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A multiscale method coupling network and continuum
models in porous media I – single phase flow

J. Chu, B. Engquist, M. Prodanović, R. Tsai

Abstract

We propose a numerical multiscale method for coupling a conservation law for mass
at the continuum scale with a discrete network model that describes the microscale
flow in a porous media. In this work we focus on coupling pressure equations. Evalu-
ating pressure from a detailed network model over a large physical domain is typically
computationally very expensive. We assume that over the same physical domain there
exists an effective mass conservation equation at the continuum scale which could have
been solved can be solved efficiently if the equation was explicitly given. Our coupling
method uses local simulations on sampled domains at network scale to evaluate the
continuum equation and thus solve for the pressure in the domain. We allow nonlinear-
ity in the network model as well as the mass conservation equation. Convergence of the
coupling method is analyzed. In the case where classical homogenization applies, we
prove convergence of the proposed multiscale solutions to the homogenized equations.
Numerical simulations are presented.

1 Introduction

In this paper, we develop a new multiscale model for computing pressure of flow in
porous media. The algorithm has the form of the heterogeneous multiscale method
(HMM)[23], and couples pore scale with continuum scale over the same physical do-
main.

Modeling multi-phase fluid flow in the subsurface is a notoriously difficult challenge.
One must account for processes occurring on a broad range of scales; typically different
modeling approaches are needed at different length scales so that the underlying physics
can be properly described. At the pore scale, direct simulation in a detailed medium
size geometry assuming Stokes flow is extremely costly. Model reduction at the pore
scale is normally done by mapping the pore space onto a representative network of
idealized pores and throats and then modeling fluid displacements as discrete events
on the pore-throat network. For overview of network models see [43, 14, 48]. At larger
scales, one usually constructs Darcy’s law continuum models in which individual grid
blocks contain sufficiently many pores such that the system within each grid block
evolves smoothly with time. The specific micro structure of the pore space frequently
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plays a critical role in determining macroscopic flow properties, and often cannot be
ignored. Continuum models capable of accounting for two scales - the so-called dual
porosity models [3, 4, 39]- have been constructed, and some efforts have also been
made to build hybrid models [9, 53]. In [9], Balhoff et al. focused on a scenario in
which a pore network domain is connected to a continuum Darcy model for solving
single phase fluid flow. In their setting, the network domain and continuum domain are
physically disjoint except for a shared interface where information from either domains
are exchanged. In [10], they improved on the computational complexity and simplifying
assumptions of the previous paper, by adapting mortar methods [5] to include pore
scale models.

In this paper, we propose a multiscale numerical method that couples network
models and continuum equations for subsurface flows over larger length scales. Cou-
pling of network model and continuous equations has been used in [46], done by Rossa,
D’Angelo and Quarteroni, to model traffic flows in complex network. In their work, the
PDEs at the continuum scale are explicitly derived from network models defined over
regular lattice. The coefficients in the PDE can be computed from locally averaging
the microscopic solutions. In contrast, in our work, we only assume mass conservation
at the continuum level, but otherwise no explicit assumptions on the exact form of the
equations. We do not assume regular connectivity in the network models either.

To make our introduction more concrete, consider the following simple setting with
a single incompressible fluid at steady state. The fluid velocity v depends on pressure
P , pressure gradient ∇P and the background geological data. The dependence of
geological data is described by the location variable x. Mass conservation implies

∇ · v(x, P,∇P ) = S(x), (1)

where S is a source or sink term. In classical models, the flux velocity is assumed to
satisfy Darcy’s law. That is, v is proportional to the negative pressure gradient −∇P
and v = −κ(x)∇P . The positive definite tensor function κ(x) is called permeability.
In this case, equation (1) is an elliptic partial differential equation (PDE), and many
multiscale methods discuss how to upscale the permeability tensor from finer to coarser
scales.

