instantiations of the VMS
method have focused on finding approximations which minimize the error,

v =u— 1, (3)

or the fine scales, with respect to some norm of V. While such approximations are
accurate, they may not preserve some desirable properties of the exact solution (e.g.,
positivity, maximum/minimum principles, monotonicity, conservation, etc.). In this
work, we instead seek a numerical approximation which, in addition to being accurate,
exhibits these desired properties. This naturally leads us to specifying u through a
constrained optimization problem.

To proceed, define the closed constraint set

K={veV:f(v)=0,g() <0} (4)

where f: V — R4 and g : V — R"nea are continuously differentiable (in the sense of
Fréchet) vector functions of the finite-dimensional space V. We assume that this set is
not empty. The constraint set K represents the set of admissible approximations. We
seek an admissible approximation which will minimize the error with respect to some
norm of V. It will be useful to assume that this norm is induced from a scalar product
as it will allow us to generalize previous results based on variational projection [34].

Let H be a Hilbert space such that V is continuously embedded in H. Let H
be endowed with a scalar product (-,-)y and induced norm || - ||z. The constrained
optimization problem for u is as follows: find % € K such that

1 _ 1 _
S llu = alff = min o [lu — o7 (5)
2 veK 2
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Two important questions with regards to the above constrained optimization are whether
there exists a solution u € K and, if so, is such a solution unique. Existence of a solu-
tion is a direct result of the following lemma.
Lemma 1. The quadratic functional q: V — R defined by
_ 1 2
q(v) = 5 llu ol (6)

1s strictly conver.

Proof. Let 4,0 € V such that @ # 9. Let t € (0,1). Define w = tu + (1 —t)v. We
compute
2q(w) = |lu—wo|F
= (u—tu—(1—-t)o,u—tu— (1—1t)0)g
= (w,u)g +t(w,a)g + (1 —t)%*©,0)
—2t(u,u) g —2(1 — t)(u,0) g + 2t(1 — t)(u,0) . (7)

Note that

0<|a—2v|% = (a,a)g+ (0,0) g — 2(,0)q. (8)

Combining (7) with (8), we obtain

2q(w) < (u,u)y +t3 (@, a)g + (1 —1)*(©,9)n
—2t(u, @) g —2(1 —t)(u,0)g +t(1 —t) (@, 0)g +t(1 —t)(0,0)m
= t((u,u)yg —2(u,u)y + (4, 1))
+(1—=1t) ((u,u)g — 2(u,v)g + (0,0)g)
= tlu—alf + (1 —-t)llu—ol}
= 2tq(a)+ 2(1 —t)q(v). 9)

This completes the proof. [
Theorem 1. (Existence) Problem (5) has a solution.

Proof. In a finite-dimensional setting, a strictly convex quadratic functional is bounded
from below and attains its greatest lower bound on a nonempty closed set. [

Uniqueness is not as immediate a result as existence. To prove uniqueness, one must
impose more structure on the constraint set X. A reasonable, and powerful, assump-
tion to make is that the constraint set is convex. Then, our constrained optimization
problem becomes a convex optimization problem. All of the examples presented in this
paper involve such constraint sets.

Theorem 2. (Uniqueness for Convex Constraint Sets) Suppose f is an affine
function of V and g is a convex function of V. That is, suppose K is a convex set.
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Then problem (5) has a unique solution.

Proof. Suppose that problem (5) has two solutions 4, € K. Since K is convex, then
w=tu+ (1—t)v € K for any t € (0,1). Further, we have

1 t 1—-¢
Slhu—ald < Sllu—alh +=——lu ol
1 _
= Sl (10)

due to Lemma 1. This is a contradiction. Hence, (5) has a unique solution. [

The Karush-Kuhn-Tucker conditions are a set of conditions that a solution to a con-
strained optimization problem must satisfy (subject to some regularity restrictions). In
the context of a convex optimization problem, they are necessary and sufficient. These
conditions allow one to characterize a solution to (5) through a set of algebraic relations.

Theorem 3. (Karush-Kuhn-Tucker Conditions for Convex Constraint Sets)
Suppose K is a convex set. Further, suppose K has a strict feasible point. That is, let
there exist a point © € K such that g(v) < 0. Then @ € K is the unique solution to
(5) if and only if there exist Lagrange multipliers \; € R (i = 1,...,n¢q) and p; € R
(1=1,...,Nineq) such that the following conditions hold:

Stationary
Negq Nineq
(@ —w, )+ Y N g (Dfi,0)p + Y pii - (Dgi(), 0)y =0 (11)
i=1 i=1
Primal feasibility
fi(u) = 0, fori=1,2,...,n¢ (12)
gi(w) < 0, fori=1,2,... ,Nipeg (13)
Dual feasibility
i > 0, fori=1,2,...,Nineq (14)

Complementary slackness
wigi(a) = 0, fori=1,2,... Nineg (15)

Above, V* is the dual of V', (-, )y is the pairing between V and its dual, Df; € V* is
the Fréchet derivative of f;, which is constant, and Dg;(u) € V* is the Fréchet deriva-
tive of g; at u.

Proof. This is a classical result in convex optimization. For a discussion of the proof,
see [8]. O
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Theorem 3 will prove instrumental in the development of VMS formulations which
directly enforce equality and inequality constaints. Before proceeding, let us comment
that in a particular situation, the Lagrange multipliers associated with Theorem 3 are
unique. This occurs when the solution is a regular point of the constraint set K.

Definition. (Regular Point) Let v € K and let J be the set of indices j for which
g;(¥) = 0. Then ¥ is said to be a regular point of the constraint set K if the Fréchet
derivatives D f;(v), Dg;j(v),1 < i < neg, j € J are linearly independent.

