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Abstract

We present the Bézier extraction operator and isogeometric Bézier elements for NURBS-based isoge-
ometric analysis. The Bézier extraction operator allows numerical integration of smooth functions to be
performed on C0 Bézier elements. We show how the Bézier extraction operator is computed for NURBS.
We then show that the extraction operator and Bézier elements provide an element structure for isogeo-
metric analysis that can be easily incorporated into existing finite element codes, without any changes to
element form and assembly algorithms, and standard data processing arrays. All significant changes may
be implemented in a shape function subroutine.
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1 Introduction
Isogeometric analysis was introduced by Hughes et al. [11] as a generalization of standard finite elements
and has been described in detail in [5]. The basic idea of the isogeometric concept is to use the same basis for
analysis as is used to describe the geometry. The geometric representation (e.g., NURBS and T-splines [16])
is typically smooth whereas the representation for standard finite element analysis is typically continuous but
not smooth. The ability to efficiently use a smooth basis in analysis has shown computational advantages
over standard finite elements in many areas including turbulence [1, 4], incompressibility [2, 3, 8], structural
analysis [6, 7], phase-field analysis [9], large deformation with mesh distortion [13], and shape optimization
[17]. These results have motivated further investigations of isogeometric analysis.

In this paper we describe the construction of isogeometric Bézier elements and the Bézier extraction op-
erator, which provide an element structure for isogeometric analysis that can be incorporated into existing
finite element codes. We first discuss the construction of the Bézier elements and extraction operator. For
simplicity, we restrict our discussion to NURBS for this development. We first show how Bézier decomposi-
tion can be used to compute a set of C0 Bézier elements from a NURBS, and we then show how to compute
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Isogeometric Finite Element Data Structures 2

the Bézier extraction operator. Next, we remove the restriction to NURBS and show that any basis for which
an extraction operator can be constructed can be incorporated into finite element codes with changes confined
to shape function subroutines. Finally, we return to NURBS and walk through a simple two-dimensional ex-
ample showing the construction of the extraction operator and its use in defining data processing arrays. We
note that the same data processing arrays utilized in finite element analysis, namely, the IEN, ID, and LM
arrays [10], are also sufficient for isogeometric Bézier elements.

2 Preliminaries
To establish definitions for later development, we provide a brief overview of the construction of B-splines
and NURBS. For a more detailed description see [14, 15]. We index element (i.e., local) basis functions and
control points with lower case indices a, b, c, . . . and patch (i.e., global) basis functions and control points
with upper case indices A,B,C, . . . The indices i, j, k, are used for various things, the context making use
clear. The global cases considered here consist of a single patch. However, the generalization to the multi-
patch case is straightforward. It just involves a transformation between the control point indices of each patch
and the corresponding global control points.

2.1 Bernstein polynomials and Bézier curves
A degree p Bézier curve is defined by a linear combination of p+1 Bernstein polynomial basis functions. We
define the set of basis functions as B(ξ) = {Ba,p(ξ)}p+1

a=1, and the corresponding set of vector valued control
points as P = {Pa}p+1

a=1 where each Pa ∈ Rd, d being the number of spatial dimensions, and P is a matrix
of dimension n× d, viz.,

P =


P 1

1 P 2
1 . . . P d1

P 1
2 P 2

2 . . . P d2
...

...
...

P 1
n P 2

n . . . P dn

 . (1)

The Bézier curve can then be written as

C(ξ) =
p+1∑
a=1

PaBa,p(ξ) = PTB(ξ) ξ ∈ [0, 1]. (2)

The Bernstein polynomials can be defined recursively for ξ ∈ [0, 1] as

Ba,p(ξ) = (1− ξ)Ba,p−1(ξ) + ξBa−1,p−1(ξ) (3)

where

B1,0(ξ) ≡ 1 (4)

and

Ba,p(ξ) ≡ 0 if a < 1 or a > p+ 1. (5)
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2.2 Knot vectors and B-splines
A univariate B-spline basis is defined by a knot vector. The knot vector is a set of non-decreasing parametric
coordinates written as Ξ = {ξ1, ξ2, . . . , ξn+p+1} where ξA ∈ R is the Ath knot, p is the polynomial degree
of the B-spline basis functions, and n is the number of basis functions. B-spline basis functions for a given
degree, p, are defined recursively over the parametric domain by the knot vector. Piecewise constants are first
defined as

NA,0(ξ) =

{
1 ξA ≤ ξ < ξA+1

0 otherwise.
(6)

For p > 0 the basis functions are define by the Cox-de Boor recursion formula

NA,p(ξ) =
ξ − ξA

ξA+p − ξA
NA,p−1(ξ) +

ξA+p+1 − ξ
ξA+p+1 − ξA+1

NA+1,p−1(ξ). (7)

A B-spline curve of degree p in Rd is defined by a set of B-spline basis functions, N(ξ) = {NA,p(ξ)}nA=1,
and control points, P = {PA}nA=1, as

T (ξ) =
n∑

A=1

PANA,p(ξ) = PTN(ξ). (8)

2.3 Knot insertion
Knots may be inserted into a knot vector without changing the geometric or parametric properties of the
curve. Let Ξ = {ξ1, ξ2, . . . , ξn+p+1} be a given knot vector. Inserting a new knot ξ̄ ∈ [ξk, ξk+1[ with k > p
into the knot vector requires that n + 1 new basis functions be defined using (6) and (7) with the new knot
vector Ξ = {ξ1, ξ2, . . . , ξk, ξ̄, ξk+1, ξn+p+1}. The m = n + 1 new control points, {P̄A}mA=1, are formed
from the original control points, {PA}nA=1, by

P̄A =


P1 A = 1
αAPA + (1− αA)PA−1 1 < A < m

Pn A = m

(9)

where

αA =


1 1 ≤ A ≤ k − p
ξ̄−ξA

ξA+p−ξA
k − p+ 1 ≤ A ≤ k

0 A ≥ k + 1

(10)

Knot values may be inserted multiple times but the continuity of the basis is reduced by one for each repetition
of a give knot value. However, by choosing control variables as in (9) and (10) the continuity of the curve is
preserved.

2.4 NURBS
A NURBS (Non-Uniform Rational B-Spline) is defined by a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, a set of
rational basis functions R = {RA,p}nA=1, and a set of control points P = {PA}nA=1 as

T (ξ) =
n∑

A=1

PARA,p(ξ). (11)
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The NURBS basis functions are defined as

RA,p(ξ) =
wANA,p(ξ)
W (ξ)

(12)

where

W (ξ) =
n∑

B=1

wBNB,p(ξ) (13)

is the weight function and wB is the weight corresponding the the Bth basis function.
For more efficient computation, a rational curve in Rn can be represented by a polynomial curve in

Rn+1. The higher dimensional space is referred to as the projective space. As an example, if PA is a
control point of a NURBS curve then the corresponding homogeneous control point in projective space is
P̃A = {wAPA, wA}T . Thus, given a NURBS curve defined in Rn by (11) the corresponding B-spline curve
defined in Rn+1 is

T (ξ) =
n∑

A=1

P̃ANA,p(ξ).

Working in the projective coordinate system allows the algorithms which operate on B-splines to be applied
to NURBS. Once new control variables are computed for the B-spline in the projective coordinate system,
simply dividing through by the weight yields the control variables for the NURBS.

3 The Bézier extraction operator
The Bézier extraction operator maps a piecewise Bernstein polynomial basis onto a B-spline basis. This
transformation makes it possible to use piecewise C0 Bézier elements as the finite element representation
of a NURBS or T-spline. In this section we begin by showing how the Bézier element representation of a
NURBS can be computed. We then define the Bézier extraction operator and show that it provides a mapping
from a piecewise Bernstein polynomial basis onto a NURBS basis.

