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Abstract

Conventional finite shell element formulations use rotational degrees of freedom to de-
scribe the motion of the fiber in the Reissner-Mindlin shear deformable shell theory, result-
ing in an element with five or six degrees of freedom per node. These additional degrees of
freedom are frequently the source of convergence difficulties in implicit structural analy-
ses, and, unless the rotational inertias are scaled, control the time step size in explicit anal-
yses. Structural formulations that are based on only the translational degrees of freedom
are therefore attractive. Although rotation-free formulations using C° basis functions are
possible, they are complicated in comparison to their C'' counterparts. A C'*-continuous,
k > 1, NURBS-based isogeometric shell for large deformations formulated without ro-
tational degrees of freedom is presented here. The effect of different choices for defining
the shell normal vector is demonstrated using a simple eigenvalue problem, and a sim-
ple lifting operator is shown to provide the most accurate solution. Higher order elements
are commonly regarded as inefficient for large deformation analyses, but a traditional shell
benchmark problem demonstrates the contrary for isogeometric analysis. The rapid conver-
genge of the quadratic element is demonstrated for the NUMASHEET S-rail benchmark
metal stamping problem.
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1 Introduction

Structural elements, like solid elements, have traditionally used C° Lagrange poly-
nomials as basis functions. The development of C! shell elements based on Kirchhoff-
Love theory proved very difficult, and the structural analysis community eventually
adopted the C° shear deformable Reissner-Mindlin theory. Since the fiber vector
is no longer defined as being normal to the reference surface, two rotational co-
ordinates are needed to define its orientation, but three rotational coordinates are
commonly used in practice to simplify the implementation.

Using six degrees of freedom per node doubles the number of degrees of free-
dom in comparison to the requirements of thin shell theory. Doubling the degrees
of freedom increases the stiffness matrix size by a factor of four, and the cost of
the matrix factorization by a factor of eight. Since structural elements are typi-
cally very ill-conditioned, a direct solver is needed. Sparse direct solvers currently
scale poorly beyond a few dozen processors, and therefore the size of structural
problems that may be efficiently solved implicitly is capped. Additionally, the ro-
tational degrees of freedom are frequently the source of convergence problems in
large deformation analyses. Even large scale quasi-static problems are currently
solved using explicit time integration methods to achieve scalability on massively
parallel computers. The stable time step is determined by the maximum eigenvalue
of the system, which is invariably a mode dominated by the rotational degrees of
freedom. Unless the rotational inertias are scaled up, the stable time step size for
explicit time integration methods is therefore governed by the thickness of the shell,
making explicit thin shell calculations impractical. Shell formulations that use only
translational degrees of freedom are therefore attractive for many reasons.

Isogeometric analysis is a new computational method that is based on geometry
representations (i.e., basis functions) developed in computer-aided design (CAD),
computer graphics (CG), and animation, with a far-reaching goal to bridge the ex-
isting gap between CAD and analysis [17, 18, 29]. For the first instantiation of the
isogeometric methodology, non-uniform rational B-splines (NURBS) were chosen
as a basis, due to their relative simplicity and ubiquity in the worlds of CAD, CG,
and animation. It was found that not only were NURBS applicable to engineering
analysis, they were better suited for many applications, and were able to deliver ac-
curacy superior to standard finite elements (see, e.g., [1, 5-8, 18, 30, 37]). Subdivi-
sion surfaces [14—16] and, more recently, T-Splines [4, 19], were also successfully
employed in the analysis context. It should be emphasized that isogeometric refers
only to using the same basis functions for analysis as for the geometry, and is not
restricted to NURBS [29].

Rotation-free isogeometric Bernoulli-Euler beams and Poisson-Kirchhoff plates
were introduced and studied in [18]. See also [17].



A rotation-free isogeometric shell formulation is presented here using C'*-continuous,
k > 1, NURBS. The efficiency of the element is enhanced by interpolating the nor-
mal from the control points. The normal directions are not uniquely defined and the
effects of different choices are explored. A simply lifting operator is found to be
a good option. The accuracy and efficiency of the proposed methodology is illus-
trated with numerical examples.