Theorem 4. (Uniqueness of Lagrange Multipliers for Regular Solutions)
Suppose K is a conver set with a strict feasible point. Further, suppose (5) has a
unique solution @ which is a reqular point of the constraint set K. Then, the Lagrange
multipliers associated with Theorem 8 are unique.

Proof. Let J be the set of indices j for which gj(u) < 0. Then, uj =0 for j € J due
to (15). The remaining Lagrange multipliers may be uniquely determined from (11)
since @ is a regular point. [J

We can repose the stationary condition of Theorem 3 in a form that will allow us to
use previous results based on variational projection. Let P be the projection operator
from V onto V defined by

(Pu,v)y = (u,0)g, Yo€EV. (16)
We define V = Ker(P), which is also a closed subspace of V', and notice that
V=VaV. (17)

That is, each v € V can be written uniquely as v = o+ o where 5 € V and ¢ € V. Let
R be the Riesz operator from V onto V* defined by

v+ (R, 0)y = (4,9)y, VoeEV. (18)
We immediately have the following theorem.

Theorem 5. (Alternative Stationary Condition) Let K be a convexr constraint
set with a strict feasible point. The stationary condition of Theorem 8 is equivalent to

Neq Nineq
Pu = P(u — ﬂ) =Pu—u= Z ;b + Z uiCi(fb) (19)
i=1 i=1
where b; € V is defined as
bi =RIDf; (20)

and c; : V — V is the nonlinear operator defined by

¢i(v) = R 'Dgi(v), VoeV. (21)
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From Theorem 5, we deduce a corollary which describes the structure of the error in
terms of the finite-dimensional coarse-scale space V' and the infinite-dimensional space
V.

Corollary 1. (Decomposition of the Error) Let K be a conver constraint set
with a strict feasible point. Then, the error associated with the unique solution of (5),
namely, v' = u — u, can be uniquely decomposed as

o =i+ (22)

where @ €V and @ € V satisfies

Negq Nineq

— Z Nibi + Z Mici(@), (23)
=1 =1

in which \;, pu;j are Lagrange multipliers associated with Theorem 3 and b; and c; are
defined by (20) and (21) respectively.

To conclude this subsection, note that Theorem 5 suggests a route towards en-
forcing the given constraints without modifying the classical VMS method. Since the
classical VMS method in theory returns the projection Pu, Theorem 5 can be invoked
to postprocess the numerical solution. That is, once the projection Pu is found, the
solution to our constrained optimization problem can be found using the Karush-Kuhn-
Tucker conditons utilizing the alternative stationary condition presented in (19) as it
does not involve the unknown exact solution w. Such a procedure is outlined in Ap-
pendix A. This further suggests the advantage of postprocessing solutions obtained
using stabilized methods in order to arrive at accurate approximations satisfying the
given constraints. Note, however, that postprocessing is not advised in all situations.
For example, in a compressible flow code, a negative density value occurring in an
iterate of a Newton-Raphson solve will most likely cause a numerical simulation to
fail. This implies that a non-negativity condition needs to be enforced throughout the
solution process.

Remark. In previous works, the notation Ker(P) = V’ was used as Ker(P) was
associated with the fine-scales. In this paper, the fine-scale component of the solution
does not necessarily belong to Ker(P) so we use the notation V' instead.

2.3 The variational multiscale formulation

The aim of the VMS approach is to obtain a finite set of equations, independent of w,
which will allow us to obtain a solution # € K to the constrained optimization problem
(5). The first step in deriving a VMS formulation is to decompose (2) as follows: find
u € V such that
v (Lu,v)y = y«(F,0)y, Vo€ V, (24)
v (Lu,0)y = y«(F,0)y, V€ V. (25)
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The problem defined by (24) and (25) is equivalent to the problem defined by (2) and
has the same unique solution, u = G f.

The next step in deriving a VMS formulation is to decompose u uniquely into a
coarse-scale component @ € V and a fine-scale component «’. In the first instantiation
of the variational multiscale method, this was accomplished by enforcing that v/ € V.
Here, we obtain a unique decomposition, assuming that K is convex, by enforcing that
@ is the unique solution to (5). This leads to the following variational formulation.

Finda e V,i' ¢ V,\ €R (i =1,...,00), tti €ER (i = 1,...,Nineq) such

that
velL(u+a +a),0)y = v+(F,0)y, VoeEV (26)
vl L@+ + 1), 0y = v (F, o)y, YoeV (27)
fi(u) =0, fori=1,2,...,n¢ (28)
gi(w) <0, fori=1,2,...,Nineq (29)
(1) i >0, fori=1,2,... Nineg (30)
pigi(n) =0, fori=1,2,...,Nineq (31)

where @/ € V is defined as

Neq Nineq

o = Z Aib; + Z ,uici(ﬂ) (32)
i=1 1=1

and b; and ¢; are defined by (20) and (21) respectively.

We now attempt to solve for the fine-scales analytically in terms of the coarse-
scales and the Lagrange multipliers so we can arrive at a finite set of equations for the
coarse-scales. Suppose we have the inf-sup conditions for £ on V and V

inf sup Al ekt Al A4 (L, D)y

— 0 >0, (33)
weV ey [[@[lv|oflv

v+ (LW, D)y

inf sup —— - >0, (34)
weV gey [0Iv[0]lv
* £7 v _
sup M >0, forallveV,v#0, (35)
wev @[y
AL i
sup VEDDV o o all 5 e Vi £ 0. (36)
sev  @llv

Then, from Theorem 1 of [34], we know we can solve (27) uniquely for @ € V given
u,7 €V as

i =G (F-Lu+1)) (37)
where G/ : V* — V is the fine-scale Green’s operator

G =G -gPT (PGPT) " PG. (38)
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Substituting (32) and (37) into (22), we find that the entire fine-scale component of
the solution is

o o= a +a
= G (F-Lu+d))+d
— ¢(F-L(u +Z)\ = g£b+ZMz (I-G'L) ci(u). (39)
i=1 =1

The first term on the third line of (39) is the representation of the fine-scales in the
absence of constraints. The other terms “adjust” the fine-scales so that the coarse-
scale solution satisfies the constraints. Substituting (37) into (}) leads to the following
variational formulation.