3.1 Bézier decomposition
To compute the Bézier elements of a NURBS we use Bézier decomposition. Technically, Bézier decompo-
sition is accomplished by repeating all interior knots of a knot vector until they have a multiplicity equal to
p + 1. For our purposes, however, a multiplicity of p is sufficient. The result of this lower multiplicity is
that neighboring Bézier elements will share control points. Since we are projecting to a smooth, continuous
basis this has no effect and slightly reduces computation cost. We note that although multiple applications of
knot insertion may be used for Bézier decomposition there are more efficient algorithms available (see [14]
for details). Bézier decomposition of a univariate B-spline curve is illustrated as follows.

We begin with the cubic B-spline curve shown in Figure 1 and its associated knot vector

Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} . (14)

To decompose the curve into its Bézier elements we perform repeated knot insertion on all interior knots,
beginning from the left, until they have a multiplicity equal to p, the degree of the curve. Thus, we will be
performing knot refinement by inserting the knots {1, 1, 2, 2, 3, 3} into the knot vector.

Figure 2 shows the sequence of basis functions and control variables created by inserting the new knots
into the knot vector. Each inserted knot reduces the continuity of the basis by one at the knot location. The
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(a)

0 1 2 3 4

1

N1

N2
N3 N5 N6

N7

N4

(b)

Figure 1: A cubic NURBS curve. (a) The curve and its control net. (b) The basis functions of the curve. The
knot vector for the curve is {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} .

resulting basis has been decomposed into a set of C0 Bézier elements with each element corresponding to a
knot span in the original knot vector. The control points of the Bézier elements are computed by (9) and (10)
each time a knot is inserted. Thus, the continuity of the curve is unchanged.
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(a) (b)

(c) (d)

1

2 3

4

5 6

7

8 9

10

11 12

13

(e) (f)

Figure 2: The sequence of basis functions created by inserting the knots {1, 1, 2, 2, 3, 3} into the knot vector
for the curve in Figure 1. The final set of basis functions in (f) is a collection of piecewise cubic Bézier basis
functions. The numbers in (f) denote the numbering scheme of the Bézier basis functions.
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3.2 Computing the Bézier extraction operator
We now show how the Bézier extraction operator for a NURBS curve may be computed in order to represent
it in terms of a set of Bézier elements. Assume that we are given a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}
and a set of control points, P = {PA}nA=1, that define a B-spline curve (possibly in projective space). Let
{ξ̄1, ξ̄2, . . . , ξ̄m} be the set of knots that are required to produce the Bézier decomposition of the B-spline.
Then for each new knot, ξ̄j , j = 1, 2, . . . ,m, we define αjA, A = 1, 2, . . . , n + j, to be the Ath alpha as
defined in (10). Now, defining Cj ∈ R(n+j−1)×(n+j) to be

Cj =


α1 1− α2 0 · · · 0
0 α2 1− α3 0 · · · 0
0 0 α3 1− α4 0 · · · 0
...
0 · · · 0 α(n+j−1) 1− α(n+j)

 (15)

and letting P̄1 = P we can rewrite (9) in matrix form to represent the sequence of control variables created
by knot refinement as

P̄j+1 = (Cj)T P̄j . (16)

The final set of control points, P̄m+1, defines the Bézier elements of the decomposition. Letting Pb = P̄m+1

and defining CT = (Cm)T (Cm−1)T . . . (C1)T we get

Pb = CTP. (17)

Recalling that P has dimension n × d, we note that C has dimension n × (n + m), and Pb has dimension
(n+m)× d.

Recall that knot insertion causes no geometric or parametric change to a curve. Thus, if B(ξ) =
{BA(ξ)}n+m

A=1 is the set of Bernstein basis functions defined by the final knot vector we have from (8) that

T (ξ) = (Pb)TB(ξ) = (CTP)TB(ξ) = PTCB(ξ) = PTN(ξ). (18)

Since P is arbitrary, this shows we have constructed a new basis and linear operator such that

N(ξ) = CB(ξ). (19)

We call C the Bézier extraction operator.
It is important to note that the only input required to construct C is the knot vector. In other words, the

extraction operator is an artifact of the parameterization and does not depend on the control points or basis
functions. Thus, we can apply the extraction operator directly to NURBS as follows.

Define W to be the diagonal matrix of weights

W =


w1

w2

. . .
wn

 . (20)

Now, dropping the p subscript from (12) and writing it in matrix form we have

R(ξ) =
1

W (ξ)
WN(ξ). (21)
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Using this relationship and (19) , we can write the NURBS domain from (11) in terms of the Bernstein basis
as

T (ξ) =
n∑

A=1

PARA(ξ) = PTR(ξ)

=
1

W (ξ)
PTWN(ξ) =

1
W (ξ)

PTWCB(ξ)

=
1

W (ξ)
(CTWP)TB(ξ). (22)

Similary, letting w = {wA}nA=1 we can also rewrite the weight function, W (ξ), from (13) in terms of the
Bernstein basis as

W (ξ) =
n∑

A=1

wANA(ξ) = wTN(ξ)

= wTCB(ξ) = (CTw)TB(ξ)

= (wb)TB(ξ) = W b(ξ) (23)

where wb = CTw are the weights associated with the Bézier basis functions. To compute the Bézier element
control points, Pb, we first define Wb to be the diagonal matrix

Wb =


wb1

wb2
. . .

wbn+m

 . (24)

The Bézier control points are now computed as

Pb = (Wb)−1CTWP. (25)

This equation can be interpreted as mapping the original control points into projective space, applying the
extraction operator to compute the control points of the projected Bézier elements and then mapping these
control points back from projective space.

If we multiply (25) by Wb we have the relationship

WbPb = CTWP, (26)

but note that Wb 6= CTW. To get the final Bézier representation of the NURBS we substitute (23) and (26)
into (22) to get

T (ξ) =
1

W b(ξ)
(WbPb)TB(ξ)

=
n+m∑
A=1

Pb
Aw

b
ABA(ξ)

W b(ξ)
. (27)

Thus, we have shown that a NURBS curve can be written equivalently in terms of a set ofC0 Bézier elements.
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3.2.1 Localizing the extraction operator

If we compute C for the Bézier curve from Section 3.1 then equation (19) becomes



N1

N2

N3

N4

N5

N6

N7


=



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1/2 1/4 0 0 0 0 0 0 0 0 0
0 0 1/2 7/12 2/3 1/3 1/6 0 0 0 0 0 0
0 0 0 1/6 1/3 2/3 2/3 2/3 1/3 1/6 0 0 0
0 0 0 0 0 0 1/6 1/3 2/3 7/12 1/2 0 0
0 0 0 0 0 0 0 0 0 1/4 1/2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1





B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13



. (28)

Bézier decomposition results in one Bézier element for each interval in the original knot vector. Thus, over
each knot interval, the original NURBS basis can be represented as a linear combination of the basis functions
of the Bézier element corresponding to that knot interval. For example, consider knot span [0, 1[ for the Bézier
curve shown in Figure 1 and 2. The NURBS and Bernstein basis functions that are supported over this knot
span are shown in Figure 3. Highlighting the corresponding entries in (28) for this knot span we get



N1

N2

N3

N4

N5

N6

N7


=



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1/2 1/4 0 0 0 0 0 0 0 0 0
0 0 1/2 7/12 2/3 1/3 1/6 0 0 0 0 0 0
0 0 0 1/6 1/3 2/3 2/3 2/3 1/3 1/6 0 0 0
0 0 0 0 0 0 1/6 1/3 2/3 7/12 1/2 0 0
0 0 0 0 0 0 0 0 0 1/4 1/2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1





B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13



. (29)

Figure 4 visually shows this relationship.
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N1

N2 N3

N4

B1

B2 B3

B4

(a) (b)

Figure 3: The basis functions over the knot span [0, 1[ from (a) the NURBS basis in Figure 1 and (b) the
Bernstein basis in Figure 2f.