2 Kinematics

The translational degrees of freedom of the control points define the motion of
the reference surface of the shell. Without additional degrees of freedom, the ori-
entation of the fiber with respect to the reference surface is fixed. The simplest
assumption regarding the fiber is that it is normal to the reference surface, i.e.,
the Kirchhoff-Love hypothesis. In the context of a finite element formulation, the
Kirchhoff-Love hypothesis may be imposed at a number of different levels, rang-
ing from imposing it at a set of discrete points to imposing it over the entire ref-
erence surface. In the current formulation, the normal vectors are associated with
the control points. Since the basis functions in isogeometric analysis are generally
not interpolatory and the control points do not lie on the shell surface, the normals
associated with the control points are not uniquely defined. The consequences of
different choices are examined subsequently.

The summation convention for repeated lower-case latin indices is assumed to hold
over the range 1 to 3 unless explicitly indicated otherwise.

The kinematics for the rotation-free shell are chosen to be very similar to those for
our Reissner-Mindlin isogeometric element [13] in order to achieve commensurate
speed and robustness, and to facilitate direct comparisons. The spatial coordinates
a of a point with parametric coordinates s are

h
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The subscript A is the control point index, & 4 is the shell thickness, and n 4 is the
normal. The basis functions N, are functions only of the two parametric coordi-
nates on the reference lamina (s3 = 0). The coordinates of the control points are
denoted by the notation q , to emphasize their role as generalized coordinates that
in general do not lie on the shell surface. This equation is identical to the one used
in our previous Reissner-Mindlin element [13] but with the interpretation that the
current normal is associated with the control point.

The exact normal is computed by taking the cross product of the derivatives of
with respect to the two parametric coordinates,
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The subscript A on the tangent vectors indicates that they are associated with the
basis function A. There is not, however, a unique material point on the shell as-
sociated with basis function A, and three choices are explored in the subsequent
sections.

The velocity is obtained by differentiating Equation 1 with respect to time,
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For a traditional shell formulation with rotational degrees of freedom, the velocity
of the normal is expressed in terms of the angular velocity, w, namely,

hA:wanA. (6)

This has the unintended consequence of introducing a spurious singularity in the
stiffness matrix about the axis of the normal if three rotational degrees of freedom
per node, or control point, are used. For the rotation-free shell, the velocity of the
normal is calculated by directly differentiating Equation 4 with respect to time,
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2.1 The discrete gradient operator
The Jacobian J;, = g%z is defined as
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where ¢ = 1,2, 3 and the terms enclosed by square brackets are independent of s3.
Its inverse J,;jl = % is used frequently in subsequent equations.



Differentiating the velocity with respect to the coordinates gives the velocity gradi-
ent L in the global coordinate system
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and the rate of deformation D is

D= (L + LT) . (12)
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The relationship between the time derivative of the normal and the velocities of the
control points is subsequently required. First, the projection matrix P 4 is defined

as
1
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and then Equation 8 is expanded as follows,
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where e;;;, is the alternator tensor. The time rate of the normal 72,4 is therefore
the product of two terms, the first of which depends only on control point A, an
important fact for efficient implementation. To simplify subsequent equations, the
array c is defined as
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allowing n 4 to be written succintly as
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The discrete gradient operator B is defined through its action on @ 4,

Lij =Y Bijari k. (19)
A

Substituting Equation 18 into Equation 11 provides a complete expression for the
velocity gradient in terms of the control point velocities, namely

_ ON,4 .
Lij= > Ji} [; ™ m] (20)

k=1,2

LONg h
+> { (33 Yoot D5, + J3]1NB> 23 Prie > egmncAn:L’Am}
B

k=1,2 A

Collecting the coefficients of & 4, gives the individual terms in B,
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The contribution to the internal force vector may be expressed using B as
Fi = [ ouBiaaV, 22)

We note that there is a more efficient way to compute Equation 22 than a direct
computation of it using Gaussian quadrature. This is described in Section 3.5.

3 Implementation

The element is implemented using the generalized element formulation [12], and
therefore may use any of the CAD basis functions that are, at the minimum, C*
continuous. The example calculations are performed with NURBS [17, 34] but T-
splines [4, 19], for example, would work as well.

