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Abstract

A new numerical method for approximating highly oscillatory wave fields as a
superposition of Gaussian beams is presented. The method estimates the number
of beams and their parameters automatically. This is achieved by an expectation-
maximization algorithm that fits real, positive Gaussians to the energy of the highly
oscillatory wave fields and its Fourier transform. Beam parameters are further
refined by an optimization procedure that minimizes the difference between the
Gaussian beam superposition and the highly oscillatory wave field in the energy
norm.

1 Introduction

Numerical simulation of high frequency waves is an active field of computational math-
ematics with applications in seismic migration [8], computational electro-magnetics [3],
semiclassical approximations in quantum mechanics [9] and more. As the term “high
frequency” suggests, such applications involve many wave oscillations in the domain of
interest and thus, direct numerical simulation methods of the wave propagation are pro-
hibitively computationally costly. The standard approach to surmounting this difficulty
is to use an approximate model for the wave propagation that converges to the exact
model as the frequency increases. Examples of such asymptotic high frequency methods
include geometric optics [3], Gaussian beam methods (GBs) [1, 11], wavefront tracking
methods [14] and others. For a comprehensive review, we refer the reader to [6].
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In a simple formulation of geometric optics and Gaussian beams, the solution of
the hyperbolic partial differential equation (PDE) that models the wave propagation is
assumed to be of the form

u(x, t) = a(x, t)eikφ(x,t) , (1.1)

where k is the large parameter, a(x, t) is the amplitude and φ(x, t) is the phase function.
For geometric optics φ is a real valued function, while for Gaussian beams the phase is
complex valued with an imaginary part that concentrates u(x, t) near a certain curve
in space time (the central ray). Using the PDE, we find equations for the phase and
amplitude and central ray. These equations are independent of k, and consequently,
the phase and amplitude are independent of k, thus they can be represented accurately
in the domain of interest with far fewer grid points than the original wave field u(x, t).
However, even though the original PDE for u(x, t) is linear, the equations determining the
phase are usually not. In geometric optics, this non-linearity leads to the breakdown of
classical solutions at caustics [6]. The additional assumptions on the phase and amplitude
guarantee that Gaussian beams are global asymptotic solutions that are valid even at
caustics [11, 12]. Furthermore, as the PDE is linear, superpositions of such Gaussian
beams will also be global asymptotic solutions. This idea is the basis of all Gaussian
beam methods.

The ultimate goal is to build an approximate solution that is close to the true solution
in an appropriate norm for the given problem. Errors of such approximations have two
components: how closely the initial data is approximated and how well the PDE is
satisfied. In this paper, we will focus on answering the question of how to take general high
frequency initial data and approximate it by a linear superposition of a few functions of
the form (1.1) that are suitable for providing initial conditions for a Gaussian beam based
asymptotic solution method. However, we point out that the question of approximating
the initial data and satisfying the PDE are not independent in the sense of the accuracy
of the approximate solution. The initial conditions for a Gaussian beam also affect how
well the Gaussian beam satisfies the PDE. We will only focus on the initial data, since
this is the dominating error at least for short time.

In the geometric optics setting, this question has been addressed in [2]. In that
paper, the authors present a method for determining a small number of plane waves,
ajeikξj ·(x−y), that locally approximate the high frequency initial data near a fixed point
y. At all points, using the Fourier transform one can always rewrite the initial data as
a linear superposition of plane waves. Similarly, in the case of Gaussian beams, one can
use the Fourier-Bros-Iaglonitzer (FBI) transform to rewrite the initial data as a linear
superposition of Gaussian beams [4]. However, such transform methods generate beams
which are Gaussian modulated plane waves. Thus, while these methods may provide an
efficient approximation for initial wave fields that consist of superpositions of only a few
plane waves, for more general wave fields, which for example contain waves with curved
wavefronts, such transform methods will not provide an optimal representation.
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As described in section 2 and A, the phase and amplitude of a Gaussian beam are
given as Taylor polynomials around the central ray. Thus, the initial data for a Gaussian
beam are the parameters (base point and coefficients) that define the Taylor polynomials
for the phase and amplitude. We will refer to these initial values as the initial beam
parameters or simply the initial beams. The wave fields generated by Gaussian beam
parameters can be viewed as a redundant basis for representing general wave fields. In
this sense, we can think of the problem of approximating (or decomposing) an initial
high frequency data as finding the parameters of a small number of beams such that the
wave field generated by the superposition of these beams is a good approximation to the
initial data for the PDE. That is, given the initial data u and an error tolerance ε, the
objective is to approximate the initial data in the energy norm || · ||E (see equation (2.2))
using the superposition of as few Gaussian beams as possible. One can formally consider
a basis-pursuit style formulation

min
a

|a|�0 s.t. ||Sa− u||2E ≤ ε2 ,

where S is the discretized basis matrix, a are the associated weights and |a|�0 is the
number of non-zero elements in a. One can then envision using the latest fast algorithms
for constrained L1 minimization for finding a sparse approximation, for example [15].
However, the set of all Gaussian beams forms a high dimensional space which make these
algorithms prohibitively inefficient.

In [13], the authors propose a practical method for decomposing a general wave field
into a a superposition of Gaussian beams. Their method can be described as a greedy
bottom-up approach. At the (N + 1) iteration of “the greedy outer loop”, a new set of
parameters is found for a single beam that approximates the difference between the initial
data for the PDE and the wave field generated by previous (N) Gaussian beams. This
new set of beam parameters is directly estimated from the residual wave field. Then, the
parameters are locally optimized using the Nelder-Mead method [10]. The procedure is
repeated until a desired tolerance or number of beams is reached.

The basic assumption underlying this strategy is that the sets of parameters that give
the optimal (N + 1)-beam minimum will be closely related (in parameters space) to the
parameters that give the optimal (N)-beam minimum. Thus, the method of sequentially
adding beams is highly advantageous if the different beams are close to orthogonal in the
energy inner product as the minimum can be reached by optimizing each set of beam
parameters independently of the others. This assumption holds in the case of waves that
are spatially separated and also the case of crossing wave, in which waves arrive to the
same point, but have different directions (see the crossing waves example in section 4).
However, waves do not always exhibit this type of behavior. Near a caustic region, waves
are traveling in similar directions and are close together in space. In this situation,
the individual beams will not be orthogonal and the sets of parameters that give the
(N + 1)-beam minimum may be quite different from the sets of parameters that give
the (N)-beam minimum. Therefore, while adding Gaussians decreases the error in the
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approximation of the initial data for the PDE, the required number of beams to reach a
given tolerance may be suboptimal.