B1 = N1
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0 0.5 1 0 0.5 1
0

0.1
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0.5
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0.1

0.2

0.3
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0.5

0.6

0.7

0

0.1
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0.3

0.4

0.5

0.6

0.7

1
6B4 = N4

Figure 4: After knot insertion the original basis functions can be written as a linear combination of the basis
functions for the Bézier elements.
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Highlighing the relationship for the three remaining knot spans we have



N1

N2

N3

N4

N5

N6

N7


=



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1/2 1/4 0 0 0 0 0 0 0 0 0
0 0 1/2 7/12 2/3 1/3 1/6 0 0 0 0 0 0
0 0 0 1/6 1/3 2/3 2/3 2/3 1/3 1/6 0 0 0
0 0 0 0 0 0 1/6 1/3 2/3 7/12 1/2 0 0
0 0 0 0 0 0 0 0 0 1/4 1/2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1





B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13



, (30)



N1

N2

N3

N4

N5

N6

N7


=



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1/2 1/4 0 0 0 0 0 0 0 0 0
0 0 1/2 7/12 2/3 1/3 1/6 0 0 0 0 0 0
0 0 0 1/6 1/3 2/3 2/3 2/3 1/3 1/6 0 0 0
0 0 0 0 0 0 1/6 1/3 2/3 7/12 1/2 0 0
0 0 0 0 0 0 0 0 0 1/4 1/2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1





B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13



, (31)

and



N1

N2

N3

N4

N5

N6

N7


=



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1/2 1/4 0 0 0 0 0 0 0 0 0
0 0 1/2 7/12 2/3 1/3 1/6 0 0 0 0 0 0
0 0 0 1/6 1/3 2/3 2/3 2/3 1/3 1/6 0 0 0
0 0 0 0 0 0 1/6 1/3 2/3 7/12 1/2 0 0
0 0 0 0 0 0 0 0 0 1/4 1/2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1





B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13



. (32)
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To localize the extraction operator we first localize the basis functions to each element such that
N1

1

N1
2

N1
3

N1
4

 =


N1

N2

N3

N4

 ,


N2

1

N2
2

N2
3

N2
4

 =


N2

N3

N4

N5

 , (33)


N3

1

N3
2

N3
3

N3
4

 =


N3

N4

N5

N6

 ,


N4

1

N4
2

N4
3

N4
4

 =


N4

N5

N6

N7

 , (34)

and 
B1

1

B1
2

B1
3

B1
4

 =


B1

B2

B3

B4

 ,


B2

1

B2
2

B2
3

B2
4

 =


B4

B5

B6

B7

 , (35)


B3

1

B3
2

B3
3

B3
4

 =


B7

B8

B9

B10

 ,


B4

1

B4
2

B4
3

B4
4

 =


B10

B11

B12

B13

 (36)

where the superscript indicates the element number. Now, with these local quantities defined we can localize
the coefficients from the global extraction operator in (28). Using (29) thru (32) to construct the element
extraction operators and we get

N1
1

N1
2

N1
3

N1
4

 =


1 0 0 0
0 1 1/2 1/4
0 0 1/2 7/12

0 0 0 1/6




B1
1

B1
2

B1
3

B1
4

 , (37)


N2

1

N2
2

N2
3

N2
4

 =


1/4 0 0 0
7/12 2/3 1/3 1/6
1/6 1/3 2/3 2/3
0 0 0 1/6




B2
1

B2
2

B2
3

B2
4

 , (38)


N3

1

N3
2

N3
3

N3
4

 =


1/6 0 0 0
2/3 2/3 1/3 1/6
1/6 1/3 2/3 7/12

0 0 0 1/4




B3
1

B3
2

B3
3

B3
4

 , (39)


N4

1

N4
2

N4
3

N4
4

 =


1/6 0 0 0
7/12 1/2 0 0
1/4 1/2 1 0
0 0 0 1




B4
1

B4
2

B4
3

B4
4

 . (40)
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We can now write (19) in its localized element form as

Ne = CeBe. (41)

3.2.2 Computing the localized extraction operator

In practice the global extraction operator, C, is never computed. The local extraction operators, Ce, can
be computed directly by modifying existing Bézier decomposition algorithms. Algorithm 1 is based on the
Bézier decomposition algorithm presented in [14]. In its original form, this algorithm used (9) and (10) to
compute the control points of the Bézier elements of a curve. We have modified this algorithm so that it uses
only (10) to compute the coefficients of the element extraction operators. Note that by inserting knots from
left to right we are able to reduce the total computational cost by updating overlapping coefficients between
neighboring elements.

Algorithm 1 An algorithm to compute the local extraction operators for a one-dimensional B-spline para-
metric domain. Note that the input does not require the geometric information of the control variables.

input Knot vector, U = {u1, · · · , um}
Number of knots, m
Curve degree, p

output Number of elements, nb
Element extraction operators, Ce, e = 1, 2, . . . ,nb

// Initializations:
a = p+1;
b = a+1;
nb = 1;
C1 = I;
while b < m do

Cnb+1 = I; // Initialize the next extraction operator.
i = b;

// Count multiplicity of the knot at location b.
while b < m && U(b+1) == U(b) do b = b+1;
mult = b-i+1;

if mult < p do
// Use (10) to compute the alphas.
numer = U(b)-U(a);
for j = p,p-1,. . .,mult+1 do

alphas(j-mult) = numer / (U(a+j)-U(a));
end
r = p-mult;
// Update the matrix coefficients for r new knots
for j=1,2,. . .,r do

save = r-j+1;
s = mult+j;
for k=p+1,p,. . .,s+1 do

alpha = alphas(k-s);
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// The following line corresponds to (9).
Cnb(:,k) = alpha*C

nb(:,k) + (1.0-alpha)*C
nb(:,k-1);

end
if b < m do
// Update overlapping coefficients of the next operator.
Cnb+1(save:j+save,save) = Cnb(p-j+1:p+1,p+1);

end
end
nb = nb + 1; // Finished with the current operator.
if b < m do
// Update indices for the next operator.
a = b;
b = b+1;

end
end

end

3.3 NURBS surfaces and solids
It is convenient to take advantage of the tensor product structure of higher dimension NURBS to compute the
Bézier extraction operators for higher dimension. For consistency, we introduce a mapping, Ã, between the
tensor product space and the global indexing of the basis functions and control points. Let i = 1, 2, . . . , n,
j = 1, 2, . . . ,m, and k = 1, 2, . . . , l then in two dimensions we define

Ã(i, j) = m(i− 1) + j (42)

and in three dimensions

Ã(i, j, k) = (l ×m)(i− 1) + l(j − 1) + k. (43)

NURBS basis functions for surfaces and solids are defined by the tensor product of univariate B-spline ba-
sis functions. IfNi,p(ξ), Mj,q(η), and Ll,r(ζ) are univariate B-spline basis functions, then in two dimensions
with A = Ã(i, j) and Â = Ã(̂i, ĵ)

Rp,qA (ξ, η) =
Mi,q(η)Nj,p(ξ)wA∑n

î=1

∑m
ĵ=1Mî,q(η)Nĵ,p(ξ)wÂ

(44)

and in three dimensions with A = Ã(i, j, k) and Â = Ã(̂i, ĵ, k̂) depending on the spatial dimension

Rp,q,rA (ξ, η, ζ) =
Li,r(ζ)Mj,q(η)Nk,p(ξ)wA∑n

î=1

∑m
ĵ=1

∑l
k̂=1 Lî,r(ζ)Mĵ,q(η)Nk̂,p(ξ)wÂ

(45)

are the surface and solid NURBS basis functions respectively. For i = 1, 2, . . . , n and j = 1, 2, . . . ,m,
a NURBS surface is defined by a given control net {PA}, A = 1, 2, . . . , (n × m), and knot vectors Ξ =
{ξ1, ξ2, . . . , ξn+p+1} andH = {η1, η2, . . . , ηm+q+1} as