The first term of B in Equation 21 has the usual form of the discrete gradient in
solids and membranes, while the second involves a summation over all the con-
trol points in the element. The number of operations required to directly evaluate
this expression therefore scales with the square of the number of control points
instead of the usual linear scaling associated with elements having rotational de-
grees of freedom. Even for fairly low-order elements (e.g., quadratic and cubic),



the rotation-free formulation might be expected to be more expensive than the con-
ventional formulation. There are, however, three mitigating factors. First, the cost
of calculating a tangent matrix is small in comparison to the cost of factorizing it.
Second, the B matrix is needed only for the tangent matrix since the evaluation of
the internal force may be performed without the explicit evaluation of B (see Sec-
tion 3.5). Thirdly, and perhaps most importantly, by design, the terms (e.g., c§ )
associated with the double summations are nodal quantities that are independent of
the integration points, and therefore only need to be evaluated once per residual (or
stiffness) evaluation.

Additionally, many of the same strategies used in the shear deformable element
[13] may be carried over to reduce the cost of evaluating the residual. The most
important strategy is noting that many of the expressions that need to be evaluated
are linear in s3. To take advantage of this, the integration of an element is performed
in two nested loops: The inner loop is through the thickness of the shell, and is
associated with s, while the outer loop is associated with the quadrature points
specified over the reference lamina, (sq, s2, 0). To distinguish quantities associated
with these two loops, the superscripts G and g refer to the outer and inner loops
respectively. For example, the volume of the element, V/, is evaluated as

V= /w dz = /8 det (J) ds = zcjggj WOusdet (J9)) = %jzgjvc‘g. (23)

where the integration weights for G and g are W& and w9, respectively. For com-
pactness, the evaluation of a function at the specific integration point (s{', s§, s9) is
denoted by the dual superscripts “Gg” and the volume contribution of integration
point G'g is denoted V9. To emphasize where efficiency has been gained by taking
advantage of the linearity of a function in s3, the alternate notation J G(sg) may

also be used.
3.1 Evaluation of the normals

The normals are evaluated using Equation 4 and as they are not functions of the
lamina integration points, they only need to be evaluated only once per element
residual evaluation. As will be seen below, adopting this convention reduces the
number of times that the double summation over the control points is performed to
only two: once during the evaluation of terms required to calculated the velocity
gradient, and once during the final residual evaluation. A traditional curved thin
shell formulation typically requires that the double summation be performed twice
at each lamina integration point, an expense that may be insignificant for an implicit
calculation, but significant for an explicit calculation.

Unlike traditional Lagrangian basis functions, which are interpolatory at the nodes,
there is not a natural, unique location for evaluating the normal associated to a



control point. The effect of the choice of the normal location is not evident for many
test cases solved with a degenerated solid formulation with rotations. A flat plate,
for example, has a constant normal direction and the solution obtained is therefore
independent of where the normals are evaluated. A formulation without rotational
degrees of freedom, however, involves the derivatives of the normal vectors, and
the accuracy of the solution clearly depends on how they are evaluated.

Three choices for the normals are compared in a later section to explore the sensi-
tivity of of the element to how the normal is evaluated. The first one evaluates the
normal at the location where the basis function achieves its maximum. Note that
for NURBS, each basis function has a single maximum, giving a unique location
for each normal. The second projects the location of each control point to the clos-
est point on the shell surface, and uses the parametric coordinates of that point for
evaluating the normal. There are other possible choices for evaluation points, for
example the Greville and Demko abscissae [3], but these are not considered in this
work.

The third approach is motivated by a desire to minimize shear locking by approxi-
mating the kinematics of classical thin shell theory, where the fiber is always normal
to the reference surface. While a B-type formulation [21] is possible, it might re-
sult in a formulation that involves operations over the entire NURBS patch. For the
sake of computational efficiency in an explicit formulation, a procedure that is local
to the element is strongly preferred. Unlike the two previous choices, this one does
not associate a physical point in the shell mid-surface with each basis function.
Instead, the tangent vectors at integration points, given by the exact formula,