In this paper, following the greedy approach of [13], we propose a different decom-
position algorithm which can be more efficient in handling wave fields containing many
different beams with similar centers and wave directions. Inside each iteration of the
greedy outer loop, an additional set of several Gaussian beams is constructed simul-
taneously to fit the difference between the initial wave field and the Gaussian beam
approximation from previous iteration. In contrast, we note that in [13], a single beam
is added in each iteration. To obtain this set of several beams, we exploit the fact that
the energy of a single beam is non-negative and nearly Gaussian shaped. The same holds
for the energy of the Fourier transform of a single beam as shown in section 2.1. Ac-
cordingly, our method is based on fitting Gaussians to a smoothed version of the energy
of the initial data for the PDE and its Fourier transform. This is done using the expec-
tation maximization (EM) algorithm [5], which is reviewed in B. The advantage of the
EM algorithm is its efficiency in simultaneously optimizing a large number of parameters
that define a superposition of Gaussians.

After the new set of Gaussian beams is identified, all the beam parameters, including
the newly constructed and the ones from the previous iteration, are optimized to minimize
the error in the energy norm. This approach may bypass some of the local minima, for
example near a caustic point, that may be encountered in the approach of [13], in which
beams are added sequentially. Of course, our approach is also suboptimal as there is
no general methodology for finding the global minimum of a highly multi-dimensional
function that is not computationally prohibitive.

Let u0(x) and ∂tu0(x) denote the initial wave field and its derivative with respect to
time, respectively. In addition, let un

GB denote the Gaussian beam approximation after
n iterations of the greedy outer loop, where u0

GB ≡ 0. The structure of a each iteration
of the outer loop can be summarized as follows.

• EM-based approximation: Construct a Gaussian beam approximation for the resid-
ual wave field, u0−un

GB and ∂tu0−∂tun
GB using the EM method, as described below.

We denote the approximation by vGB.

• Local optimization (section 3.5): Update the sets of beam parameters for un
GB and

vGB constructed so far to minimize the difference between the wave field generated
by these beams and the initial data for the PDE. Eliminate beams whose contri-
bution to the overall error is smaller than a prescribed threshold. Let un+1

GB be the
beams defined by the optimized parameters.

The EM-based approximation is summarized in the following:

• Pre-processing (section 3.1): Calculate the energy function of the initial data for
the PDE and the energy function of its scaled Fourier transform. Mollify these
energies by a Gaussian kernel.
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• EM (section 3.2): Fit a linear superposition of Gaussians to the mollified energies
using the EM method.

• Reconstruction (section 3.3): Reconstruct sets of beam parameters by pairing the
Gaussian coefficients obtained by EM from the physical and Fourier domains. All
such pairs are tested by projections on the initial data for the PDE in the energy
norm. Candidate pairs with small projections are discarded.

• Corrections (section 3.4): Improve the accuracy of the fit by extrapolation.

The outline of the paper is as follows. Section 2 gives a precise statement of the
problem considered and briefly reviews geometric optics and Gaussian beam solutions to
the wave equation. Section 3 explains our numerical method with examples in section 4.
We summarize our results in section 5. Several technical aspects of the calculations
involved are detailed in the appendices.

2 Gaussian beam solutions

Consider the isotropic wave equation with variable coefficients in Rd

�u = utt(x, t)− c2(x)∆u(x, t) = 0, t > 0

u(x, 0) = f(x)

ut(x, 0) = g(x),

(2.1)

where subscripts denote partial differentiation and ∆ is the Laplacian. We seek solutions
in which the ratio between the wave length and the scale on which c varies (assumed to
be of order one) is large. This ratio, denoted k, satisfies k � 1. The wave equation is
well posed in the energy (semi-)norm

||u||2E = k2

�

Rd

e(x, t)dx, (2.2)

where e(x, t) is the energy function weighted by k,

e(x, t) = k−2

�
1

c2(x)
|ut|2 + |∇u(x, t)|2

�
. (2.3)

We will also use the scalar product underlying the energy norm

�u, v� = k−2

�

Rd

�
1

c2(x)
utv

∗
t +∇u ·∇v∗

�
dx,

where [·]∗ denotes complex conjugation. In order to obtain the high-frequency geometric
optics approximation, we make the standard ansatz

u(x, t) = a(x, t)eikφ(x,t). (2.4)
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In geometric optics, one finds solutions for a(x, t) and φ(x, t) in the form of rays, which
are the characteristics of an eikonal equation for φ. The GB methods goes further and
approximates solutions to the wave equations in the form of expansions around a specific
ray. For completeness, the derivation of the ray and GB solutions are reviewed in A.

For example, with a constant speed of propagation c(x) = c, rays are straight lines.
Denote the source point of the ray by ξ, the initial direction by η and the initial Hessian
by M(0) = iβ. In one-dimension (1D), a GB has the form

u(x, t) = Aeikη(x±ct−ξ)e−kβ(x±ct−ξ)2/2, (2.5)

where β is a complex number with a positive real part, Reβ > 0. In two-dimensions
(2D), a single GB has the form

u(x, t) = a(t)eikη·(x±η̂ct−ξ)eik(x±η̂ct−ξ)TM(t)(x±η̂ct−ξ)/2, (2.6)

where η̂ = η/|η|, [·]T denotes transposition and β is a complex 2×2 matrix with a positive
definite real part, Reβ > 0. The amplitude and the Hessian matrix are given by

a(t) = A

�
|η|3

|η|3 ∓ i(det β)(ηTβη)ct

M(t) =
±i|η|3β + (det β)(ηηT )ct

±|η|3 + i(det β)(ηTβη)ct
,

(2.7)

where A = a(0).

2.1 Single beam

One of the important observations is that to leading order in k the energy function of
a single Gaussian, e(x, t), is a real valued Gaussian. In particular, the initial energy
function of a single beams is

e(x, 0) = 2|A|2|η|2e−k(x−ξ)T (Reβ)(x−ξ) +O(1/
√
k), (2.8)

which is a real and positive Gaussian centered at ξ with covariance Σx = (Reβ)−1/2.
Note that, by assumption, |η| > 0 and is of order one (in k). A similar version of (2.8) as
well as all expressions in this section hold in the general case of a variable propagation
speed c(x) and in any dimension d. Furthermore, due to symmetry with respect to the
Gaussian center ξ, the contribution of O(1/

√
k) terms to the total energy ||u||E is of

order O(1/k). We refer the reader to A for details.
A similar energy function can be found in Fourier space. To this end we define a

weighted Fourier transform

f̃(p, t) = Ff(x, t) =

�
f(x, t)eikp·xdx. (2.9)
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At t = 0, a single transformed GB takes the form

ũ(p, 0) = k−1/2Aeikp·ξe−k(p+η)T β−1(p+η)/2, (2.10)

and the Fourier energy function,

ẽ(p, t) = k−1
�
|ũt|2 + |∇pũ(p, t)|2

�
, (2.11)

becomes, at t = 0,

ẽ(p, 0) = |A|2(|ξ|2 + 2c2(ξ)|η|2)e−k(p+η)T (Re[β−1])(p+η) +O(1/
√
k). (2.12)

As in position space, the contribution of O(1/
√
k) terms to the total energy ||ũ||E is

of order O(1/k). To leading order in k, ẽ(p, 0) is a real, positive Gaussian centered at
p = −η with covariance Σp = (Re[β−1])−1/2.