S(ξ, η) =
n×m∑
A=1

Rp,qA (ξ, η)PA. (46)



Isogeometric Finite Element Data Structures 15

Similarly for a NURBS solid with i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , l, {PA},A = 1, 2, . . . , (n×
m×l), and knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1},H = {η1, η2, . . . , ηm+q+1}, andZ = {ζ1, ζ2, . . . , ζl+r+1}
we have

S(ξ, η, ζ) =
n×m×l∑
A=1

Rp,q,rA (ξ, η, ζ)PA. (47)

To define the surface and solid element extraction operators we let Ci
ξ, Cj

η , and Ck
ζ be the ith, jth, and

kth univariate element extraction operators in the ξ, η, and ζ direction. Then we have for a surface and solid
respectively

Ce
A = Ci

η ⊗Cj
ξ (48)

and

Ce
A = Ci

ζ ⊗Cj
η ⊗Ck

ξ (49)

where ⊗ is defined for two matrices A and B, which may have different dimensions, as

A⊗B =

 A11B A12B · · ·
A21B A22B

...
. . .

 . (50)

4 Bézier extraction and the finite element framework
Bézier extraction provides an element structure that can be incorporated into existing finite element frame-
works. In the sections which follow we explore this application of Bézier extraction.

We assume that we have a geometric domain defined by the mapping

x(ξ) =
n∑

A=1

PARA(ξ) (51)

where ξ = (ξ1, ξ2, ξ3) = (ξ, η, ζ) is the parametric coordinate, P = {PA}nA=1 is a set of control points
and R = {RA}nA=1 is a NURBS basis for which a Bézier extraction operator, C, and Bernstein basis,
B = {BA}mA=1, can be computed.

Remark: We note that T-splines satisfy this assumption. Thus, all that follows in this section can be applied
to T-splines.

4.1 Incorporating Ce into the finite element formulation
We now show how the element extraction operator, Ce, can be incorporated into the finite element formula-
tion. We begin with an abstract weak formulation. Letting S be the trail solution space and V be the space of
weighting functions we have

(W )


Given f , find u ∈ S such that for all w ∈ V

a(w, u) = (w, f) (52)
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where a(·, ·) is a bilinear form and (·, ·) is the L2 inner-product. Both S and V are assumed to be subspaces
of the Sobolev space H1 (see [10] for further details). Galerkin’s method consists of constructing finite-
dimensional approximations of S and V . In an isogeometric setting we construct the finite-dimensional
subspaces Sh ⊂ S and Vh ⊂ V from the basis which describes the geometry. The Galerkin formulation is
then

(G)


Given f , find uh ∈ Sh such that for all wh ∈ Vh

a(wh, uh) = (wh, f)
(53)

In isogeometric analysis, the isoparametric concept is invoked, that is, the field in question is represented
in terms of the geometric basis. We can write uh and wh as

wh =
n∑

A=1

cARA (54)

uh =
n∑

B=1

dBRB (55)

where cA and dB are control variables. Substituting these into (53) yields the matrix form of the problem

Kd = F (56)

where

K = [KAB ], (57)
F = {FA}, (58)
d = {dB}, (59)

KAB = a (RA, RB) , (60)
FA = (RA, f) . (61)

The preceding formulation applies to scalar-valued partial differential equations, such as the heat conduc-
tion equation. The generalization to vector-valued partial differential equations, such as elasticity, follows
standard procedures described in [10].

4.1.1 The element shape function routine

As in standard finite elements, the global stiffness matrix, K, and force vector, F, can be computed by
performing integration over the Bézier elements to form the element stiffness matrices and force vectors—ke

and fe respectively—and assembling these into their global counterparts. The element form of (60) and (61)
is

keab = ae(Rea, R
e
b), (62)

fea = (Rea, f)e (63)

where ae(·, ·) denotes the bilinear form restricted to the element, (·, ·)e is the L2 inner-product restricted
to the element, and Rea are the element shape functions. The integration is usually performed by Gaussian
quadrature. As shown in Figure 5 for the two dimensional case, the integrals are pulled back, first onto
the parametric element and then onto a bi-unit parent element. This requires the evaluation of the global
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Figure 5: Integration is performed by Gaussian quadrature on each element. The physical element is pulled
back first to the parametric domain through the geometrical mapping and then to the parent element through
an affine mapping. For NURBS more efficient quadrature rules may be devised (see [12]).

basis functions, their derivatives, and the Jacobian determinate of the pullback from the physical space to
the parent element at each quadrature point in the parent element. These evaluations are done in an element
shape function routine.

In order to perform the shape function routine evaluations we recall from Section 3.2 that

R(ξ) = W
N(ξ)
W (ξ)

= WC
B(ξ)
W b(ξ)

. (64)

Localizing everything to the element, this becomes

Re(ξ) = WeCe Be(ξ)
W b(ξ)

. (65)

Thus, the derivatives of Re with respect to the parametric coordinates, ξi, are

∂Re(ξ)
∂ξi

= WeCe ∂

∂ξi

(
Be(ξ)
W b(ξ)

)
= WeCe

(
1

W b(ξ)
∂Be(ξ)
∂ξi

− ∂W b(ξ)
∂ξi

Be(ξ)
(W b(ξ))2

)
. (66)

To compute the derivatives with respect to the physical coordinates, (x1, x2, x3), we apply the chain rule to
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get

∂Re(ξ)
∂xi

=
3∑
j=1

∂Re(ξ)
∂ξj

∂ξj
∂xi

. (67)

To compute ∂ξ/∂x we first compute ∂x/∂ξ using (51) and (66) and then take its inverse. Since we are
integrating over the parent element we must also compute the Jacobian determinant of the mapping from the
parent element to the physical space, J . It is computed as

J =
∣∣∣∣∂x

∂ξ̃

∣∣∣∣ =
∣∣∣∣∂x
∂ξ

∂ξ

∂ξ̃

∣∣∣∣ . (68)

Higher-order derivatives can also be computed as described in [5]. An element shape function routines in
given in Appendix A.

Remark If Re and Ce are computed as the tensor product of univariate components—as described in
Section 3.3 for NURBS—their tensor product structure can be exploited to reduce computational cost when
computing the matrix products in (65) and (66). The following procedure can be used: (i) pre-compute the
univariate Bernstein basis functions and derivatives at the prescribed quadrature points in each direction, (ii)
at each call of the shape function routine, compute the univariate B-spline results for (65) and (66), and (iii)
depending on dimension, use (46) or (47) to compute tensor product values of these results.

5 A two-dimensional quadratic NURBS example
We now present an elasticity example to illustrate how the Bézier extraction operator can be used to compute
a Bézier mesh and associated data processing arrays for a NURBS. The example geometry, consisting of one
quarter of an annulus, is shown in Figure 6. We assume homogeneous Dirichlet boundary conditions on the
left edge of the domain. The geometry can be represented exactly by a quadratic NURBS surface, so we will
select p = 2.

Figure 6: A bivariate NURBS example. The hash marks on the left boundary indicate homogeneous Dirichlet
conditions.
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The parametric domain for this example, shown in Figure 7a, is defined by the two uniform open knot
vectors

Ξ =
{

0, 0, 0,
1
3
,

2
3
, 1, 1, 1

}
(69)

H =
{

0, 0, 0,
1
3
,

2
3
, 1, 1, 1

}
. (70)

The knot vectors define the univariate B-spline basis functions that are also shown in Figure 7a. These
functions define the tensor product basis functions that will be used in the analysis. The control mesh along
with the numbering of the control variables is shown in Figure 7b. The weights and control variables listed in
Appendix B Table 3 have been chosen such that the geometry is represented exactly by the NURBS surface.