ON
ti(sy) = 325~ (5,)4: (24)
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are required to be interpolates of the tangent vectors associated with the basis func-
tions, that is,

ti(sg) = > Na(sg)ta:. (25)
A

The t 4; are assumed to be linear functions of the generalized coordinates g,
= Chiap (26)
B

but, in contradistinction to Equation 4, the coefficients C'g; are not equal to 8N S

evaluated at some s 4 associated with V4. Rather, we determine C'4; by combmmg
Equations 24, 25, and 26 to obtain
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and require it to hold for all values of q ;. This results in a system of linear equations



for the coefficients C4;,
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We refer to this method of defining the £ 4; as the lifting operator method because it
lifts values from the integration points to the basis functions. It ensures that the tan-
gent vectors at the integration points, given by Equation 25, and hence the normals
at the integration points,

n(s,) = p(s,) . where p(s,) =1t1(s,) X ta(sy), (29)
p(s)]

are exact. This may be interpreted as a discrete Kirchhoff approximation. For ele-
ments with a polynomial or B-spline basis (equivalent to setting the fourth control
point coordinate w = 1 everywhere for NURBS), the Kirchhoff condition is satis-
fied point-wise over the entire element. There is no difference between a discrete
Kirchhoff approximation at the integration points and its point-wise exact satisfac-
tion over the element in terms of numerical performance since only the integration
points are evaluated during the numerical solution.

The example calculations use p + 1 points in each in-plane direction, providing a
sufficient number equations for determining N 4. The “reduced” p x p rule does
not, and additional points must be chosen. The additional five points used in the
example calculations for a quadratic NURBS element with 2 X 2 integration are

(+£1/+/3,0), (0,41/+/3), and (0, 0).
3.2 Evaluation of the Jacobian

The tangent vectors, t; for & = 1,2 are evaluated at the control points using
Equation 26, and the normal vectors are calculated from Equations 2 and 4. Since
these quantities are evaluated at the control points, they are calculated once per
residual evaluation and stored.

The Jacobian is efficiently evaluated as an affine function of s3,

J5(s3) = JG" + 53052 (30)
N
El—aﬂ%—za Ain kE=1,2 (31)
88k
JS _ZNA (32)
ONA ha
JG? = Loy k=12 33
1k % aSk 2 nA 9 ( )



3.3 Evaluation of the velocity gradient

The velocity gradient is an affine function of s3 at lamina integration point G, al-
lowing it to be efficiently evaluated as

LG =L3' + 5313 (34)
ON h
LS =" Jt Z | TR S Na (35)
k=1, 7 sy, o 2
ONA hA
LG2 J! il 36
1;1:2 & [ Osi Sk 2 A] 0

3.4 Stress update

The co-rotational stress update procedure used here is the same one used in our
previous paper [13]. The local corotational coordinate system, ef,i = 1,2, 3, for
the stress is defined at the integration points using the invariant scheme of Hughes
and Liu [26] with the convention that ef; is the direction normal to the reference
surface. The tangent vectors ', 7 = 1, 2 are defined as

ON 4
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where || - || is the usual three-dimensional Euclidean norm. Defining ¢, and £ by
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the remaining local coordinate vectors are
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The rotation matrix from the local to the global coordinate system, v9 = RV, is

R = el el e - (44)

The stress is updated in the local coordinate system using the local rate of defor-
mation, D',

D'=R"D'R (45)
The normal component, D5, is calculated within the constitutive model to sat-
isfy the zero normal stress condition o%; = 0. The algorithm for calculating D%,
depends on the particular constitutive model [24, 35, 36]. The updated stress is ro-
tated into the global coordinate system at the end of the time step for evaluating the
residual,

o = Ro‘R”. (46)

3.5 Evaluation of the residual and stiffness matrix

The internal forces may be directly evaluated by performing the appropriate sparse
matrix multiply and numerical quadrature of Equation 22, but the operation count
may be reduced by taking advantage of the structure of the internal forces. Integrat-
ing through the thickness, the force resultants at GG are defined as

=2 oIV (47)
g
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g
Introducing the resultants and the expression for B, Equation 21, into Equation 22
gives
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The terms in the square brackets may be summed across the lamina integration

points, (G, giving the partial internal force contributions defined in Equations 50
and 51.
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The final internal force evaluation, Equation 52, is evaluated outside of the integra-
tion loop so that the summation over B is only performed once per element residual
evaluation, thereby reducing calculations.

Fa=Fu+ > eineFpj Pﬁcﬁf 62)
B

The material tangent contribution to the stiffness matrix is
K - [ B'CBav (53)
1%

where C' is the material tangent constitutive matrix, and B is evaluated using Equa-
tion 21.