Finda e V,\ €R (i =1,...,n¢), i €R (i =1,...,Mineq) such that

N
o

ve (L(a+2') — LG L(u+ W), 0)y, = v« (F—LGF,0),, VWeV

(40)

fi(w) =0, fori=1,2,...,n¢ (41)

(_) 0, fori=1,2,... Ninegq (42)

>0, fori=1,2,... Nineg (43)

(1) ,uz-gi(ﬂ) =0, fori=1,2,...,Nineg (44)

where @' € V is defined as

Neq Nineq

1= b+ Y pjeila). (45)
=1 =1

\ and b; and ¢; are defined by (20) and (21) respectively.

We immediately have the following theorem.

Theorem 6. Let K be a convexr set with a strict feasible point. Further, suppose
the inf-sup conditons (33)-(36) hold. Then problem (1) has a solution i € V,\; € R
(t=1,...,n¢), ti € R (i =1,...,Nineq). Further, @ is uniquely determined and is the
unique solution to (5) with w = GF, and the Lagrange multipliers X\;, u; are unique if
@ is a reqular point of K.

The variational formulation () defines a new class of VMS methods which allow for
the direct enforcement of equality and inequality constraints. It consists of a finite set
of equations for the coarse-scale solution @ and Lagrange multipliers associated with
the constraints. Theorem 6 guarantees that this formulation is well-posed under fairly
modest conditions. The formulation can be solved using either an active set method
or interior point method in the presence of inequality constraints.

Note that the values of b; and the ¢;(u) can be realistically computed due to the
finite-dimensional nature of the constraints. Specifically, we can evaluate (20) and
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(21) by a linear solve involving a symmetric positive-definite matrix. This is outlined
in Appendix B. Thus, in practical applications, only the fine-scale Green’s operator
need be approximated in the above formulation. This is a definitive advantage of our
approach and suggests a path for constructing new stabilized methods which enforce
important constraints such as positivity. In fact, by recognizing the relationship be-
tween stabilized methods and variational multiscale analysis (see [34]), this implies
that classical stabilized methods such as SUPG [10] can be easily modified in order to
enforce equality and inequality constraints without sacrificing accuracy.
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3 The steady advection-diffusion problem

3.1 Problem description
Let © C R? be a regular domain. Let 02 be the boundary of . We consider the
steady advection-diffusion problem with homogeneous Dirichlet boundary conditions.
The strong formulation of the problem is as follows.

Find u : Q — R such that
S) —kAu+ (- Vu=fin Q, with u|pg =0 (46)

where f : Q — R is the source term, x > 0 is the scalar diffusivity, and 3: Q —
R? is the advection velocity, for which we assume V - 3 = 0.

We assume that the specified data is sufficiently smooth such that (S) is well-defined.
The corresponding variational formulation is the following.

Find u € H}(Q) such that
B(u,v) = F(v), Yv € H}(Q) (47)
(V){ where
B(u,v) = (kVu — Bu, Vo) 20, (48)
F(v) = w10 {fvpe)- (49)

We see the above formulation fits within the framework of Section 2 with V =
HE(Q), V* = H Y(Q), £ : HY{(Q) — H1(Q) defined by

H-1(Q) <£U7U>Hé(9) = B(ua U)a Vu,v € H(%(Q) (50)

or equivalently,
L=—-kA+[(-V, (51)

and F € H~1(Q) defined by
H-1(Q) (F, U>H5(Q) =F(v), Ve H&(Q)- (52)

The invertibility of £ is due to the coercivity of B(-,-). In this context, it is convenient
to represent the Green’s operator G through the Green’s function g : {2 x 2 — R such
that

Gry) = /Q o(z, y)r(e)de. (53)
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for all r € H=(Q2). We have that glaxa) = 0 and for all y € Q, L*g(-,y) = 6(- — y),
where ¢ is the Dirac mass at the origin and £* denotes the dual of £. We immediately
see that the solution of (V) is

u(y) = /Q oz, y) F(2)dz
- /Q o y) f(z)dz. (54)

Note that here and in what follows, integrals are to be understood in the sense of
distributions.

Remark. We will subsequently, as above, focus attention on the case of homogeneous
boundary conditions, but a problem with prescribed, nonzero boundary values can also
easily be transformed into this setting. Suppose that u € H'(f2) is a weak solution of

Lu = f, in Q,
u = g, on 0f).

Choosing a w € H'(Q2) for which w = g on 9, we have that @ :=u —w € H3(Q) is a
weak solution to the problem

Lu = f, in Q,
u = 0, on Jf2.

where f = f — Lw € H~'(Q).

3.2 The maximum principle and non-negativity constraint

Since the differential operator associated with the steady advection-diffusion problem
is elliptic, we have the following maximum principle.