N1 N2
N3 N4

N5

M1

M2

M3

M4

M5

ξ

η

0
0

1

11/3

1/3

2/3

2/3

1
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2221
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1716
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8

76

5

4

3
2

(a) (b)

Figure 7: The parametric and control mesh for the NURBS in Figure 6. (a) The parametric mesh is defined by
the global knot vectors. The bivariate basis functions for the NURBS patch are constructed as the tensor prod-
uct of the one-dimensional basis functions in each parametric direction. The one-dimensional basis functions
are shown for each direction. (b) Assigning control variables to each basis function generates the physical
NURBS domain. The control points form the control mesh which is a piecewise bilinear interpolation of the
control points.

Figure 8 shows the control mesh next to a standard C0 quadratic isoparametric finite element mesh that
has the same number of degrees of freedom. We note that while the NURBS represents the geometry exactly
it is interpolatory only at the corners. The finite element mesh, on the other hand, is interpolatory at all nodes
but only approximates the geometry. The ID array shown in Figure 8c maps the degree-of-freedom number
(i.e., direction index of the displacement component) and global control point number to the corresponding
equation number in the global system. A zero value indicates a degree of freedom that is constrained by the
boundary condition and for which the equation has been removed from the global system. The numbering of
both meshes is such that the ID array is identical for both.
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NURBS control mesh Finite element mesh
(a) (b)

ID array:

Global control point number (A)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Degree-of-freedom 1 0 1 3 5 7 0 9 11 13 15 0 17 19 21
number (i) 2 0 2 4 6 8 0 10 12 14 16 0 18 20 22

15 16 17 18 19 20 21 22 23 24 25
23 0 25 27 29 31 0 33 35 37 39
24 0 26 28 30 32 0 34 36 38 40

P = ID(i, A)

(c)

Figure 8: A comparison between a quadratic NURBS control mesh and an approximately equivalent ( geo-
metrically) C0 finite element mesh. (a) The control mesh for the bivariate NURBS example. The NURBS
control mesh only interpolates the corner points but produces an exact geometry. (b) An approximate C0

finite element mesh. The elements are interpolatory but only approximate the geometry. (c) The ID array
maps degree-of-freedom numbers, i, and global control point numbers, A, to global equation numbers, P . A
zero value indicates the degree-of-freedom has been removed from the global system due to the specification
of an essential Dirichlet boundary condition, as in standard finite element analysis [10]. Note that this array
is the same for both meshes.
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5.1 Computing the extraction operators
As was discussed in Section 3 we can use the element extraction operators to compute the control points of
the Bézier elements. Bézier extraction is performed on the univariate basis functions in the ξ and η directions
for the parametric mesh in Figure 7a to compute the corresponding univariate element extraction operators
Ci
ξ, i = 1, 2, 3, and Cj

η , j = 1, 2, 3. The bivariate element extraction operator is then computed as

Ce = Ci
η ⊗Cj

ξ (71)

where the multi-index i, j has been mapped to the element number such that e = 3(i − 1) + j and ⊗ is
defined in (50). In this example the knot vectors in each parametric direction are uniform and open. This
simplifies the computation of the extraction operators. In fact, other than the first and last extraction operator,
which must account for the Bézier end conditions, all other operators are exactly the same. In general, if Ξ is
a quadratic uniform open knot vector with no repeated interior knots and n non-zero intervals (i.e., elements)
the univariate extraction operators are simply

C1
ξ =

 1 0 0
0 1 1/2
0 0 1/2

 (72)

C2
ξ = C3

ξ = · · · = Cn−1
ξ =

 1/2 0 0
1/2 1 1/2
0 0 1/2

 (73)

Cn
ξ =

 1/2 0 0
1/2 1 0
0 0 1

 (74)

and Ci
η = Ci

ξ, i = 1, 2, . . . , n. For the current example n = 3 in both the ξ and η direction. The extraction
operators for the tensor product element domains are

C1 = C1
η ⊗C1

ξ =

 1 0 0
0 1 1/2
0 0 1/2

⊗
 1 0 0

0 1 1/2
0 0 1/2



=



1 0 0 0 0 0 0 0 0
0 1 1/2 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0
0 0 0 1 0 0 1/2 0 0
0 0 0 0 1 1/2 0 1/2 1/4
0 0 0 0 0 1/2 0 0 1/4
0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 0 1/2 1/4
0 0 0 0 0 0 0 0 1/4


, (75)
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C2 = C1
η ⊗C2

ξ =

 1 0 0
0 1 1/2
0 0 1/2

⊗
 1/2 0 0

1/2 1 1/2
0 0 1/2



=



1/2 0 0 0 0 0 0 0 0
1/2 1 1/2 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0
0 0 0 1/2 0 0 1/4 0 0
0 0 0 1/2 1 1/2 1/4 1/2 1/4
0 0 0 0 0 1/2 0 0 1/4
0 0 0 0 0 0 1/4 0 0
0 0 0 0 0 0 1/4 1/2 1/4
0 0 0 0 0 0 0 0 1/4


, (76)

...

C9 = C3
η ⊗C3

ξ =

 1/2 0 0
1/2 1 0
0 0 1

⊗
 1/2 0 0

1/2 1 0
0 0 1



=



1/4 0 0 0 0 0 0 0 0
1/4 1/2 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0

1/4 0 0 1/2 0 0 0 0 0
1/4 1/2 0 1/2 1 0 0 0 0
0 0 1/2 0 0 1 0 0 0
0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 1/2 1 0
0 0 0 0 0 0 0 0 1/2


. (77)

5.2 Constructing the IEN array
The IEN array is a map between the local and global numbering of the NURBS basis functions. The IEN
array must be constructed before computing the Bézier elements for a NURBS. In standard finite elements the
local numbering typically corresponds to the local nodes [10]. In the setting of the Bézier extraction operator,
however, a local control point may not coincide with a global control point.

To construct the IEN array we first establish the NURBS basis function numbering scheme. In the
bivariate case, each global NURBS basis function is the product of two univariate basis functions. Thus, for
the current example, the NURBS basis functions can be written as

RA(ξ, η) = Mi(η)Nj(ξ) (78)

where the global numbering is defined as A = 5(i− 1) + j, where 1 ≤ i, j ≤ 5.
The next step in constructing the IEN array is to determine which NURBS basis functions will be sup-

ported over each Bézier element. There is a one-to-one relationship between the tensor product elements of
the parametric space and the Bézier elements that are being computed. Thus, by determining which functions
are supported over each univariate knot span and taking the appropriate tensor product of these functions
we can determine which functions will be supported by each Bézier element. Figure 9 shows each tensor
product in the parametric mesh and the associated one-dimensional basis functions they support. Using this
information, the IEN array is constructed as shown in Table 1. The LM array can then be constructed as the
composition of the ID and IEN arrays as in standard finite element analysis (see Table 2).
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Figure 9: The univariate B-spline basis functions supported by each Bézier element. There is a one-to-one
correspondence between Bézier elements and the parametric elements in the tensor product partitioning of
the parametric mesh created by the global knot vectors. This figure shows each parametric element and the
associated one-dimensional basis functions it supports. This information is used to construct the IEN array.
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Element number (e)
a 1 2 3 4 5 6 7 8 9
1 1 2 3 6 7 8 11 12 13
2 2 3 4 7 8 9 12 13 14
3 3 4 5 8 9 10 13 14 15
4 6 7 8 11 12 13 16 17 18
5 7 8 9 12 13 14 17 18 19
6 8 9 10 13 14 15 18 19 20
7 11 12 13 16 17 18 21 22 23
8 12 13 14 17 18 19 22 23 24
9 13 14 15 18 19 20 23 24 25

A = IEN(a, e)

Table 1: The IEN array is constructed using the information from Figure 9. The IEN array maps the local
basis function number (a) and the element number (e) to the corresponding global control point (A).