4 Dynamics and the mass matrix

The first variation of @ is
h on
A B dp

and the acceleration, obtained by differentiating the velocity, is

. . hc onc .. Pnc . .
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The inertial contribution to the principle of virtual work therefore has the form
/ b - &pdet (J) ds = / Z NaNgdq - qgpdet (J) ds
s

+/ 2—33 ) pdet (J) ds

/ hAhB s2(...) pdet (J) ds. (56)
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The first term on the right hand side has the same form as the consistent mass ma-
trix for solid elements. The second term is small provided that pdet (J) is nearly
constant through the thickness, which holds when the thickness is small in compar-
ison to the radius of curvature. The third term is small when the thickness of the
element is small relative to its characteristic length. Only the first term on the right
hand side is therefore retained for the consistent mass matrix for thin shells,

12
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For higher order elements, the consistent mass matrix provides a more accurate
solution for eigenvalue problems than a lumped mass matrix. However a lumped
mass matrix is a requirement for explicit time integration methods. The NURBS
basis functions are non-negative everywhere and therefore none of the problems
associated with the development of lumped mass matrices for higher order La-
grange and serendipity basis functions occur. Simple row summing [25] is used in
the explicit calculations presented later.

4.1 Time step size estimation

Since the cost of an explicit simulation is inversely proportional to the stable time
step size, an accurate estimate of time step size is necessary for efficient simula-
tions. The traditional approach to obtaining the time step size invokes two mathe-
matical bounds on the maximum frequency of the structural model. The first bound
is the maximum frequency of the system is bounded from above by the maximum
of the individual maximum frequencies of the elements,

system
max

(59)

< €

< max (Wna)-

A short proof is given in [25], where the original proofs were attributed to Irons
[31] and Hughes et al. [27].

The second required bound is on the maximum frequency of the individual ele-
ments. The first bounds of this type were originally obtained for finite difference
methods using linear basis functions in one dimension,

2

e
M T a
eff

max

(60)

where ¢° is the length of the element and ¢ is the effective sound speed (which is
a function not only of the material properties but also the shock viscosity formula-
tion [10]). Each constitutive model used in an explicit analysis therefore calculates
effective elastic moduli in addition to updating the stress and internal history vari-
ables. This applies even to materials that may not have a classical elastic response,
e.g., a viscous fluid. In two and three dimensions, the same expression is often used
with a heuristic formula for a characteristic element length. A more rigorous bound
[22] has been obtained in terms of the discrete gradient operator.

A more precise estimate of the maximum system frequency may be obtained using
the power iteration method developed by Benson [11] for multi-material arbitrary

13



Lagrangian Eulerian (MMALE) methods. Power iteration [39] obtains the maxi-
mum eigenvalue of the system by the iterative scheme

(©2,®)" = M KE 61)

max

2 i+1
2 i+1 (wmax\Il)n
w = ma — 62
(Wnax) n:l,NJ%(QN ( v (62)
where M and K are the mass and elastic stiffness matrices of the system, 7 is the
iteration number, 7 is the equation number, and N EQ N is the number of equations
in the system. Twelve iterations are usually sufficient for convergence.

In practice, in an explicit code, the product KW' is evaluated using the standard
strategy of evaluating the internal force contribution on the element level from the
strain calculated from the eigenvector and the effective elasticity matrix, C, that is
calculated from the same effective elastic moduli used in the sound speed calcula-
tion, namely,

e’ = BY' (63)
oVl =Cée" (64)
KU — / B o"dx (65)

and then the element contribution is assembled into the global vector. Note that
boundary conditions, such as contact, that contribute terms to the stiffness matrix
also contribute to the product K¥’.

The ratio, R, of the actual maximum system eigenvalue and the bound obtained
from a traditional element characteristic length evaluation has been observed to
change slowly with time even for problems involving large strains and material
nonlinearities [11], allowing the actual maximum stable time step size to be safely
approximated as

Atactual = RALE. (66)

where At is the traditional bound obtained by taking minimum time step size over
all the elements. In practice, the ratio R is updated infrequently, with one power
iteration performed each time step, for a fixed small number of time steps in a
larger time interval. The time interval between the updates of R depends on the
particular problem; see Benson [11] for more details.

4.2  Time Integration

The explicit central difference method and implicit Newmark method are used in
LS-DYNA to advance the solution in time, and either may be used with the element
formulation presented here. Since the example calculations are explicit, the central

14



difference method is briefly summarized. Using the lumped mass matrix, the accel-
erations are calculated from the assembled forces at time step n, and the velocities
are updated to n + 1/2,

nt1/2  .n—1/2 .