The above observations suggest that the two energy functions can be used to recon-
struct all the parameters that make up a beam. In position space, e(x, 0) given by (2.8)
can be used to obtain ξ and Re[β]. In Fourier space ẽ(x, 0) given by (2.12) can be used
to obtain η and Re[β−1]. In D we show that this is sufficient to derive Im[β] as well. The
amplitude can be obtained by projecting a normalized beam with parameters ξ, η and β
on the initial field.

2.2 Superposition of beams

The analysis is more complicated for wave fields consisting of a superposition of several
GBs. In 2D,

u(x, t) =
N�

n=1

an(t)e
ikηn·(x+snη̂nt−ξn)eik(x+snη̂nt−ξn)TMn(t)(x+snη̂nt−ξn)/2, (2.13)

where sn = +1 or −1 is the sign appearing in (2.5) or (2.6). The time dependent ampli-
tude, an(t), and Hessian, Mn(t), are given by (2.7) with parameters η = ηn, respectively.
At time t = 0, the initial field can be written as

u(x, 0) =
N�

n=1

Ane
ikηn·(x−ξn)e−k(x−ξn)T βn(x−ξn)/2, (2.14)

where An = an(0) and βn = −iMn(0). The initial energy function is

e(x, 0) =
N�

n,j=1

AnA
∗
j (ηn · ηj + snsj|ηn||ηj|) eik[ηn·(x−ξn)−ηj ·(x−ξj)]

× e−k[(x−ξn)T βn(x−ξn)+(x−ξj)T β∗
j (x−ξj)]/2 +O(1/

√
k).
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Since {ξn} are independent of k, the magnitude of the leading order quadratic term is
small unless ξj = ξn. Hence,

e(x, 0) =
N�

n,j=1,ξn=ξj

AnA
∗
j (ηn · ηj + snsj|ηn||ηj|)

× eik[ηn·(x−ξn)−ηj ·(x−ξn)]e−k(x−ξn)T (βn+β∗
j )(x−ξn)/2 +O(1/

√
k).

Terms in the double sum oscillate with a frequency of order k unless ηn = ηj and Imβn =
Imβj. Hence, e(x, 0) has the form

e(x, 0) =2
N�

n=1

|An|2|ηn|2e−k(x−ξn)TRe[βn](x−ξn)

+ 4
�

n<j, non−osc

Re[AnA
∗
j ]|ηn|2e−k(x−ξn)TRe[βn+βj](x−ξn)

+O(1/
√
k) + highly oscillatory terms.

where
�

n<j, non−osc denotes summation over all n < j such that ηn = ηj, ξn = ξj, sn = sj
and Imβn = Imβj. The first sum, that corresponds to terms in which n = j, describes
the energies of each separate beam. The second sum includes some spurious Gaussians
that may appear in the energy function due to interference between beams. In order to
suppress the oscillatory terms we convolve e(x, 0) with a smoothing kernel of the form

χ(x) = e−kx2/(2l), (2.15)

where l > 0 is independent of k. The convolution attenuates oscillations with frequency
p by a factor of e−Cp2/k, where C > 0 is a constant that depends only on l and the
eigenvalues of Reβ. Hence, high frequencies of the order of k are suppressed by a factor
of e−Ck. The convolved energy has the form

el(x) =χ(x) ∗ e(x, 0)

=2
N�

n=1

|An|2|ηn|2e−k(x−ξn)TΣ(Re[βn])(x−ξn)

+ 4
�

n<j, non−osc

Re[AnA
∗
j ]|ηn|2e−k(x−ξn)TΣ(Re[βn+βj])(x−ξn)/2

+O(1/
√
k),

(2.16)

where, Σ−1(·) is the new variance which is changed due to the convolution. In 2D it is
given by

Σ(B) =
B + 2l(detB)I

1 + 2lTrB + 4l2 detB
, (2.17)
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where Tr denotes the trace and I is the identity matrix. The important conclusion of
this derivation is that (2.16) is a linear mixture of real, positive Gaussians. Following
the same procedure in Fourier space, the convolved Fourier initial energy is

ẽl(p) = χ(p) ∗ ẽ(p, 0)

=
N�

n=1

|An|2(|ξn|2 + 2c2(ξn)|ηn|2)e−k(p+ηn)TΣ(Re[β−1
n ])(p+ηn)

+ 2
�

n<j
non−osc−p

Re[AnA
∗
j ](|ξn|2 + 2snsjc

2(ξn)|ηn|2)e−k(p+ηn)TΣ(Re[β−1
n +(β∗

j )
−1])(p+ηn)/2

+O
�
1/
√
k
�
,

(2.18)

where
�

n<j, non−osc−p denotes a sum over the non-oscillatory terms in ẽ(p, 0), obtained
by substituting the weighted Fourier transform of (2.13) into (2.11). Terms in ẽ(p, 0)
oscillate with a frequency of order k unless ηn = ηj, ξn = ξj and Imβ−1

n = Imβ−1
j . We

readily see that, to leading order in k, the convolved Fourier energy function ẽl(p) is a
mixture of real, positive Gaussians. However, there are some degenerate situations in
which the O(1) terms vanish due to exact cancelations between the first and second sums.
For example, take N = 2, A1 = A2 �= 0, ξ1 = ξ2 = 0, η1 = η2 �= 0, s1 = −s2 and β1 = β2.
We do not pursue this situation further since it can be eliminated using the smoothing
kernel.

3 Numerical method

In this section, we detail the different stages making out a single iteration of the greedy
outer loop in our numerical algorithm: pre-processing, EM, reconstruction, corrections
and parameter optimization.