Element number (e)
a i 1 2 3 4 5 6 7 8 9

1 1 0 1 3 0 9 11 0 17 19
2 0 2 4 0 10 12 0 18 20

2 1 1 3 5 9 11 13 17 19 21
2 2 4 6 10 12 14 18 20 22

3 1 3 5 7 11 13 15 19 21 23
2 4 6 9 12 14 16 20 22 24

4 1 0 9 11 0 17 19 0 25 27
2 0 10 12 0 18 20 0 26 28

5 1 9 11 13 17 19 21 25 27 29
2 10 12 14 18 20 22 26 28 30

6 1 11 13 15 19 21 23 27 29 31
2 12 14 16 20 22 24 28 30 32

7 1 0 17 19 0 25 27 0 33 35
2 0 18 20 0 26 28 0 34 36

8 1 17 19 21 25 27 29 33 35 37
2 18 20 22 26 28 30 34 36 38

9 1 19 21 23 27 29 31 35 37 39
2 20 22 24 28 30 32 36 38 40

P = ID(i, IEN(a, e))

Table 2: The LM array is the composition of the ID and IEN arrays. P is the global equation number, and i
is the degree-of-freedom number.
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5.3 Computing the Bézier mesh
Once the IEN array and element extraction operators have been computed, the control points for the Bézier
elements can also be computed by localizing (25). In general we have

Qe =
(
Wb,e

)−1
(Ce)T WePe (79)

where Qe are the Bézier control points, Pe the NURBS control points, Wb,e the diagonal matrix of Bézier
weights, and We the diagonal matrix of NURBS weights corresponding to element e. In this example we
have for each element 

Qe
1

Qe
2

Qe
3

Qe
4

Qe
5

Qe
6

Qe
7

Qe
8

Qe
9


=
(
Wb,e

)−1
(Ce)T We



Pe
1

Pe
2

Pe
3

Pe
4

Pe
5

Pe
6

Pe
7

Pe
8

Pe
9


(80)

(see Appendix B for a complete list of the element control points). The resulting Bézier control elements are
shown in Figure 10 with the NURBS control variables that contribute to the location of the element control
variables indicated by the©’s.

The collection of the Bézier elements is called the Bézier control mesh. We now have four “meshes”
for the NURBS problem as shown in Figure 11: the parametric mesh, the control mesh, the Bézier control
mesh, and the Bézier physical mesh. The parametric mesh has been used to facilitate the presentation of this
example but it does not need to be constructed in practice. The knot vectors contain all the information that
is needed to construct the extraction operators and the IEN array. The control mesh defines the geometry
and, through the extraction operators, the Bézier control mesh. The Bézier control mesh is the closest of
the four to a standard finite element mesh in that the global system is built by looping over its elements.
However, comparing this mesh to the C0 finite element mesh in Figure 8b we see that, even though both
meshes have the same number of global basis functions, there are more elements in the Bézier mesh. The
extraction operator constrains the extra degrees of freedom of the Bézier mesh to maintain the smoothness
of the NURBS. The control mesh represents the continuous basis and the global system that is being solved.
Lastly, the Bézier physical mesh is comprised of the domains of integration.
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Figure 10: The extraction operators and IEN array can be used to construct the Bézier elements. For each
element e the©’s indicate the global control points which influence the location of element control points,
indicated by the •’s. Which global control points influence each element is determined by the IEN array, and
the location of the element control points is computed with the element extraction operator Ce.
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Figure 11: The “meshes” of the bivariate NURBS example. The parametric mesh is used to construct the
extraction operator, C, and the IEN array. The extraction operator and control mesh are used to define the
Bézier control mesh. The assembly routines loop over the Bézier elements and perform integration over the
element of the Bézier physical mesh.
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6 Conclusions
We have introduced the Bézier extraction operator as a tool for integrating isogeometric analysis into existing
finite element codes. For NURBS, we have shown how to compute the Bézier extraction operator by utilizing
knot refinement. We then showed that the Bézier extraction operator provides an inherent element technology
for computing with any basis that admits a Bézier representation. We noted that T-splines admit a Bézier
representation, thus once the Bézier extraction operator has been incorporated into a code it will be possible
to compute with T-splines without any modifications. In fact, we believe that the Bézier extraction operator
provides the most natural approach to efficient computing with T-splines in finite element computer programs.

Beyond providing an element data structure, the Bézier extraction operator also provides a mechanism
for localizing global basis information to an element. Benefits of this include representation of periodic
boundary conditions and continuity between multiple NURBS patches without the need for additional data
management arrays to maintain continuity. An important area for future research is investigating the use
of Bézier elements and the Bézier extraction operator in mesh refinement. By providing a convenient ele-
ment structure and localization mechanism, the Bézier extraction operator may accelerate the integration of
isogeometric analysis into existing applications.

In future work we intend to generalize to T-splines eliminating the patch structure of NURBS. Multi-
patch NURBS models have features in common with block-structured gridding utilized, for example, in
finite differences, whereas T-splines with star points are unstructured.

Acknowledgement
M.J. Borden was supported by Sandia National Laboratories. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000. J.A. Evans was partially supported
by the Department of Energy Computational Science Graduate Fellowship, provided under grant number DE-
FG02-97ER25308. T.J.R. Hughes and M.A. Scott were partially supported by the Office of Naval Research
under Contract Number N00014-08-0992. T.J.R. Hughes was also partially supported by NSF grant 0700204,
and M.A. Scott was also partially supported by the ICES CAM Graduate Fellowship.

A Element shape function subroutine
The element shape function subroutine is a fundamental component of any finite element code. For a given
element, e, and a set of quadrature points in the parent element domain, the element shape function subrou-
tine evaluates the local basis functions and any required derivatives at each quadrature point. The Jacobian
determinate of the mapping from the parent domain to the physical domain must also be calculated in order to
perform integration. In this appendix, we provide an example shape function subroutine for Bézier elements.

Recall from (3)-(5) that the Bernstein basis functions are defined over the interval [0, 1]. To facilitate
integration by quadrature we can redefine the basis over the interval [−1, 1] as

Ba,p(ξ) =
1
2

(1− ξ)Ba,p−1(ξ) +
1
2

(1 + ξ)Ba−1,p−1(ξ) (81)

where

B1,0(ξ) ≡ 1 (82)

and

Ba,p(ξ) ≡ 0 if a < 1 or a > p+ 1. (83)
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In this way, the map between the parametric domain and the parent element in Figure 5 becomes the identity
map and the Jacobian determinant can be computed as

J =
∣∣∣∣∂x
∂ξ

∣∣∣∣ . (84)

We present two shape function routines: one for the general case where a full extraction operator has
been computed for each element and one where the extraction operator is composed of univariate extraction
operators. Each routine assumes the existence of several utility routines:

Bernstein basis and deriv For a univariate Bernstein basis function of degree p, this functions
will return two arrays containing the p+ 1 pre-computed basis function and derivative values at a give
quadrature point.

Bernstein basis and derivs For a trivariate Bernstein basis function of degree (p, q, r), this
function returns an array containing the (p + 1) × (q + 1) × (r + 1) pre-computed basis function
values and an array containing the

(
(p + 1) × (q + 1) × (r + 1)

)
× 3 derivative values at a give

quadrature point.

inverse Cramer Uses Cramer’s rule to compute the inverse of the matrix ∂x/∂ξ.

determinant Computes J from ∂x/∂ξ.

See [14] for details on the first two functions.

Algorithm 2 This Bézier element shape function routine is for the general case where an extraction opera-
tor has been computed for each element. The cost of generality in this case is an increase in the computational
cost to compute the matrix products for (65) and (66).