@i = g At (67)
The translational velocities are integrated to give the current control point coordi-

nates,
qyt =g+ Atg (68)

4.3 Boundary conditions

Natural force and moment boundary condtions are treated in the same way as in
standard finite element analysis. Essential displacement boundary conditions can be
satisfied strongly by assigning control variable values, analogous to assigning nodal
values as in standard finite element analysis. Essential rotation boundary conditions
can also be satisfied strongly by assigning control variable values at the boundary
and values adjacent to the boundary. This simple procedure was first utilized by
Aurrichio et al. [2] in their “stream function” formulation of elasticity. It is based
on the observation that, for open knot vectors, the slope of a NURBS surface at its
boundary is defined by the slope of the first row of bilinear control elements [17]
adjacent to the boundary. The analogous case for curves is illustrated in Figure 2.20
of [17]. Alternatively, rotation boundary conditions can be satisfied weakly, using
penalties, and/or Lagrange multipliers, as in [18].

5 Example Calculations

In this section we present one linear elastic and two nonlinear elastic-plastic com-
putational examples. Unless otherwise specified, there are p + 1 integration points
in each in-plane direction between knots where p is the polynomial order of the
NURBS basis. We denote by F, v, p, 0, and Ey the Young’s modulus, Poisson’s
ratio, density, initial yield stress, and plastic hardening modulus, respectively.

All calculations were performed in double precision on a Dell laptop computer with
an Intel Core Duo using a single processor.

5.1 Vibration of a square plate

The vibration of a simply supported square plate demonstrates the accuracy of the
rotation-free formulation in linear analysis, and provides a convenient means of

15
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Fig. 1. The accuracy of the first eigenvalue for a square plate as a function of the choice of
normal and the number of control points.

exploring the different choices for the normals for the rotation-free formulation.

The exact eigenvalues in radians for a square plate of length L and thickness h,
using thin plate theory, are

wij=C(*+j%) 0<i,j (69)
E h

=T i ) 2

(70)

where £ is Young’s modulus, v is Poisson’s ratio, and p is the density. For the
calculations shown here, the values are £ = 107, v = 0.3, p =1, L = 10.0, and
h = 0.05.

A plot of the lowest eigenvalue ( = j = 1) as a function of the number of
control points for quadratic elements (p = 2) is shown in Figure 1. A consistent
mass matrix, neglecting rotary inertia, was used for these calculations. Two inte-
gration points were used in the through-thickness direction. All the control points
in the mesh are counted, including those on the boundary that have all their de-
grees of freedom constrained. The plot starts at nine control points because a sin-
gle quadratic isogeometric element requires nine control points, the same as a La-
grangian element, but only one control point is unconstrained.

The results using the lifting operator are nearly three orders of magnitude more ac-
curate than the other two for coarse meshes. On the finest mesh, the lifting operator
is still two orders of magnitude more accurate than the normal calculated at the
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Fig. 2. The accuracy of the first eigenvalue for a square plate as a function of the degree of
the NURBS basis functions and the number of control points.

maximum of the basis function. The orthogonal projection converges towards the
result obtained by the lifting operator, but calculations with higher order NURBS
(p = 3 and p = 4) indicate that it converges to an eigenvalue below the theoretical
value, and the absolute value of the error increases past a certain point.

Given that the exact solution is based on thin plate theory, the response of the lifting
operator therefore appears to be providing a very good approximation of thin shell
theory. Since the accuracy of the lifting operator is clearly superior to the other
choices, the remaining calculations are performed using it.

The accuracy of the rotation-free shell formulation as a function of the degree p
is shown in Figure 2. For comparison, the results obtained using some of the more
popular 4-node shear deformable shells implemented in LS-DYNA are plotted with
them.