3.1 Pre-processing

The purpose of the pre-processing stage is to change the initial condition into a form
that can be approximated by a linear combination of real and positive Gaussians. The
steps, described in section 2.2, consists of convolving the initial energy function, e(x, 0)
given by (2.3), with the smoothing kernel (2.15). Then, the initial field u(x, 0) is Fourier
transformed using FFT. The initial Fourier energy ẽ(p, 0) is calculated and convolved
with a similar kernel. The process yields el and ẽl given by (2.16) and (2.18). Smoothing
the initial data removes high frequency oscillations which allows using a coarser grid than
required for a numerically accurate description of a high frequency wave.
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3.2 Expectation-Maximization

We now explain the method used to approximate the real and positive smoothed energy
functions el(x) and ẽl(p) using a linear combination of Gaussians. For brevity, we refer
only to the energy in position space, el(x). The same process is applied to approximate
ẽl(p). In section 2.2, we show that if the solution is indeed a superposition of GBs, then
el and ẽl are, to leading order in k, a linear combination of real and positive Gaussians.
Let,

el(x) =
N�

j=1

DjGj(x) ; Gj(x) = z−1
i e−(x−µj)·σ−1

j (x−µj)/2. (3.1)

The values of el are given on a grid withM pointsX = {xi}Mi=1. Here, zi are normalization
constants such that

�M
i=1 Gj(xi) = 1 for all j = 1 . . . N . The energy function, el is

normalized so that Σiel(xi) = 1. This implies that
�

j Dj = 1. The parameters for
fitting the normalized el(x) using N Gaussians are found using the EM algorithm. The
procedure consists of picking an initial random guess of parameters {Aj, µj, σj}Nj=1 and
iterating the following calculations:

D�
j =

�

i

el(xi)pij

µ�
j =

�

i

el(xi)
pij
D�

j

xi

σ�
j =

�

i

el(xi)
pij
D�

j

xix
T
i − µ�

j(µ
�
j)

T ,

(3.2)

where

pij =
AjGj(xi)�N
j=1 DjGj(xi)

.

The algorithm is explained and motivated in B.
The EM algorithm [5] is an iterative process that converges to a local extremum of

the likelihood for obtaining the observation el from a random sample of Gaussians with
coefficients {Aj, µj, σj}Nj=1. Local minima are stable while local maxima are unstable.
Therefore, in general, the algorithm may not converge to the global minimum or the set
of parameters which will give the smallest final fit error (in the energy norm). However, it
can be shown that with a single Gaussian EM converges in a single iteration. In addition,
if the initial field is composed of a sum of Gaussian beams which are well separated in
both position and Fourier space, then the likelihood which EM minimizes is unique and
iteration of (3.2) will converge for all reasonable initial guesses. By a reasonable guess we
exclude some degenerate cases and initial guesses that are so far from the global minimum
that the coefficients pij in (3.2) are smaller than the round-off error. The computational
complexity of each iteration is O(N).
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The number of Gaussians required for the fit is not known in advance. In order for
the GB approximation to be consistent, all beam parameters should be of order one (in
k). This condition can be manifested in a requirements for some maximal and minimal
beam width that can be used to evaluate the number of beams. Furthermore, an EM fit
with particularly thin or wide Gaussian can respectively suggest the need to reduce or
increase the number of beams. In practice, the number of Gaussians, N , was increased
gradually until the error (in the L1 norm) was below a given threshold (usually 5−10%).
Note that the algorithm converges quickly even for large N and several different random
initial guesses for EM can be checked.

3.3 Reconstruction

The EM fit provides a list of N1 and N2 Gaussians fitted to the smoothed position and
Fourier energy functions, respectively. Pairing up each Gaussian in position space with a
Gaussian in Fourier space yields a list ofN1N2 pairs with four parameters: position center,
µ, position covariance, σ, Fourier center µ̃ and Fourier variance σ̃. The amplitudes are
discarded. These four multi-dimensional parameters will be used to construct a candidate
Gaussian beam. Comparing with (2.16) and (2.18) we find that

ξ = µ

η = −µ̃

Σ(Re[β]) = σ−1

Σ(Re[β−1]) = σ̃−1,

where Σ(·) is the widening of variances due to the smoothing convolution, given, for
example in two dimensions, by (2.17). C describes a simple iterative method for inverting
this matrix-valued function. Hence, one can derive candidate values for ξ, η, Re[β] and
Re[β−1]. In D, we describe a method for using the real part of the inverse, Re[β−1], in
order to reconstruct the imaginary part of β. The solution for Im[β] is not unique. In
general, for fixed A = Re[β], there are 2d possible real and symmetric matrices B that
give the same Re[(A + iB)−1] in d dimensions. The method described in D is numerical,
however, we also give an analytic formula for one and two dimensions. The formula
provides all solutions. For robustness, we also use the case in which β is purely real
with its real part derived from the fit in position space alone. Finally, each parameter
combination could occur with either s = +1 or s = −1 as this information is not
manifested directly in the EM fit.

To summarize, the EM stage provides us with N = 2(1 + 2d)N1N2 candidate Gaus-
sians. Each candidate is projected on the initial field to find its amplitude. Candidates
with a poor projection are discarded.
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3.4 Corrections

The EM fit provides a good approximation to the parameters making up the initial
beams. However, the process has several sources of errors such as neglected terms of
order k−1 (c.f. A.2) and the inversion of Σ(·) (c.f. C). These errors and others can be
compensated for using the following extrapolation procedure.

Consider a superposition of beams given by a set of parameters θ0 that generate a
field u0. Applying our decomposition method (pre-processing, EM and reconstruction) to
this field, yields an approximated set of beams with parameters θ1 which is close, but not
identical to θ0. Let u1 denote the field generated by GBs with parameters θ1. Applying
our fitting procedure to u1 yields a new parameter set θ2, which is again similar, but not
exactly the same as θ1. The difference between θ2 and θ1 can be used to evaluate the
unknown error of θ1 compared to θ0.

We formally denote the error in the fitted parameters as a function of the initial beam
parameters as �E(θ), where � is a small parameter, for example of order 1/k, such that
the error function itself is of order unity. The main assumption here is that E(θ) is
continuously differentiable in θ for some range of parameters. With θ0 unknown, one can
devise an extrapolation algorithm as follows. Let θ1 = θ0 + �E(θ0) and θ2 = θ1 + �E(θ1).
Expanding E(θ1) around θ0,

θ2 − θ1 = �E(θ1) = �E(θ0) + �O(θ1 − θ0) = �E(θ0) + �2O(E(θ0)).

We conclude that 2θ1 − θ2 is an improved approximation (of order �2) for the unknown
θ0.

If the difference |θ1 − θ2| is small enough, then the new β will have a positive definite
real part. In practice, we verify that 2θ1 − θ2 are admissible GB parameters and that
the error in using 2θ1 − θ2 is indeed smaller than the error in using θ1. We found that
one or two iterations of this procedure can considerably improve results. The correction
is done in two steps: first for the reconstruction step stage alone and then for the three
stages together (pre-processing, EM and reconstruction). The computational cost is low
as one can use the previous EM fit as initial conditions for the new one. See section 4.1
for an example.