There is a large literature on numerical upscaling from one continuum Darcy equa-
tion to another without smaller scales in the permeability. One type of methods is
finite element approach with special basis functions that are computed by solving local
homogeneous PDEs subject to special boundary conditions. The primitive form of this
method can be traced back to the early work of Babuška, Caloz and Osborn [8, 7] who
introduced special basis functions for 1D elliptic problems with rough coefficients. Hou
and Wu [37] generalized this idea to developed the multiscale finite element method
(MsFEM) for multi-dimensional problems with multiscale coefficients. The further
convergence analysis of the method can be found in [37, 38]. Later on Efendiev, Hou
et al. have applied multiscale finite element/volume method to two-phase flow in
porous media problems [27, 28, 21, 19, 1]. For more discussions on the theory and
applications of MsFEM, refer to a recent book by Efendiev and Hou [29].
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The heterogeneous multiscale method (HMM) [23], introduced by E and Engquist,
is a general framework for designing multiscale method by exploiting special structure
of problems. HMM starts with an overall macroscopic model that may miss some
constitutive relations for macrovariables on the macrogrid. The missing quantities and
data in the macroscopic model are obtained by solving an accurate microscale model
locally with minimal cost. The HMM framework has been applied to several differ-
ent multiscale applications: material science [41], complex fluids [44], homogenization
[26, 2], stochastic ODEs [50, 25], highly oscillatory dynamical systems [22, 31, 6], wave
propagation [30]. More details can be found in a review paper by E et al [24]. Recently,
Young and Mitran [52] proposed an HMM-type algorithm to model and compute the
deformation of fibrous materials. In the context of homogenization for elliptic prob-
lems, in contrast to MsFEM, HMM only uses partial information in microscale model
to extract missing data to construct approximated homogenized coefficient to increase
efficiency. Also in the particular case of homogenization, the algorithm proposed in
this paper can be interpreted as a finite volume HMM for homogenization of ellip-
tic problems. In the Appendix, we present a proof of convergence of the solutions
computed by the proposed algorithm to the homogenized solutions.

Traditionally, the absolute permeability field in reservoir simulations is assumed to
be given and unchanged, but in reality it might change in time. Such situations may
arise due to damage in porous media such as opening or closing of fractures. Dynamic
updates of the permeability field is then needed via local microscopic simulation.

In this paper, the macroscopic model is given by (1) and pore scale network models
are used as micro-models. In the macro-model, the explicit form of v = −K(x)∇P
is not assumed since we want to obtain equivalent information of v directly from
suitably chosen network models of reduced size. More precisely, we shall evaluate
the flux F =

∫
Σ v · n ds through suitable surfaces Σ for different profiles of pressure

P . On the other hand, the macro-quantities (macroscopic pressure, velocity, or flux)
can determine if the microscopic configurations will change, for example, by widening
throats or growing fractures. The updated microscopic configurations are then used
to compute new pressure flux. The two scale computation is iterated until the system
converges.

2 The HMM scheme for a model problem

In this section, we present and analyze the proposed multiscale coupling algorithm
for problems involving networks that describe media over two or three dimensional
domains but the effective continuum equations lies in one dimension. The purpose is to
have a simpler setting where the results can be compared with full network simulations
and analytic homogenization. The results are generalized to higher dimensions in later
sections.
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2.1 Network Models at the Microscopic Scale

Network flow modeling, pioneered by Fatt [32, 33, 34], provides a method to link the
microscale description of the medium (topology and geometry) with macroscopic fluid
properties. A network model aims at good representation of pore and throat intercon-
nectivity in a porous medium. While pores and throats are depicted via simple geo-
metrical shapes, the models retain a subset of the realistic microscale properties (such
as pore/throat size or coordination number distribution). Network models essentially
bring capillarity and viscosity together, and in contrast with averaging/homogenization
approaches, stress capillary forces and their control of flow through the connected
network of pores (openings, pore bodies, sites) and throats (narrow channels, necks,
bonds). Reviews on network flow models by Celia et al. [18] and Blunt et al. [14, 15]
have more details on the models and their historical development.

Theoretical predictions of macroscopic two-phase flow in a porous medium can
be achieved by averaging of Navier-Stokes equations on the pore level assuming cer-
tain appropriate boundary condition. However, obtaining a closed system of averaged
equations requires the introduction of constitutive relationships between the different
parameters, such as capillary pressure-saturation and relative permeability-saturation.
These relationships can be obtained (or approximated) from simulations on suitably
set up networks. Network models are used, for example, to study relation among
saturation, capillary pressure and interfacial area [43], predict properties such as per-
meability [17, 42], imbibition and drainage curves [36], phase distributions, relative
permeability [42, 49, 51] and wettability [20].