Input The quadrature point, (ξ, η, ζ), the element number, e, the Bézier element control points, Qe, the
corresponding weights, Wb, stored as an array, the polynomial orders of the element, (p, q, r), the element
extraction operator, Ce, the IEN array, the weights for the smooth basis functions, W, and the number of
element shape functions, nen.

Output An array of shape function values, R, an array of shape function derivative values, dR dx, and the
Jacobian determinate, J .

// Initialization:
ncpt = (p+1)×(q+1)×(r+1)

B(1:ncpt) = 0;
dB dxi(1:ncpt, 1:3) = 0;

wb = 0;
dwb dxi(1:3) = 0;

R(1:nen) = 0;
dR dxi(1:nen, 1:3) = 0;
dR dx(1:nen, 1:3) = 0;

dx dxi(1:3, 1:3) = 0;
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dxi dx(1:3, 1:3) = 0;
J = 0;

// Get the pre-computed shape functions and derivatives for
// the parent domain.
call Bernstein basis and derivs

input: p, q, r, xi, eta, zeta
output: B, dB dxi

// Use the Bernstein basis to compute the weight functions.
for a = 1 to ncpt do

wb = wb + B(a)×Wb(a);
dwb dxi(1) = dwb dxi(1) + dB dxi(a,1)×Wb(a);
dwb dxi(2) = dwb dxi(2) + dB dxi(a,2)×Wb(a);
dwb dxi(3) = dwb dxi(3) + dB dxi(a,3)×Wb(a);

end

// Use equation (65) and (66) to compute the element shape
// functions and derivatives w.r.t. the parent domain.
for a = 1 to nen do

for b = 1 to ncpt do
R(a) = R(a) + W(IEN(a,e))×C(e,a,b)×B(b)/wb;

for i = 1 to 3 do
dR dxi(a,i) = dR dxi(a,i) . . .
. . . + W(IEN(a,e))×C(e,a,b) . . .
. . . ×(dB dxi(b,i)/wb - dwb dxi(i)×B(b)/(wb×wb));

end
end

end

// Compute the derivative of the mapping from the parent domain
// to the physical space.
for a = 1 to ncpt do

for i = 1 to 3 do
for j = 1 to 3 do

dx dxi(i,j) = dx dxi(i,j) + Pb(a)×dB dxi(a,j);
end

end
end

call inverse Cramer
input: dx dxi
output: dxi dx

// Compute (67), the derivatives of the element shape
// functions w.r.t the physical coordinates.
for a = 1 to nen do
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for i = 1 to 3 do
for j = 1 to 3 do

dR dx(a,i) = dR dx(a,i) + dR dxi(a,j)×dxi dx(j,i);
end

end
end

call determinate
input: dx dxi
output: J

Algorithm 3 This Bézier element shape function routine is specialized for tensor product element shape
functions. This algorithm requires the univariate components of the element extraction operator. Performing
the matrix products from (65) and (66) on the univariate B-spline components of the element shape functions
decreases the cost of computation. Note also that the input for this algorithm requires the control points and
weights associated with the smooth basis instead of those associated with the Bernstein basis of the Bézier
element so that the control points and weights associated with the Bézier elements need not be computed.

Input: The quadrature point, (ξ, η, ζ), the control points for the smooth basis, P, the control point weights
for the smooth basis, W, stored as an array, the element number, e, the univariate element extraction opera-
tors, Ce

i , the IEN array, the polynomial orders of the element, (p, q, r), and the number of univariate element
shape functions for each direction, nien.

Output An array of shape function values, R, an array of shape function derivative values, dR dx, and the
Jacobian determinate, J .

// Initialization:
ncpt(1:3) = (p+1, q+1, r+1);

nentot = nen(1)+nen(2)+nen(3);

B(1, 1:p+1) = 0;
B(2, 1:q+1) = 0;
B(3, 1:r+1) = 0;

dB dxi(1, 1:p+1) = 0;
dB dxi(2, 1:q+1) = 0;
dB dxi(3, 1:r+1) = 0;

N(1, 1:nen(1)) = 0;
N(2, 1:nen(2)) = 0;
N(3, 1:nen(3)) = 0;

dN dxi(1, 1:nen(1)) = 0;
dN dxi(2, 1:nen(1)) = 0;
dN dxi(3, 1:nen(1)) = 0;
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R(1:nentot) = 0;
dR dxi(1:nentot, 1:3) = 0;
dR dx(1:nentot, 1:3) = 0;

w = 0;
dw dxi(1:3) = 0;

dx dxi(1:3, 1:3) = 0;
dxi dx(1:3, 1:3) = 0;
J = 0;

// Get the pre-computed univariate Bernstein basis functions and
// derivatives for the parent domain.
call Bernstein basis and deriv

input: p, xi
output: B(1), dB dxi(1)

call Bernstein basis and deriv
input: q, eta
output: B(2), dB dxi(2)

call Bernstein basis and deriv
input: r, zeta
output: B(3), dB dxi(3)

// Compute the univariate B-Spline functions and derivatives
// w.r.t. the parent domain.
for i = 1 to 3 do

for a =1 to nen(i) do
for b = 1 to ncpt(i) do

N(i,a) = N(i,a) + C(e,i,a,b)×B(i,b);

dN dxi(i,a) = dN dxi(i,a) + C(e,i,a,b)×dB dxi(i,b);
end

end
end

// Compute the numerators and denominator for the tensor product
// NURBS functions and derivatives.
a=0;
for i = 1 to nen(3) do

for j = 1 to nen(2) do
for k = 1 to nen(1) do

a = a+1;
R(a) = N(1,k)×N(2,j)×N(3,i)×W(IEN(a,e));
w = w + R(a);

dR dxi(a,1) = dN dxi(1,k)×N(2,j)×N(3,i)×W(IEN(a,e));
dw dxi(1) = dw dxi(1) + dR dxi(a,1);
dR dxi(a,2) = N(1,k)×dN dxi(2,j)×N(3,i)×W(IEN(a,e));
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dw dxi(2) = dw dxi(2) + dR dxi(a,2);
dR dxi(a,3) = N(1,k)×N(2,j)×dN dxi(3,i)×W(IEN(a,e));
dw dxi(3) = dw dxi(3) + dR dxi(a,3);

end
end

end

// Divide by the denominators to complete the computation of the
// functions and derivatives w.r.t. the parent domain.
for a = 1 to nentot do

R(a) = R(a) / w;

for i = 1 to 3 do
dR dxi(a,i) = (dR dxi(a,i) - R(a)×dw dxi(i)) / W;

bf end
end

// Compute the derivative of the mapping from the parent domain
// to the physical space.
for a = 1 to nen do

for i = 1 to 3 do
for j = 1 to 3 do

dx dxi(i,j) = dx dxi(i,j) + P(IEN(a,e))×dR dxi(a,j);
end

end
end

call inverse Cramer
input: dx dxi
output: dxi dx

// Compute (67), the derivatives of the element shape
// functions w.r.t the physical coordinates.
for a = 1 to nen do

for i = 1 to 3 do
for j = 1 to 3 do

dR dx(a,i) = dR dx(a,i) + dR dxi(a,j)×dxi dx(j,i);
end

end
end

call determinate
input: dx dxi
output: J
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B Control points for the NURBS example in Section 5
Table 3 lists the control point coordinates for the NURBS geometry in Section 5. Once the element extraction
operators have been computed for this geometry, we can use (80) to compute the Bézier element control
points. The Bézier element control points are listed in Table 5.