3.5 Local optimization

The final stage of the process is to gradually update beam parameters to decrease the
overall error in the energy norm. The beams obtained from the previous stages using
smoothing, EM, reconstruction and corrections serve as initial conditions. In 2D, each
beam involves 13 real parameters. Since amplitudes and the sign sn can be found us-
ing least squares [13], this implies minimization in a 10N -dimensional parameter space.
This high dimensional minimization should be carried over all of the parameters simul-
taneously. However, to accomplish it in practice, we iterate over all parameters, holding
all but one fixed and optimizing over it using steps of fixed size until a local minima
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(as a function of the single parameter being changed) is reached. Then, beams whose
contribution to the error is lower than some threshold are removed, which is determined
by looking at the error in approximating the initial field with each one of the beams
removed. This is an important step that can eliminate beams whose parameters are
similar. The optimization steps are repeated with decreasingly smaller step sizes to a
prescribed tolerance.

One of the fundamental assumptions underlying GBs is that all beam parameters are
appropriately scaled in terms of k. Violating this requirement leads to a poor approxi-
mation of the beams evolution in time. To this end, we add a penalty to the fit error in
order to enforce the scaling.

4 Examples

In this section we describe several numerical experiments. In the first three examples,
the initial field is generated from a superposition of beams. Hence, the purpose of the
example is to demonstrate that the algorithm can successfully reconstruct the generating
beams. The last two examples describe a field which cannot be written as a finite sum
of GBs. These raise two questions: what is the optimal way to approximate the field
with beams to a given tolerance and how well can our algorithm approximate the optimal
combination. All example are constructed with k = 50, which is a relatively modest scale
separation. This is a more challenging scenario as multi-scale algorithms tend to improve
with larger scale separation, i.e. larger k.

Note that the number of beams used for the final fit is not a parameter in our al-
gorithm. Instead, the method automatically adjusts the number of beams according to
fitness criteria such as the required precision of the EM fit and other optimization pa-
rameters. As explained in the introduction, our goal is to find a representation of the
initial wave field using a small number of GBs.

In the following, we define the EM-error as the L1 norm of the difference between
the smoothed energy function and the linear combination of Gaussians found by EM. By
error, or fit-error, we refer to the energy norm of the difference between a superposition
of GBs and the initial wave field, ||u0 − un

GB||E. Relative errors are relative to the norm
of the initial fields (L1 for EM and energy otherwise).
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4.1 A single beam

We approximate the initial field generated by a single GB with the following coefficients

A = 1 + i

ξ = (0, 0.5)

η = (0.5, 0.5)

β =

�
1 0.2 + i

0.2 + i 1

�

s = +1.

(4.1)

The initial field and energy function are depicted in figure 1. With a single Gaussian
the energy function is, to leading order in k, Gaussian. The EM algorithm converges in
a single iteration with a relative EM-error of about 1.3% in both position and Fourier
spaces. The reconstruction stage yields a single GB whose coefficients ξ, η and β are
about 5% off:

A = 1.1 + 0.8i

ξ = (0.00, 0.498)

η = (0.51, 0.52)

β =

�
0.97− 0.05i 0.23 + 1.00i
0.23 + 1.00i 0.48 + 0.13i

�

s = +1.

Despite the close match in coefficients, the relative fit error is about 21%. A single
correction iteration (c.f. section 3.4) yields a new set of beam parameters which are
about 0.1% away from (4.1). The relative fit error is 0.7%. A second correction iteration
yields a beam with a negligible 0.002% error. Note that this Gaussian beam is obtained
without any non-linear optimization in parameters space to reduce the error in the energy
norm (section 3.5).

4.2 A focus point

We approximate the following field generated by eight beams (eight combinations of ±)
focused at the origin, as in [13]:

A = 1

ξ = (0, 0)

η = (±0.7, 0) and (0,±0.7)

β = I
s = ±1.

14



 

 

(a)

−0.5 0 0.50

0.2

0.4

0.6

0.8

1

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

 

 

(b)

−1 −0.5 0−1

−0.8

−0.6

−0.4

−0.2

0

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

 

 

(c)

−0.5 0 0.50

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2
x 10−3

 

 

(d)

−1 −0.5 0−1

−0.8

−0.6

−0.4

−0.2

0

0

2

4

6

8

x 10−4

Figure 1: A single Gaussian beams. (a) the real part of the field, (b) the real part of the
weighted Fourier transform, (c) the energy function in position space, and (d) the energy
function in Fourier space.

The field, energy function and smoothed energy function are depicted in figure 2. In
position space (left), the energy is oscillatory due to interference between the beams. Fol-
lowing a convolution with a smoothing kernel, the energy appears Gaussian and suggests
using a single Gaussian in position space and four in Fourier space. The reconstruction
step yields 2∗ (1+22)∗1∗4 = 40 candidate beams, out of which only 8 have a significant
projection on the initial field. The relative fit error of the 8 beams is 27%. Corrections
(section 3.4) and parameter optimization reduces the error to 1.8%. A 200 × 200 grid
was used.

4.3 A tight superposition of beams

We generate ten GBs with random coefficients. To make the decomposition challenging,
the centers of all the beams are crowded in a small area in both position and Fourier
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Figure 2: A superposition of eight Gaussian beams at a focus point. (a) the real part of
the field, (b) the real part of the weighted Fourier transform, (c) the energy function in
position space, (d) the energy function in Fourier space, (e) the smoothed energy function
in position space, and (f) the smoothed energy function in Fourier space.
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domains. Figure 3a-b shows the real part of the initial field in both domains. Figure 3c-d
shows the associated energy functions. Even though the energy function of a single beam
is a Gaussian, the energy function of the superposition shows oscillations of the order
of 1/k due to interference between different beams. As the figure shows, the Gaussian
structure of the energy function is not evident. Figure 3e-f shows the energy function
after convolution with the smoothing kernel (2.15).

The algorithm was implemented on the domain depicted in figure 3 on a coarse 50×50
rectangular grid. In addition, points in which the energy was below a given threshold
were ignored. This left fewer that 1000 points to consider in each domain (M < 1000).
The EM fit resulted in 12 Gaussians, the smallest number which gave an EM-error smaller
than 10%. The first iteration of the greedy outer loop yielded 11 GBs that approximate
the initial field with a 22% error. Closer inspection of the result showed that the algorithm
captured 8 out of the original 10 GBs correctly and compensated for the error with three
other beams which were misplaced. The result demonstrates that the final optimization
algorithm did not converge to the correct result even though we used enough Gaussians
for the approximation. This is either because the minimization algorithm got trapped in
a local minimum or that convergence was too slow. After the first iteration of the outer
loop, the field generated by the 11 beams was subtracted from the initial one and the EM
process was repeated. Using 5 Gaussians in the EM fit the algorithm approximates the
difference field with an EM-error of 6%. Reconstructing GBs from the EM data yielded
4 GBs which were combined with the previous fit. Repeating the optimization step,
which includes parameter optimization and removal non-contributing Gaussians, yielded
11 GBs with an 18% error. A Closer inspection showed that the 11 Gaussian include 9
of the original ones. The third iteration of the greedy outer loop yielded 10 GBs with a
relative error of 8%.