Theorem 7. (Maximum principle) Suppose u € C?(2) N C(£).
1. If Lu <0 in ), then

max % = max u. (55)
a 89
2. If Lu>0 in ), then
min v = min u. (56)
o P

Proof. The result is classical. For a discussion of the proof, see Chapter 6 of [22]. .
Note that in the presence of non-negative forcing, the maximum principle provides

a non-negativity constraint for the solution to the steady advection-diffusion equation
with homogeneous boundary conditions.
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Corollary 2. (Non-negativity constraint) Suppose u € C?(Q) N C(Q) is a strong
solution to (S). Further, suppose f >0 in Q. Then:

minwu = 0. (57)
Q

The maximum principle has been a very powerful tool as it has allowed theo-
reticians to obtain information about solutions to differential equations without any
explicit knowledge of the solutions themselves. While the maximum principle holds
analytically, it is not necessarily true that a numerical approximation obeys this prop-
erty. From a physical standpoint, though, it is important that this principle holds in
the discrete setting as violations of this principle may lead to unphysical negative den-
sities, temperatures, concentrations, or electric charges. However, not even numerical
solutions to self-adjoint elliptic boundary value problems obtained using the Galerkin
finite element method are guaranteed to satisfy the maximum principle. Consequently,
much work has been done to understand when numerical solutions satisfy or violate
the maximum principle, a discrete equivalent known as the discrete maximum prin-
ciple, or weaker versions of these principles [12, 13, 18, 25, 43, 48], and further work
has been done to develop new methodologies which automatically preserve a discrete
maximum principle [2, 11, 17, 19, 36, 37, 39, 40, 41, 42, 45, 47]. Of particular interest
is a recent paper by Liska and Shashkov [40] in which a method based on constrained
optimization is developed to arrive at a numerical solution to self-adjoint elliptic prob-
lems satisfying a discrete maximum principle. In fact, this technique is identically a
variational multiscale method directly enforcing the maximum principle in the context
of a projector based on the energy norm.

We find that, indeed, numerical approximations obtained using the classical VMS
method may not preserve the maximum principle because a linear projection is not
guaranteed to preserve a maximum principle. Because of this, we will introduce a
VMS method in the next subsection in which the maximum principle is automatically
enforced.

Remark. The piecewise bilinear nodal interpolant of the solution to the advection-
diffusion equation is guaranteed to preserve the maximum principle. However, one
notes the nodal interpolant is not a true variational projection as it is not continuous
in H}().

3.3 The classical and constrained variational multiscale
methods

Let V C H&(Q) be a finite-dimensional space. The space V is simultaneously the space
of weighting functions and the set of trial solutions. Let us introduce the fine-scale
Green’s function ¢’ : Q x Q — R, which represents the fine-scale Green’s operator G’
and satisfies

G'r(y) = /Q ¢ (@, y)r()dx (58)
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for all » € H-(Q). Since the bilinear form B(-,-) is coercive, the inf-sup conditons
(33)-(36) hold and thus the above fine-scale Green’s function is well-defined. The clas-
sical VMS method can be stated as follows.

Classical variational multiscale method:

Find @ € V such that

[ evite) = payite) - Vota)da = [ [ Lata)g' ()£ o)y

/f d:v—//f "(z,y)L*0(y)dydx (59)

forallo e V.

To define the constrained VMS method, we need a discrete analogue of the maxi-
mum principle. That is, we need a finite set of inequality constraints that is equivalent
to (55) and (56) for the space of functions V. This is a very difficult thing to do in
general. However, if the space V corresponds to piecewise bilinear finite element func-
tions satisfying homogeneous boundary conditions, then it is sufficient to require that
the nodal values satisfy a discrete mazimum principle.

Let a piecewise bilinear function v have the representation

Mnd

= :Ni(z), (60)
=1

where v; is the nodal value of v at x; and N;(z) is the piecewise bilinear finite element
function satisfying
1 ifi=y
Ni(z;) = { 0 otherwise. (61)

We immediately have the following theorem.

Theorem 8. (Discrete maximum principle) Let v have the form of (60). Then:

1. The function v satisfies

max v = max?v (62)
Q o0
if and only if
max ¥; = max d. (63)
% o
2. The function v satisfies
min v = min v (64)
Q o0
if and only if
min ¥; = min 7. (65)
7 o0
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Proof. A piecewise bilinear finite element function attains its minima and maxima at
nodes. [

Theorem 8 suggests the following representation for our constrained variational for-
mulation which imposes a discrete maximum principle on the numerical solution @ in
the case when V' C V is a space of piecewise bilinear finite element functions satisfying

homogeneous boundary conditions.

Constrained variational multiscale method for bilinear finite elements:

Find u € V, ti1 € R, ;o € R such that
/Q (kY (a(z) + @(2)) - Az) (a(z) + @ () - Vola)da
—/ / L (ﬂ(ﬂz) + ﬂ’(x)) g (x,y)L*0(y)dydx

/ dx—//f "(x,y) L 0 (y)dydx (66)

for all v € V,
; <0, if f<0inQ, i=1,...,np4, (67)
; >0, if f>0inQ, t:=1,...,np,4, (68)
pi1 >0, fori=1,2,...,n,4 (69)
pig >0, fori=1,2,... nyg (70)
piit; =0, i=1,..., Mg, (71)
finiy =0, i=1,... 1. (72)
pi1 =0 if f>01in Q or z; € 09, (73)
pi2 =0 if f <0in Q or z; € 09, (74)

and

Nnd Nnd

Z,U,Z 1B Z,Uz QB (75)

where the functions B; € V satisfy
(Bi, v)u = v(xi) = 0; (76)
for all v € V.