The Belytschko-Lin-Tsay element [9] uses one-point integration with hourglass
control. Several forms of hourglass control are available with LS-DYNA, but no
attempt was made to optimize the results by changing the default stiffness or for-
mulation. The fully-integrated element (denoted “Type 16 in Figure 2) is based on
the Hughes-Liu [26] formulation with some simplifications for speed [24], and is
popular for implicit, large deformation calculations. Consistent and lumped mass
matrices are available for these shells in LS-DYNA, and the consistent form was
used for all the calculations in Figure 2. The converged value for the first frequency
for the shear deformable shells is lower than the analytical thin plate value. The
error, calculated using the thin plate value, changes sign as the mesh is refined. Its
absolute value, used in the log-log graph, creates the illusion that the values for
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Fig. 3. Roof loaded by velocity impulse: problem description. The curved ends of the roof
are hinged and the lateral boundaries are fixed.

shear deformable elements start to diverge at 500 nodes. The lumped mass calcula-
tions (not shown) do not exhibit this artifact because their first eigenvalues are con-
sistently on one side of the thin plate solution for the range of meshes considered
in this example, but the magnitude of their errors is larger than for the consistent
mass calculations.

The convergence rates are, as expected, increasing monotonically with the degree
of the basis functions. The quadratic, cubic, and quartic isogeometric elements are
much more accurate than the traditional elements with linear basis functions. The
displacements in the x, y-plane are zero for all the elements, and therefore there are
three active degrees of freedom for the linear, shear deformable elements, and only
one for the rotation-free elements.

For the finest meshes using quartic (p = 4) NURBS, the accuracy reaches the
round-off error of the eigenvalue solver, which uses the block-shifted Lanczos
method. To obtain this accuracy, a special version of LS-DYNA was created that
wrote out the eigenvalues to fifteen decimal places instead of the default eight. Ad-
ditionally, the value of 7 used in the exact solution, that is,

T ~ 3.1415926535897932384626433832795, (71)

was obtained from the article on 7 in Wikipedia [38] because the value obtained
from 7 & cos™!(—1) is not sufficiently accurate.
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5.2 Roof loaded by velocity impulse

The influence of the integration rule on the nonlinear response of the rotation free
shell is explored using the problem setup given in Figure 3. This problem was taken
from [9] and consists of a 120° cylindrical panel loaded impulsively by specifying
an initial velocity distribution. The problem dimensions and material data are sum-
marized in Figure 3.

The normal is evaluated using the lifting operator and quadratic (p = 2) NURBS
are used in the calculations.

An initial velocity normal to the shell surface is specified over a region marked on
the figure. The normal velocity is specified on the control points by first extracting
a consistent normal (see [23]) and then multiplying it with a prescribed velocity
magnitude. The problem is solved on the entire domain with no symmetry assump-
tions.

1abk Mesh 3: 2x2 Mesh 2: 3x3 Mesh 3: 3x3
. | Mesh 2: 2x2
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Fig. 4. Roof loaded by velocity impulse: displacement histories and convergence to the
reference solution under h—refinement on C'' meshes.

For convenience, the 3 x 3 and 2 X 2 lamina integration rules are referred to as “full”
and “reduced” integraton, respectively. Note that element quadrature for isogeo-
metric elements is an area of active research, e.g., [28], and therefore neither rule
should be regarded as the “standard” one or as optimal. Three integration points are
used in the through-thickness direction.

Displacement histories of the point, initially located at x = 0, y = 3, and 2 = 6, on
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Table 1

Roof Results

Element | Number of | Number of | Integration | Time CPU Maximum

Type Cntrl. Pats. | Elements Rule Steps | (seconds) | Displacement
NURBS 180 130 2x2 364 0.54 0.988
NURBS 180 130 3x3 367 0.81 0.836
NURBS 540 450 2x2 740 2.90 1.289
NURBS 540 450 3x3 743 5.28 1.281
NURBS 1836 1666 2x2 1502 20.87 1.351
NURBS 1836 1666 3x3 1502 36.92 1.348

B-T 191 224 1x1 578 0.16 1.103

B-T 4656 4512 1x1 2027 10.5 1.277

each mesh are shown in Figure 4 for the two rules. The results are compared with
the reference computations employing two meshes of 224 and 4512 Belytschko-
Tsay elements, as well as experimental data from [33]. Table 5.2 summarizes the
results.

As might be expected for explicit time integration, the reduced integration rule is
almost twice as fast as the full integration rule. There is, however, an overhead as-
sociated with the gather of the element data and the assembly of the force vector
that prevents the element speed from being perfectly linear in the number of in-
tegration points. The reduced integration rule produces a larger displacement than
the full rule for the coarsest mesh, denoted Mesh 1, but the difference disappears as
the mesh is refined.