4.4 A modulated plane wave

We fit a wave field given by a plane wave in 2D, modulated by a Gaussian in one dimen-
sion, as depicted in figure 4a. The EM fit resulted in 5 Gaussians in position space and
a single one in Fourier space. Also, as explained in section 3.5, in order to prevent the
optimization process from converging toward beams that are exceedingly wide, we add a
penalty if the smallest eigenvalue of Re[β] is smaller than 0.3. This threshold corresponds
to a beam whose standard deviation is about 0.5.

The first iteration of the greedy outer loop yielded two beams that fit the initial field
with a 40% relative error. A second iteration yielded five additional beams which reduce
the relative error to about 4%. The approximating beams are depicted in figure 4b-h.

4.5 The double slit experiment

To test our method with data that does not have an underlying Gaussian beam superpo-
sition and also exhibits many of the typical wave phenomena, including crossing waves
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Figure 3: A superposition of ten Gaussian beams with random coefficients. (a) the real
part of the field, (b) the real part of the weighted Fourier transform, (c) the energy
function in position space, (d) the energy function in Fourier space, (e) the smoothed
energy function in position space, and (f) the smoothed energy function in Fourier space.
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Figure 4: (a) A plane wave modulated by a Gaussian. (b)-(h) Seven beams approximating
(a) with a 4% error.

and spreading, we look at the classical double slit experiment. To generate the data, we
simulate coherent waves as they pass though two slits, using a standard second order
finite difference method with absorbing boundary conditions [7]. The slits are closely
spaced together and their width is similar to the wave length. The wave field after the
waves have passed though the two slits in shown in figure 5. We will decompose this field
into a sum of a few Gaussian beams.

Our method was applied using the smoothing kernel with width l = 0.2 in position
space and l = 0.3 in Fourier space. With a cutoff EM-error at 5%, EM found four
Gaussians in position space and five Gaussians in Fourier space. The first iteration of
the greedy outer loop yielded 8 GBs with a 30% error. A second iteration yielded a total
of 14 GBs with a 10% error.
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Figure 5: Real part of the wave field to be decomposed for the double slit experiment.

5 Summary

We presented a numerical method for approximating a high frequency wave field using
Gaussian beams and applied it to decompose wave fields consisting of Gaussian beams
and to more general wave fields in two dimensions.

Our approach approximates the energy functions of the wave equation in both the
position space and the fourier space. By considering both spaces simultaneously, our
strategy has an advantage of decomposing waves which may not be easily distinguished
in one space but are separated in the other. We apply the well-established Expectation-
Maximization algorithm which allows for efficient search of multiple Gaussians approxi-
mating the mollified energy functions. The EM fit is then processed into a superposition
of Gaussian beams which approximates the high frequency wave field.

We demonstrate that our algorithm provides an efficient way of approximating high
frequency wave fields by superposition of a relatively small number of Gaussian beams.
We suggest that generalizations of our algorithm to other types of highly oscillatory
fields, for example, fields generated by solutions to the Schrödinger equation, may be
advantageous.
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RTG).

A The Gaussian beams approximation

In this appendix we review the derivation of rays and GBs in the variable coefficient
wave equation in Rd (2.1). The GB equations are solved exactly for the simple case of
constant propagation speed in 2D.

A.1 Geometric Optics

In order to obtain the high-frequency geometric optics approximation, one makes the
ansatz

u(x, t) = a(x, t)eikφ(x,t), (A.1)

where k � 1 is a large parameter characterizing the ratio between the wave length and
the scale on which c varies (assumed to be of order one). Substituting (A.1) into the
wave equation (2.1) and equating equal powers of k yields the eikonal equation for the
phase φ and a transport equation for the amplitude a. To leading order in k,

|φt|2 − c2(x)|∇φ(x)|2 = 0

2φtat − 2c2(x)∇φ ·∇a = −a�φ.
(A.2)

Without loss of generality, we assume that φt ≤ 0, otherwise, take t �→ −t. The eikonal
equation has the form of a Hamilton-Jacobi equation

φt +H(x,∇φ) = 0, (A.3)

with
H(x, p) = c(x)|p|. (A.4)

In geometric optics, one describes waves using rays, which are the characteristics of (A.3).
Parameterizing the characteristics by s, we look for a solution φ = φ(t(s), x(s)) and a
trajectory x(s) such that z(s) = φ(t(s), x(s)) satisfies an ODE. We denote p = ∇xφ,
where the subscript is added in order to emphasize that the gradient is with respect to
x, ∇xu = (∂x1 , . . . , ∂xd

)T and [·]T denotes the transpose. Differentiating with respect to
s yields

dz

ds
= φt

dt

ds
+ p

dx

ds
dp

ds
=

d

ds
∇φ(t(s), x(s)) = ∇φt

dt

ds
+∇x∇T

xφ
dx

ds
.

(A.5)

Note that ∇x∇T
x is the Hessian. In addition, differentiating the PDE (A.3) with respect

to x yields
∇xφt +∇xH(x, p) +∇pH(x, p)∇x∇T

xφ = 0. (A.6)
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We now see that if dt/ds = 1 and dx/ds = ∇pH(x, p), then one could eliminate the
second order term (∇xpT ) from (A.5). Substituting (A.6) into (A.5) and taking s = t
yields Hamilton’s equations of motion

ẋ = ∇pH(x, p)

ṗ = −∇xH(x, p),
(A.7)

where dot denotes differentiation with respect to time t. For the case at hand, H =
c(x)|p|, and the characteristics are given by

ẋ = c(x)p̂

ṗ = −|p|∇c(x).
(A.8)

with some initial conditions x(0) = ξ and p(0) = ∇φ(0) = η. Here, p̂ = p/|p|. Thus, the
Hamiltonian H(x, p) is conserved under the dynamics, H(x, p) = H(x0, p0) = H0. Since
H is constant, (A.3) implies that along the rays the phase is linear in time

φ(t) = φ0 −H0t. (A.9)

Without loss of generality we take φ0 = 0 since the phase eikφ0 is just a multiplicative
factor that does not change further derivations.