Recall, the functions B;(x) in the above formulation can be easily computed by
soliving a linear system with a positive-definite mass matrix as illustrated in Appendix
B. It is easy to show that Theorems 3 and 4 can be used to infer that the above
constrained variational multiscale method has a unique solution # and the Lagrange
multipliers p; 1, pti 2 are unique. This follows from the structure and convexity of our
constraints.
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To arrive at a computationally tractable numerical scheme, one must approximate
the fine-scale Green’s function appearing in the classical and constrained VMS methods.
This is traditionally done with a highly-localized approximation as it is obviously more
convenient and easy. In the next subsection, it will be shown that with the correct
projector, the fine-scale Green’s function is indeed attenuated. This is explored in
greater detail in [34].

Finally, before proceeding, let us note that while the constrained VMS formulation
above seems vastly more complicated than the unconstrained, classical VMS formula-
tion, one can instead post-process the classical VMS solution to arrive at a solution to
the constrained formulation. This is done using the procedure detailed in Appendix A.

Remark 1. The constrained variational multiscale method can be trivially modified
to account for nonhomogeneous Dirichlet boundary conditions. In this case, the set of
trail solutions is replaced with a set S satisfying nonhomogeneous boundary conditons,
and the inequality constraints are modified to enforce appropriate maximum principles.

Remark 2. The constrained variational multiscale method can be easily extended to
the case of isogeometric analysis. In isogeometric analysis, the solution field is repre-
sented in terms of B-spline, NURBS, or T-spline basis functions. For such functions,
the maximum principle is satisfied if a discrete maximum principle is satisfied by the
control variables. This is due to the convex hull property. As C° finite elements can
be represented in terms of isogeometric Bézier basis functions, this provides an avenue
for enforcing maximum principle for higher-order C° elements. For an introduction to
NURBS-based isogeometric analysis, see [28], and for an extension of this technique to
T-splines, see [3].

3.4 The fine-scale Green’s function

One can find the fine-scale Green’s function by solving
/ £ (@ y)i(@)de = / 5z — y)i(z)dz, Vo€V (77)
Q Q

in mixed form for ¢'(z,y) € V for each fixed y € Q. The structure of the fine-scale
Green’s function was examined in depth in [34] for a number of choices for finite element
spaces V and variational projectors P. Here, we review the structure of the fine-scale
Green’s functions for two chosen projectors.

Let © = (0,1)%, k = 1073, and B = (1/2,1)/v/1.25. We have numerically ap-
proximated the fine-scale Green’s functions for the L?-norm and H&—seminorm for a
piecewise-bilinear finite element space defined on a mesh of 20 x 20 elements. These
approximations were obtained by solving (77) in mixed form. Since both g and ¢’
are defined on (0,1)2 x (0,1)?, for the purpose of graphical representation we fix
y =1y* = (0.775,0.775) (see Figure 1) and we plot the Green’s function g and fine-scale
Green’s function ¢’ as a function of z. Changing this position produces similar results.
The numerical approximations to g and g’ were computed using Galerkin’s method on
a fine mesh of 500 x 500 elements, which is able to resolve the solution of the problem
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y* = (0.775, 0.775)

od—

Figure 1: Mesh of the space V used for the calculation of the fine-scale Green’s functions for
the steady advection-diffusion problem and location of y* = (0.775,0.775).

sufficiently for our purposes. A contour plot of x +— ¢g(z,y*) is presented in Figure
2(a). Note that x — g(x,y*) is singular when = = y*, and as such, the graph in Figure
2(a) has been truncated at g = 5. Roughly speaking, g has support around the upwind
tail through y*.

Contour plots of x — ¢'(z,y*) for the H}-projector PHol and the L2-projector P2
are presented in Figure 2(b) and 2(c) respectively. The singularity at x = y* is still
truncated. Observe that the fine-scale Green’s function for Py is more localized about
y* than the fine-scale Green’s function for P2. In fact, the fine-scale Green’s function
for PHS seems to be negligible outside a small neighborhood of elements around y*. This
is the same story as was told in [34] and once again suggests that local approximations
of ¢’ for P = PH% may achieve near Hi-optimality for the steady advection-diffusion
problem.

3.5 Two example problems

We consider two example problems. The setup for the first example problem is illus-
trated in Figure 3. For this problem, the scalar diffusivity is set to x = 1073, the
velocity field is set to 5 = (1,1/2)/4/1.25, and homogeneous boundary conditions are
enforced. The forcing function is taken to be

2, if x; < min (2x9,0.5),

f(x1,m9) = { 0, otherwise. ™

The problem is characterized by an interior layer at z; = 2x9 and boundary layers
at x1,x9 = 1. The exact solution is plotted in Figure 4. Since the forcing is every-
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Figure 2: Green’s function and fine-scale Green’s functions for the bilinear mesh.
(a) Contour plot of x — g(x,y*).
(b) Contour plot of z +— ¢'(x,y*) for P = Py and the associated coarse mesh.
(c) Contour plot of z +— ¢'(x,y*) for P = P2 and the associated coarse mesh.
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where non-negative, the solution satisfies a non-negativity constraint. We enforce this
condition in our constrained VMS method.

We consider a coarse-scale space of bilinear finite element functions corresponding
to the mesh in Figure 1. The coarse-scale approximation @ obtained from the classical
VMS method is plotted in Figures 5(a) and (c) for the cases of Hi- and L?-optimality.
Images detailing violations of the non-negativity constraint are included in Figures 5(b)
and (d). From these four figures, we see that both approximations suffer from over-
shoots and undershoots about the interior and boundary layers, and it is obvious that
the solution obtained from the H{-projector is much better than that obtained from
the L2-projector. In fact, the solution obtained from the H&—projector almost satisfies
the non-negativity constraint. Indeed, the minimum of this solution is approximately
—0.015. If one further magnifies the blown-up image in Figure 5(d), one finds that
the solution obtained from the L2-projector suffers from additional overshoots in the
region where the exact solution is zero. These overshoots are a direct result of the
L?-projector compensating for undershoots about the interior layer.