Control point x y w
1 0.0 1.0 1.0
2 0.2612 1.0 0.9024
3 0.7346 0.7346 0.8373
4 1.0 0.2612 0.9024
5 1.0 0.0 1.0
6 0.0 1.25 1.0
7 0.3265 1.25 0.9024
8 0.9182 0.9182 0.8373
9 1.25 0.3265 0.9024

10 1.25 0.0 1.0
11 0.0 1.75 1.0
12 0.4571 1.75 0.9024
13 1.2856 1.2856 0.8373
14 1.75 0.4571 0.9024
15 1.75 0.0 1.0
16 0.0 2.25 1.0
17 0.5877 2.25 0.9024
18 1.6528 1.6528 0.8373
19 2.25 0.5877 0.9024
20 2.25 0.0 1.0
21 0.0 2.5 1.0
22 0.6530 2.5 0.9024
23 1.8365 1.8365 0.8373
24 2.5 0.6530 0.9024
25 2.5 0.0 1.0

Table 3: The control point (P) coordinates (x, y) and weights (w) for the control mesh in Figure 7b.
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a x y w
1 0.0 1.0 1.0
2 0.2612 1.0 0.9024
3 0.7346 0.7346 0.8373
4 0.0 1.25 1.0
5 0.3265 1.25 0.9024
6 0.9182 0.9182 0.8373
7 0.0 1.75 1.0
8 0.4571 1.75 0.9024
9 1.2856 1.2856 0.8373

a x y w
1 0.2612 1.0 0.9024
2 0.7346 0.7346 0.8373
3 1.0 0.2612 0.9024
4 0.3265 1.25 0.9024
5 0.9182 0.9182 0.8373
6 1.25 0.3265 0.9024
7 0.4571 1.75 0.9024
8 1.2856 1.2856 0.8373
9 1.75 0.4571 0.9024

a x y w
1 0.7346 0.7346 0.8373
2 1.0 0.2612 0.9024
3 1.0 0.0 1.0
4 0.9182 0.9182 0.8373
5 1.25 0.3265 0.9024
6 1.25 0.0 1.0
7 1.2856 1.2856 0.8373
8 1.5 0.3918 0.9024
9 1.5 0.0 1.0

e = 1 e = 2 e = 3

a x y w
1 0.0 1.25 1.0
2 0.3265 1.25 0.9024
3 0.9182 0.9182 0.8373
4 0.0 1.75 1.0
5 0.4571 1.75 0.9024
6 1.2856 1.2856 0.8373
7 0.0 2.25 1.0
8 0.5877 2.25 0.9024
9 1.6528 1.6528 0.8373

a x y w
1 0.3265 1.25 0.9024
2 0.9182 0.9182 0.8373
3 1.25 0.3265 0.9024
4 0.4571 1.75 0.9024
5 1.2856 1.2856 0.8373
6 1.75 0.4571 0.9024
7 0.5877 2.25 0.9024
8 1.6528 1.6528 0.8373
9 2.25 0.58771 0.9024

a x y w
1 0.9182 0.9182 0.8373
2 1.25 0.3265 0.9024
3 1.25 0.0 1.0
4 1.2856 1.2856 0.8373
5 1.75 0.4571 0.9024
6 1.75 0.0 1.0
7 1.6528 1.6528 0.8373
8 2.25 0.5877 0.9024
9 2.25 0.0 1.0

e = 4 e = 5 e = 6

a x y w
1 0.0 1.75 1.0
2 0.4571 1.75 0.9024
3 1.2856 1.2856 0.8373
4 0.0 2.25 1.0
5 0.5877 2.25 0.9024
6 1.6528 1.6528 0.8373
7 0.0 2.5 1.0
8 0.6530 2.5 0.9024
9 1.8365 1.8365 0.8373

a x y w
1 0.4571 1.75 0.9024
2 1.2856 1.2856 0.8373
3 1.74 0.4571 0.9024
4 0.5877 2.25 0.9024
5 1.6528 1.6528 0.8373
6 2.25 0.5877 0.9024
7 0.6530 2.5 0.9024
8 1.8365 1.8365 0.8373
9 2.5 0.6530 0.9024

a x y w
1 1.2856 1.2856 0.8373
2 1.75 0.4571 0.9024
3 1.75 0.0 1.0
4 1.6528 1.6528 0.8373
5 2.25 0.5877 0.9024
6 2.25 0.0 1.0
7 1.8365 1.8365 0.8373
8 2.5 0.6530 0.9024
9 2.5 0.0 1.0

e = 7 e = 8 e = 9

Table 4: The local NURBS control points (Pe) and weights (w) for the elements shown in Figure 10.
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a x y w
1 0.0 1.0 1.0
2 0.2612 1.0 0.9024
3 0.4890 0.8723 0.8698
4 0.0 1.25 1.0
5 0.3265 1.25 0.9024
6 0.6113 1.0903 0.8698
7 0.0 1.5 1.0
8 0.3918 1.5 0.9024
9 0.7336 1.3084 0.8698

a x y w
1 0.4890 0.8723 0.8698
2 0.7346 0.7346 0.8373
3 0.8723 0.4890 0.8698
4 0.6113 1.0903 0.8698
5 0.9182 0.9182 0.8373
6 1.0903 0.6113 0.8698
7 0.7336 1.3084 0.8698
8 1.1019 1.1019 0.8373
9 1.3084 0.7336 0.8698

a x y w
1 0.8723 0.4890 0.8698
2 1.0 0.2612 0.9024
3 1.0 0.0 1.0
4 1.0903 0.6113 0.8698
5 1.25 0.3265 0.9024
6 1.25 0.0 1.0
7 1.3084 0.7336 0.8698
8 1.5 0.3918 0.9024
9 1.5 0.0 1.0

e = 1 e = 2 e = 3

a x y w
1 0.0 1.5 1.0
2 0.3918 1.5 0.9024
3 0.7336 1.3084 0.8698
4 0.0 1.75 1.0
5 0.4571 1.75 0.9024
6 0.8558 1.5265 0.8698
7 0.0 2.0 1.0
8 0.5224 2.0 0.9024
9 0.9781 1.7445 0.8698

a x y w
1 0.7336 1.3084 0.8698
2 1.1019 1.1019 0.8373
3 1.3084 0.7336 0.8698
4 0.8558 1.5265 0.8698
5 1.2855 1.2855 0.8373
6 1.5265 0.8558 0.8698
7 0.9781 1.7445 0.8698
8 1.4692 1.4692 0.8373
9 1.7445 0.9781 0.8698

a x y w
1 1.3084 0.7336 0.8698
2 1.5 0.3918 0.9024
3 1.5 0.0 1.0
4 1.5265 0.8558 0.8698
5 1.75 0.4571 0.9024
6 1.75 0.0 1.0
7 1.7445 0.9781 0.8698
8 2.0 0.5224 0.9024
9 2.0 0.0 1.0

e = 4 e = 5 e = 6

a x y w
1 0.0 2.0 1.0
2 0.5224 2.0 0.9024
3 0.9781 1.7445 0.8698
4 0.0 2.25 1.0
5 0.5877 2.25 0.9024
6 1.1003 1.9626 0.8698
7 0.0 2.5 1.0
8 0.6530 2.5 0.9024
9 1.2226 2.1807 0.8698

a x y w
1 0.9781 1.7445 0.8698
2 1.4692 1.4692 0.8373
3 1.7445 0.9781 0.8698
4 1.1003 1.9626 0.8698
5 1.6528 1.6528 0.8373
6 1.9626 1.1003 0.8698
7 1.2226 2.1807 0.8698
8 1.8365 1.8365 0.8373
9 2.1807 1.2226 0.8698

a x y w
1 1.7445 0.9781 0.8698
2 2.0 0.5224 0.9024
3 2.0 0.0 1.0
4 1.9626 1.1003 0.8698
5 2.25 0.5877 0.9024
6 2.25 0.0 1.0
7 2.1807 1.2226 0.8698
8 2.5 0.6530 0.9024
9 2.5 0.0 1.0

e = 7 e = 8 e = 9

Table 5: Bézier element control points (Qe) and weights (w) for the elements shown in Figure 10.
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