The GB approximation also requires the value of the Hessian, ∇∇Tφ along the ray.
Similar to the derivation of p, we write M(s) = ∇∇Tφ(x(s)) and differentiate with
respect to s. The chain rule yields a three dimensional tensor involving all third order
derivatives of φ with respect to x. Differentiating (A.6) with respect to x involves the
same tensor. Thus, all third order derivatives can be eliminated. We obtain

Ṁ = −M(∇p∇T
pH)M −M(∇p∇T

xH)− (∇T
p∇xH)M − (∇x∇T

xH). (A.10)

Using (A.4)

∇p∇T
pH =

c(x)

|p|
�
I − p̂p̂T

�

∇p∇T
xH = p̂(∇xc(x))

T

∇x∇T
xH = |p|∇x∇T

x c(x),

(A.11)

where I is the identity matrix. Initial conditions are M(0) = iβ where Reβ > 0.
Similarly, the characteristics of the linear transport equation for the amplitudes (A.2)

are found as follows. Denoting X = (x, t) ∈ Rd × R, the characteristics for X, parame-
terized by s, satisfy dX/ds = (2φt, 2c2(x)∇φ). This can be written as,

t = 2H0s = 2c(x)|p|s
dx

dt
=

dx

ds

ds

dt
= 2c2(x)p

1

2c(x)|p| = c(x)p̂.
(A.12)
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Hence, the characteristics of a are the same as those of φ (compare with (A.8)). As a
result, the derivative of a along the ray is given by

da

ds
= at

dt

ds
+∇xa ·

dx

ds
= 2H0at − 2c2p ·∇xa = −(2atφt − 2c2(x)∇xa ·∇xφ) = a�φ,

(A.13)

where we used the transport equation (A.2). Re-parameterizing with respect to time and
using (A.4) and (A.9) yields

ȧ = 2H0a�φ = −2c3(x)|p|Tr[M ]a, (A.14)

where Tr[·] denotes the trace.
For example, with a constant speed c(x) = c,

p = η

x = ξ + cηt

Ṁ = − c

|η|M(I − η̂η̂T )M ; M(0) = iβ

ȧ = −2c3|p|Tr[M ]a ; a(0) = A.

(A.15)

Solving the equations for M(t) and a(t) yields in 2D (2.7).

A.2 Gaussian beams

The main idea underling the GB approximation is to expand the solution of the phase
around a particular beam [11]. Let X(t) denote the characteristics of a ray originating at
t = 0 from a point ξ and with an initial direction η. The phase, its gradient and Hessian
are denoted Φ(t), P (t) andM(t), respectively. In addition, denote the amplitude obtained
by integrating (A.14) as A(t). Note that we have chosen to parameterized the ray with
respect to time. The GB approximation for φ(x, t) is a second order Taylor polynomial
for φ around the point (X(t), t), i.e.,

φ(x, t) = Φ(t) + P (t) · [x−X(t)] +
1

2
[x−X(t)]TM(t)[x−X(t)]

a(x, t) = A(t).
(A.16)

Therefore,

u(x, 0) =Aeikη·(x−ξ)e−k(x−ξ)T β(x−ξ)/2

∇xu(x, 0) =ku(x, 0) [iη − β(x− ξ)]

ut(x, 0) =ku(x, 0)
�
k−1ȧ(t) + ic(x)|η|− i|η|∇c(x) · (x− ξ)−

c(x)η̂Tβ(x− ξ) + i(x− ξ)TM �(0)(x− ξ)/2
�

(A.17)
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where A = a(0). The derivation above used the characteristic equation (A.8). Substi-
tuting into (2.3) yields the energy function. However, since the exponent is small for
|x − ξ| > 1/

√
k, terms that are of order |x − ξ|2 are comparable with 1/k and can be

neglected. Similarly, c(x) and ∇c(x) can also be expanded around ξ. The expansion
yields

e(x, 0) = |A|2|η|2e−k(x−ξ)T (Reβ)(x−ξ)
�
1− c−2(ξ)∇c(ξ) · (x− ξ)

�
+O(1/k). (A.18)

Furthermore, the leading in the expression above are symmetric with respect to the
Gaussian center, ξ. Hence, terms that are proportional to x− ξ cancel upon integration
of e(x, 0). To keep notation simple, we write

e(x, 0) = 2|A|2|η|2e−k(x−ξ)T (Reβ)(x−ξ) +O(1/
√
k). (A.19)

and remember that the contribution of the last term to the overall energy is smaller. In
the case of constant propagation speed, c(x) = 1, and the energy function reduces to
(2.8).

Hence, the contribution of exponential terms that are multiplied by polynomials to
the total energy is of order 1/k.

Similarly, in the frequency domain, substituting (A.16) into (2.9) yields

ũ(p, t) = k−1/2a(t)eikΦ(t)eikp·X(t)e−i[p+P (t)]TM−1(t)[p+P (t)]. (A.20)

At t = 0 this expression becomes (2.10). Substituting into the Fourier energy function
(2.11) and using the characteristic equation (A.8) yields (2.12).

B Expectation-Maximization

In this section we describe how to apply the expectation-maximization (EM) algorithm
[5] to approximate a probability distribution given on a set of points using Gaussian
random variables.

Let f(x) denote a non-negative density function on Rd. Let X = {xi}Mi=1 denote a list
of M points in Rd and denote fi = f(xi). Without loss of generality we assume that f(x)
induces a probability measure on X, i.e.,

�M
i=1 fi = 1. For example, in the numerical

examples described in section 4, {xi}Mi=1 are the points on a rectangular two-dimensional
grid with f(x) above some fixed threshold.

The purpose of this section is to use the sample of f(x) at the points xi in order to
find a linear combination of N that approximates f(x) in a probabilistic sense Gaussians

g(x) =
N�

j=1

AjGj(x) ; Gj(x) = z−1
i e−(x−µj)·Σ−1

j (x−µj)/2. (B.1)
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Here, zi are normalization constants such that
�M

i=1 Gj(xi) = 1 for all j = 1 . . . N and�M
i=1 Ai = 1. Hence, Gj(x) and g(x) are probability measures on X. To this end, let θ

denote the set of parameters defining the N Gaussians, i.e., θ = {Aj, µj,Σj}Nj=1, where,
for all j = 1 . . . N , Aj ∈ R, Aj ≥ 0, µj ∈ Rd and Σj are positive definite d× d matrices.
In addition, we require that

�M
i=1 Ai = 1. An intuitive approach for constructing an EM

algorithm is to think of a random game that generates points from X with probabilities
gi = g(xi). First choose a Gaussian j out of {1, . . . , N} with probabilities A1, . . . , AN ,
respectively. Then, draw a point xi with probability Gj(xi). Thus, for fixed θ, the
probability for getting xi is gi. Indeed, the probability that point xi was generated from
the Gaussian Gj, denoted pij, is

pij = AjGj(xi)/g(xi). (B.2)

Therefore, Aj is the average number of points chosen from Gaussian j, weighted by gi:

Aj =
�

i

gipij, (B.3)

µj is the weighted average position of points drawn from Gaussian j,

µj =
�

i

gi
pij
Aj

xi, (B.4)

and Σj is the associated covariance matrix

Σj =
�

i

gi
pij
Aj

xix
T
i − µjµ

T
j . (B.5)

We see that, if gi = fi for all i, then θ is a fixed point of the map θ → θ� = {A�
j, µ

�
j,Σ

�
j}Nj=1

given by:
A�

j =
�

i

fipij

µ�
j =

�

i

fi
pij
A�

j

xi

Σ�
j =

�

i

fi
pij
A�

j

xix
T
i − µ�

j(µ
�)Tj .