In Figure 5(e), we have plotted the coarse-scale approximation obtained from the
so-called VMS-7 method, originally referred to as the unusual stabilized finite element
method [23]. In this method, the fine-scale Green’s function obtained from the Hg}-
projector is replaced by a highly-localized algebraic approximation. Specifically, one

writes
el

_;Te/erl(y)ﬁ(y)dy%/Q/er(y)g’(%y)rz(x)dxdy (79)

for all 71,79 € V*, with
he

2|8
where h. is the length of element {2, in direction 3. We note this definition of 7 is
valid only for the advective limit. For the case of rectangular bilinear finite elements,
the VMS-7 method is identical to SUPG. In Figure 5(f), we have, as in the case of the
classical VMS methods, presented an image detailing violations of the non-negativity
constraint.

In Figures 6(a)-(d), we have plotted the coarse-scale approximations @ obtained
from the Hi- and L2-optimal constrained VMS methods enforcing a non-negativity
constraint. We see that both of our approximations are everywhere non-negative. In
addition, if we magnify the blown-up image in Figure 6(d) further we find that the
L?-optimal solution no longer suffers from additional overshoots in the region where
the exact solution is zero. However, the solution still suffers from severe overshoots
about the boundary layers and minor overshoots about the interior layer. In Figures
6(e)-(f), we have plotted the solution obtained from the VMS-7 method subject to
a non-negativity constraint. This method is identical to the Hi-optimal constrained
VMS method with the exception that the fine-scale Green’s function is approximated.
The VMS-7 solution is everywhere non-negative but also suffers from severe overshoots
about one of its boundary layers.

To eliminate the remaining overshoots occurring in the constrained L?-optimal and
VMS-7 coarse-scale approximations, one must introduce extra constraints or mecha-

Te =

(80)
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nisms. In the next subsection, we will discuss possible approaches including enforcing
a global conservation constraint and applying weak boundary conditions.

The setup for the second example problem is illustrated in Figure 7. For this
problem, the scalar diffusivity is again set to x = 1073, the velocity field is again
set to 0 = (1,1/2)/+/1.25, the forcing is set to zero, and nonhomogeneous boundary
conditions are enforced. Specifically, the boundary condition is taken to be 1 along
the red lines and 0 along the rest of the boundary. This problem is a standard one in
testing the robustness and accuracy of a numerical method for the advection-diffusion
problem. The solution to the problem is characterized by boundary layers at z1,z9 =1
and an interior layer at x1 = 2z + 0.2.

The exact solution to this problem does not lie in H'(2) since the boundary con-
dition is discontinuous. In addition, standard C° finite elements cannot represent the
given boundary condition. As such, we consider modified “ramp” boundary conditions
for which a set of bilinear finite element functions corresponding to a uniform 20 x 20
mesh can replicate. The effective boundary conditions are then

0, ifxy =1,20=1, or 1 > 0.2 and 2 = 0,

1, if 21 =0 and 29 <0.95 =0 or 21 <0.15 and 25 = 0,
4—20z1, if0.15 <z <0.2and z2 =0,
20 — 2029, if z1 =0 and zo > 0.95.

u(xy, xe) =

(1)
The exact solution for these “ramp” boundary conditions is given in Figure (8). Since
the forcing is zero, the solution inside the domain is bounded above by 1 and below by 0.
We enforce our numerical approximation to lie within these bounds in our constrained
VMS method.

As with the first example, we consider a coarse-scale space of bilinear finite element
functions corresponding to a uniform 20 x 20 mesh. The coarse-scale approximation
@ obtained from the classical VMS method is plotted in Figures 9(a) and (c) for the
cases of H}- and L?-optimality. We see that both approximations violate the maximum
principle about the interior and boundary layers, and the approximation induced by
the H}-projector is again much better than that obtained from the L?-projector. The
coarse-scale approximation u obtained from the constrained VMS method is plotted
in Figures 9(b) and (d). We see that these approximations are far superior to the
approximations obtained from classical VMS in an aesthetic sense (i.e., in the elusive
“eyeball” norm), that these approximations are nearly monotone, and that the H}-
and L2-optimal solutions are nearly indistinguishable. (There is a small dip in the
H&—optimal solution near the point x = (0.15,0.05) that is not discernible in Figure
9(b). This is why we use the modifier “nearly.”)

In Figure 9(e), we have plotted the coarse-scale approximation obtained from the
unconstrained VMS-7 method, and in Figure 9(f), we have plotted the solution ob-
tained from the VMS-7 method subject to a constraint enforcing the discrete maximum
principle. We see that the constrained approximation is monotone and superior to the
unconstrained approximation in the eyeball norm. The constrained approximation,
however, does suffer from a ragged profile in the direction tangential to the boundary
along the layer located at x; = 1. This is reminiscent of the “stair-casing” behavior
that plagues flux-corrected transport schemes in computational fluid dynamics [44].
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3.6 Conservation considerations and weak boundary con-
ditions

As illustrated by Figures 6(c) and (e), the direct enforcement of a discrete maximum
principle in VMS may not, by itself, result in a satisfactory coarse-scale approxima-
tion. The constraint may not ensure a monotone solution free of unphysical oscilla-
tions. Indeed, finding a proper set of constraints that guarantees monotonicity is still
an open research area, and a precise mathematical definition of monotonicity does not
yet exist. In [21], the authors attempted to obtain a monotone solution to the steady
advection-diffusion equation utilizing a total variation constraint. The constraint, how-
ever, involves a constant whose exact value is not known in the steady case. A total
variation bound for the unsteady case, however, is explicitly known and is the basis of
a forthcoming paper [20].