The medium NURBS mesh with 450 elements, denoted Mesh 2, has a peak dis-
placement that is approximately the same as the reference solution obtained with
4656 Belytschko-Tsay elements, and the finest NURBS mesh has a peak displace-
ment that is approximately five percent higher. In terms of CPU cost, the medium
mesh with 3 x 3 integration is approximately twice as fast as the reference solution,
and the 2 x 2 integration is more than three times as fast.

5.3  Metal Stamping

The last example is the S-rail benchmark stamping problem from the NUMISHEET
1996 Conference [32]. Our simulation is based on the LS-DYNA analysis per-
formed by researchers at Alcoa [20], using their input file in its entirety except
for the isogeometric elements modeling the blank.
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P2M3 Mesh

Time = 0

Fig. 5. The initial configuration of the NUMISHEET 1996 stamping problem. The upper
die is semi-transparent to show the mesh for the blank.

An aluminum sheet metal blank of 6111-T4 aloy, 0.92 mm thick, is modeled with
the transversely anisotropic plasticity model in LS-DYNA, using a Young’s modu-
lus of 69 GPa, Poisson’s ration of 0.33, and an anisotropic hardening parameter of
0.64. The blank holder force is 10 kN, the Coulomb coefficient of friction is 0.1,
and the punch stroke is 37 mm. The initial state is shown in Figure 5, with the upper
die semi-transparent to show the mesh for the blank.

The original simulation from Alcoa used 42804 fully-integrated (type 16) shells
in LS-DYNA, with 11550 elements in the blank and the remainder defining the
geometry of the rigid body dies. Five integration points are used in the through-
thickness direction.

Simulations were run using 240, 1092, 3840, and 7680 quadratic NURBS elements
for the blank. The corresponding numbers of control points are 308, 960, 4100, and
8036. Note that the ratio of control points to the number of elements is much less
than asymptotic value of 4 expected for traditional 9-node quadratic shells. The
lamina integration rule is 2 X 2 Gauss and the normal is evaluated using the lifting
operator. In these simulations, the time step size is governed by the penalty stiffness
in the contact algorithm, and not the elements.

Plots of the final sheet, viewed from above, are shown in Figure 6. The vertical

21



Fig. 6. The top view of the deformed blank for the NUMISHEET 1996 stamping problem:
a) 240 quadratic NURBS elements, b) 1092 quadratic NURBS elements, ¢) 3840 quadratic
NURBS elements, d) 7680 quadratic NURBS elements, and e) 11550 LS-DYNA type 16
elements.

displacement has been contoured over a range of 3 mm to highlight the wrinkling
on the top of the S-rail. No wrinkling appears in the coarsest isogeometric mesh.
The overall character of the wrinkling appears in the 1092 element mesh, however
it has the opposite sign of the remaining isogeometric meshes and Alcoa’s solution.
The two finest isogeometric meshes capture the wrinkling accurately.

The equivalent plastic strain is shown in Figure 7. Alcoa obtained a maximum value
of 0.291. The coarsest mesh predicts a peak value of only 0.198, about two-thirds
of the reference solution. The peak plastic strains are 0.239, 0.290, and 0.289 for
the 1092, 3840, and 7680 element meshes, respectively.
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Fig. 7. The side view of the deformed blank for the NUMISHEET 1996 stamping problem
a) 240 quadratic NURBS elements, b) 1092 quadratic NURBS elements, ¢) 3840 quadratic
NURBS elements, d) 7680 quadratic NURBS elements, and e) 11550 LS-DYNA type 16
elements.

6 Conclusions

An accurate rotation-free isogeometric shell element has been developed.

The accuracy of the element is largely a function of the NURBS basis functions.
Since the basis functions are not interpolatory, the notion of evaluating the normals
at the control points is ambiguous. As demonstrated by the eigenvalue problem,
a response that accurately approximates thin shell theory is obtained by using a
simple lifting operator.

Efficiency for explicit calculations is obtained by using reduced integration, which
is made possible by the intrinsic properties of the NURBS basis functions. Fur-
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ther gains appear feasible [28]. For implicit analyses, where the linear algebra is
frequently the dominant cost, having only half the usual number of degrees of free-
dom per control point offers another important gain in speed.
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