(B.6)

Following [5] one can show that, for general non-negative and normalized f(x), (B.6)
defines a contraction and that fixed points are local minima for the likelihood of obtaining
a distribution fi over X from a set of parameters θ.

Summarizing, for the case at hand the EM algorithm can be applied as follows: start
with an initial guess θ0 and iterate (B.6) until the process converges within a given
tolerance. The resulting parameters describe a linear combination of Gaussians of the
form of B.1 that approximate the distribution f(x) on X.
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C Deconvolving variances

In section 2 we saw that convolving the energy function of a GB with the smoothing
kernel function (2.15) changes the variance matrix. In 1D, the relation between the
original variance B−1 and the convolved Σ−1 is:

Σ(B) =
B

1 + 2lB
. (C.1)

In 2D it is given by (2.17):

Σ(B) =
B + 2l(detB)I

1 + 2lTrB + 4l2 detB
, (C.2)

where I is the identity matrix. As a result, fitting a Gaussian to the convolved energy
function yields a biased variance. Hence, we would like to invert the above formulas.
This is simple in 1D. In two or more dimensions we use the fact that the shift in B is
independent of k, but is of order l < 1. We rewrite (C.2) as

B = Σ+ 2l [(TrB)Σ− (detB)I] + 4l2(detB)Σ. (C.3)

Recall that l is known and we are solving for B. For small enough values of l, the solution
can be done iteratively by taking

B0 = Σ

Bj+1 = Σ+ 2l [(TrBj)Σ− (detBj)I] + l24(detBj)Σ.
(C.4)

In Fourier space, one is actually looking forB−1 rather thanB. While it is still possible
to use (C.4) and invert, we found that this approach introduced a large numerical error
if | detB| is small. Instead, one can invert (C.3), expand to some order in l and solve
iteratively. For example, the order two approximation is

B−1
0 = Σ−1

B−1
j+1 =

�
1− lCj + l2(C2

j −Dj) +O(l3)
�
Σ−1,

(C.5)

where

Cj = − 2

detBj
Σ−1 +

TrBj

detBj
I

Dj =
4

detBj
I.

(C.6)

D Reconstructing β

Let β denote a complex d×d symmetric matrix with a positive definite real part. Denote
A = Re[β] and C = Re[β−1]. One can show that C is also positive definite. In this
appendix we address the following problem: given A and C, can one determine β?

26



D.1 General dimension

Denote B = Im[β] and D = Im[β−1], i.e., β = A+ iB and β−1 = C + iD. Then,

I = ββ−1 = (A+ iB)(C + iD) = (AC − BD) + i(AD +BC), (D.1)

where I is the identity matrix. Hence

AC − BD = I
AD +BC = 0.

(D.2)

Since A is positive definite it is invertible and

D = −A−1BC.

Substituting into the real part of (D.1) and multiplying by C−1 yields

BA−1B = C−1 − A. (D.3)

Equation (D.3) is a quadratic equation for the missing imaginary part, B.
Since A is real and symmetric, its inverse is diagonalizable with an orthonormal

matrix, i.e., A−1 = QΛQT , Λ = diag{λ1, . . . ,λd}. Multiplying (D.3) by QT on the left
and Q on the right yields

B̃ΛB̃ = H,

where B̃ = QTBQ and H = QT (C−1 − A)Q are real and symmetric matrices. Hence,
without loss of generality, we need to solve a matrix equation (for B) of the form

BΛB = H. (D.4)

Denoting the entries of B and H by {bij}di,j=1 and {hij}di,j=1, respectively, (D.4) consists
of n = d(d+ 1)/2 equations and unknowns:

eq(i, j) :
d�

k=1

λjbikbjk = hij, (D.5)

for all i ≤ j. Arranging the matrix elements {bij}i≤j in the form of a vector b, (D.5) can
be written as n quadratic equations

eq(i, j) : b
TLij

b = hij, (D.6)

where, for each i ≤ j, Lij is a sparse n × n symmetric matrix. For example, in two
dimensions

L11 =




λ1 0 0
0 λ2 0
0 0 0



 ; L12 =
1

2




0 λ1 0
λ1 0 λ2

0 λ2 0



 ; L22 =




0 0 0
0 λ1 0
0 0 λ2
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and in three dimensions

L11 =





λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




; L12 =

1

2





0 λ1 0 0 0 0
λ1 0 0 λ2 0 0
0 0 0 0 λ3 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 0 0 0





L13 =
1

2





0 0 λ1 0 0 0
0 0 0 0 λ2 0
λ1 0 0 0 0 λ3

0 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0




; L22 =





0 0 0 0 0 0
0 λ1 0 0 0 0
0 0 0 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ3 0
0 0 0 0 0 0





L23 =
1

2





0 0 0 0 0 0
0 0 λ1 0 0 0
0 λ1 0 0 0 0
0 0 0 0 λ2 0
0 0 0 λ2 0 λ3

0 0 0 0 λ3 0




; L33 =





0 0 0 0 0 0
0 0 0 0 0 0
0 0 λ1 0 0 0
0 0 0 0 0 0
0 0 0 0 λ2 0
0 0 0 0 0 λ3




.

Since all eigenvalues λj are strictly positive, the diagonal equations e(i, i) are elliptic
cylinders. The rest are hyperbolic cylinders. Furthermore, since the free axes of the
cylinders are orthogonal, there is no degeneracy and the number of solutions is finite, 2d

at most.
Generally, (D.4) should be solved numerically. Since the equations are quadratic,

Newton-Raphson in accurate and efficient. The principle axes of the cylinders described
in (D.6) divide Rd into regions that correspond to the basins of attractions of the different
solutions. Hence, all solutions can be identified by appropriately chosen initial guesses.

D.2 Two dimensions

In 2D equation (D.4) can be solved analytically. First, we note that (D.4) is homogeneous
in the sense that, for all α > 0,

(
√
αB)Λ(

√
αB) = αH.

Hence, without loss of generality we take λ2 = 1/λ1 and consider two cases: detH = 0
and detH = 1. Solving using Mathematica and simplifying yields four solutions. With
detH = 0,

B =

�
λ1

h22 + h11λ1

�
h11 ±h12

±h12 h22

�
,
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and −B±. With detH = 1, if h12 �= 0

B± =

�
λ1λ2

h11λ1 + h22λ2 ± 2λ1λ2

�
h11 ± λ2 h12

h12 h22 ± λ1

�
,

and

B± =

� √
h11λ1 0
0 ±

√
h22λ2

�
,

otherwise. The other two solutions are −B±. It can be shown that in all the expressions
above the denominator is strictly positive.
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