To handle the remaining overshoots in Figures 6(c) and (e), we must introduce
additional mechanisms. To begin, note that the addition of a non-negativity constraint
in our VMS method results in the distribution of sources throughout our domain. The
presence of these sources inadvertently results in violation of conservation in the sense
that the coarse-scale solution @ of the constrained VMS method satisfies

/udazE/Pudaz (82)
Q Q

/Qﬂdx—/ﬂpudx. (83)

That is, the constrained VMS method does not globally conserve @ in constrast with the
classical VMS method. It is desirable to recover equality to arrive at a conservation
principle. This can be done through the enforcement of an additional constraint,
namely, (83), in our constrained VMS method. The enforcement of this constraint
tends to compensate for the non-negativity constraint. Since violations of the non-
negativity constraint are often accompanied by additional overshoots, it may be hoped
that the conservation constraint has the effect of removing these overshoots.

One finds that enforcing a conservation principle does lessen the undesirable over-
shoots associated with Figures 6(c) and (e) but does not remove them entirely because
the projected solution Pu suffers from overshoots about the boundary layer without
accompanying undershoots. To remove the overshoots associated with the boundary
layer, one can employ weak boundary conditions [5, 6]. In previous works, this has been
found to be a very promising approach to dealing with sharp boundary layers associ-
ated with prescribed Dirichlet boundary conditions. In Figure 10, we have plotted the
coarse-scale approximation obtained from a VMS-7 method utilizing weakly enforced
boundary conditions and direct enforcement of the non-negativity and conservation
constraints. The conservation constraint is satisfied in the sense that

/ud:c:/uVMsTd:c (84)
Q Q

where uyys_, 18 the unconstrained VMS-7 solution. From Figure 10, we see that the
constrained approximation with weakly enforced boundary conditions is monotone and

rather than
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superior in quality to the VMS-7 solutions illustrated in Figures 5(e) and 6(e) in terms
of the eyeball norm. This suggests an effective four-part recipe for solving the steady
advection-diffusion equation: (i) utilization of a VMS-inspired stabilized method, (ii)
weakly enforced boundary conditions, (iii) direct enforcement of the discrete maximum
principle, and (iv) direct enforcement of a conservation constraint.
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4 Conclusions

In this paper, we derived a new theoretical framework for the enforcement of equality
and inequality constraints in variational multiscale analysis. The theory is first pre-
sented in an abstract operator format. The decomposition of the exact solution into its
coarse-scale and fine-scale components is defined through a constrained optimization
problem. In the case of convex constraints, this problem is found to be well-posed. An
exact expression for the fine-scales is derived in terms of variational derivatives of the
constraints, Lagrange multipliers, and a fine-scale Green’s function. Using this frame-
work, we developed a variational multiscale method for the steady advection-diffusion
problem enforcing a discrete maximum principle. Numerical results illustrated the
promise of such a multiscale technology. When coupled with weak boundary condi-
tions and the direct enforcement of an additional conservation constraint, the method
was found to produce accurate and monotone solutions.

This work raises important questions regarding solution quality: what exactly are
the constraints that one wants to enforce on a numerical solution, and to what degree
is one willing to trade off solution accuracy and computational ease in order to satisfy
them? Once one’s goals are delineated, the present variational multiscale formulation
enables the development of a numerical method that achieves them. We believe this
framework can be utilized in a rigorous way to develop numerical methods with pre-
defined attributes and provide satisfactory solutions in the critical, but elusive, eyeball
norm.
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Figure 3: Problem description for the first steady advection-diffusion example problem.

Figure 4: Exact solution of the example problem illustrated in Figure 3.
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Figure 5: Numerical approximations for the example problem illustrated in Figure 3.
(a), (b) Classical VMS solution for P = Pp;.
(¢), (d) Classical VMS solution for P = Ppe.
(e), (f) VMS-7 solution.
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Figure 6: Numerical approximations for the example problem illustrated in Figure 3.
(a), (b) Constrained VMS solution for H}-optimality.
(c), (d) Constrained VMS solution for L*-optimality.
(e), (f) VMS-7 solution with direct enforcement of non-negativity constraint.
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Figure 7: Problem description for the second steady advection-diffusion example problem.

Figure 8: Exact solution of the example problem illustrated in Figure 7 using “ramp” bound-

ary conditions.

Preprint submitted to Computer Methods in Applied Mechanics and Engineering



J. A. Evans, T.J.R. Hughes, and G. Sangalli

30

Figure 9: Numerical approximations for the example problem illustrated in Figure 7.
(a) Classical and (b) Constrained VMS solutions for Hj}-optimality.
(c) Classical and (d) Constrained VMS solutions for L?*-optimality.
(e) VMS-7 solution.
(f) VMS-7 solution with direct enforcement of maximum principles.
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Figure 10: VMS-7 solution for the example problem described in Figure 3 with weakly
enforced boundary conditions and direct enforcement of non-negativity and conservation.
(a) Surface plot highlighting quality of solution.
(b) Surface plot illustrating weak enforcement of boundary conditions.
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Appendix A: Postprocessing

Theorem 5 of Section 2 suggests that one may postprocess a classical VMS solution
to obtain the constrained VMS solution. In particular, given Pu € V, one solves the
following formulation for @ € V.

Findae K, \; €R (i=1,2,...,n¢), and p; € R (i = 1,2,...,npne,) such that

Neq Nineq

(4, 0)pr = (Pu, ) Z/\Z g (Dfi, 0y — > pi v+ (Dgi(), 0)y, (85)
i=1

fz(ﬁ) = 0, fori=1,2,...,nc, (86)

gi(w) < 0, fori=1,2,..., Nineq, (87)

i > 0, fori=1,2,... Ninegs (88)

wigi(a) = 0, fori=1,2,..., Nineq- (89)

The above equations may be solved using a variety of algorithms from constrained
optimization. We describe here how to use the active set method to arrive at a solution.
Suppose the space V' has the representation

V:{ vzf:f N;, v,ER} (90)

Define the matrix M = [M;;] € R"des*"dof such that
M;j = (Ni, Nj)m, (91)
the matrices F = [Fj;] € R"a*"dof and G(a) = [G;5(u)] € R™inea*Mdof such that

Fy = v (Dfi, Nj)y, (92)
Gij(u) = p-(Dgi(u),Nj)y, (93)

the vectors @ = {u;}”, u = {u;}’ where

Pu = ZUiNi; (95)

and the vectors A = {\}7, p = {w}’, and gu) = {g;(@)}". If finite element
basis functions are employed to represent the coarse-scales, then the above matrices
and vectors can be constructed using a standard assembly procedure. Note that by
construction, the matrix M is symmetric and positive-definite!.

LA caution is in order. M is defined with respect to the scalar product on H, that is, (-, -)g. This means
that M will only be the classical mass matrix when H = L2.
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Find @, A, and p such that

Our problem has the following algebraic form.

Ma = Mu - \TF — TG,

Fa
g(u)
o
p'g(u)

0,
0,
0,
0

To solve the above problem, one can partition inequality constraints into two groups:

those that are to be treated as active and those that are to be treated as inactive. The
inequality constraints treated as inactive are effectively ignored. The idea of active set
methods is to define at each step of an algorithm a set of constraints, termed the work-
ing set, that is to be treated as the active set. At each step, the working set constraints
are treated as equality constraints and the other inequality constraints are ignored. A
standard algebraic solver can then be utilized to solve the resulting system. At the end
of this solve, the working set is modified to ensure that all of the inequality constraints
are satisfied and to ensure non-negativity of the inequality Lagrange multipliers. This
procedure is illustrated below.

1 Set the working set W to be the empty set;
2 Set Converged = 0;
3 while Converged = 0 do
4 Solve the algebraic problem
Mu
Fu
gi(u)
Hi
for u, A, w;
5 Set Converged = 1;
6 foreach i = 1,2,...,njpeq do
7 if i ¢ W and g;(u) > 0 then
8 Set Converged = 0;
9 Insert ¢ into W
10 else if i € W and p; < 0 then
11 Set Converged = 0;
12 Remove ¢ from W;
13 end
14 end
15 end

Mu — XTF — uG
0

0 ifiecW

0 ifigW

Algorithm 1: Postprocessing active set algorithm
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The algebraic solve appearing in the postprocessing algorithm can be solved using
either a direct or iterative solver in the case of linear inequality constraints or a Newton-
Raphson or other nonlinear procedure in the case of nonlinear inequality constraints.
We do not detail this here. The active set algorithm is guaranteed to converge, but
theoretical estimates only guarantee that this occurs with an exponential number of
steps. Our experience, however, has shown that this algorithm converges in a very
small number of steps for practical applications (between 3 and 4 steps for the examples
presented herein).

Preprint submitted to Computer Methods in Applied Mechanics and Engineering



J. A. Evans, T.J.R. Hughes, and G. Sangalli

39

Appendix B: Computing the fine-scale compo-
nent ¢’ and its variational derivatives

If one wishes to directly solve the full form of the constrained variational multiscale for-
mulation, i.e., formulation (1) from Section 2, one must compute the fine-scale quantity
4’ and various variational derivatives.

Recall that we can write

Negq Nineq

i = Z)\ibi + Z pici(t). (101)
i=1 i=1

where b; and ¢; are defined by (20) and (21) respectively. Assume the coarse-scale space
V has the representation of (90). Suppose further that b; and ¢; have the representations

Ndof

b = > bi;N;, (102)
j=1

Ndof

a(@® = D ci(0)N;. (103)
=1

Defining the vectors b; = {bij}T and ¢;(v) = {cij(ﬁ)}T and using notation introduced
in Appendix A, we have that

b; = M 'FI, (104)
ci(a) = MGl (105)

where F; and G;(1) are the i'" rows of matrices F and G(u) respectively. Since M is
a symmetric, positive-definite matrix, the above expressions can be evaluated using a
conjugate gradient linear solver. Hence, the quantity @’ and its variational derivatives
with respect to the Lagrange multipliers can be evaluated fairly simply.

In the case of nonlinear inequality constraints, the variational multiscale formulation
consists of a set of nonlinear algebraic relations. If a Newton-Raphson solver is to be
employed to solve this nonlinear system, one must then also compute the variational
derivative of @' with respect to the coarse-scale solution. For example, for a finite
element implementation, one computes the variational derivative of 4/ with respect to
the nodal variables. One writes

o' & Je(a
= Z 223 ()

oty ouy

=1
Nineq Ndo f a
C’L]

= > . (106)

=1 j=1

The variational derivatives of the various components c;; with respect to the coarse-
scale variables @y, satisfy
8Ci(l_1) ML 8Gi(ﬁ)T
ouy oy,

(107)
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for each k = 1,2,...,n4,r. Thus, for each constraint, one must form ng4, right-hand-
sides and solve ng,s linear systems. This is wholly impracticable. Consequently, it is
advised that a nonlinear solver which does not require the exact variational derivatives
be used. For example, these derivatives can be approximated using a secant technique.
This results in an approximate tangent matrix and a Quasi-Newton method.

Preprint submitted to Computer Methods in Applied Mechanics and Engineering