In network models, pores are simply represented as nodes and throats as links (in
simplest form they are cylindrical tubes). The nodes and tubes are usually depicted
by vertices and edges respectively. Thus a network model has a topology of a graph.
However, as each pore has a physical location, we shall refer a network that models a
medium in a d dimensional domain as a d dimensional network. See Figure 1 for an
illustration of a two dimensional network.

For convenience, we number all nodes in the domain and collect them in the set
I. Furthermore, we shall denote by I(0) the index set containing all the indices of the
nodes lying in the interior of the network domain. Let Ii denote the set consisting
of all node indices j that connect to the node i by a throat. Further, pi denotes the
microscopic pressure inside pore i and cij denotes the conductance of the throat which
connects pore i and the pore j for each j ∈ Ii. The pressure flux from pore i to pore
j is simply cij(pi − pj).

The conductance for a Newtonian fluid in a cylindrical throat is computed exactly
using Hagen-Poiseulle solutions and is given by

cij =
πr4

8 lµ
,

where r is the radius and l the length of the throat, and µ is the viscosity of the fluid.
In general, the conductance cij may be a nonlinear function,

cij := c(pi, pj), (2)
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Figure 1: An example of the correspondence of a block of grains and a network model. In
the network model, the grains are neglected, the pores are represented by balls (nodes) and
the throats are represented by cylindrical tubes (segments).

depending on the nearby pressure pi and pj .
The law of mass conservation leads to∑

j∈Ii

cij(pi − pj) = si, (3)

where si is the sink or source in the pore i. In most cases, the fluid is assumed
incompressible and there are no source or sink term in pores, except at injection or
production pores. Therefore, we assume hi = 0 for all i ∈ I(0) and the system becomes∑

j∈Ii

cij(pi − pj) = 0. (4)

System (4) should be coupled with suitable boundary conditions on the boundary
nodes. The boundary conditions are typically Dirichlet, periodic or Neumann condi-
tions. In this paper, we maintain the following assumption on the length of the throats
in the network:

Assumption 2.1. The length of the throats in the network are bounded by a small
positive parameter which we denote by ϵ.

In this section, we assume a three dimensional network, and we impose Dirichlet
boundary conditions on two opposite faces (the left and the right faces) of the cubic
volume and periodic boundary condition (or no flow condition) on the remaining parts
of the boundary. Periodic boundary conditions can be used in regular lattice networks,
as well as in irregular networks from periodic model sphere packings. Boundary con-
ditions can have a major influence on results, especially if predicting absolute values.
While in some cases periodic boundary conditions (on all boundaries) gave better es-
timates of residual saturations [11] compared to Dirichlet’s, the full investigation on
the boundary conditions is beyond the scope of this preliminary paper.
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Let IR and IL denote respectively the index set consisting all indices i such that
node i is on the right and the left side face of the domain. We assign pi = PR for
all i ∈ IR and pi = PL for all i ∈ IL. Due to conservation of mass and steady state
conditions, the total flux f through the left face of the cuboid domain is the same as
the flux through the right

f =
∑
i∈IL

∑
j∈Ii

cij(pi − pj) = −
∑
i∈IR

∑
j∈Ii

cij(pi − pj). (5)

In fact, f is equal to sum of the flux in throats on any cross the section perpendicular
the left-right direction. Since f is completed determined by cij and PR, PL, we denote
the flux f by f(PL, PR) if there is no ambiguity. The function f is the total flow rate
in left-right direction caused by the pressures PL, PR applied on the left face and the
right face.

When there is no source or sink inside the network, we can expect the minimum
and maximum pressure of the network is attained on the boundary. We put the proof
in the Appendix. See Lemma A.1. Therefore if PR = PL, then pi = PR for all i, and
f(PL, PL) = 0. This fact induces that there exits a nonnegative function q such that

f(PL, PR) = −(PR − PL)q(PL, PR). (6)

when f is differentiable with respect to PR and PL. In particular, if conductances cij
of the network are independent of the boundary conditions as well as the pressures in
the pores, the resulting linear system (4) is always solvable. In this case, the function
q(PL, PR) can be expressed as a constant k/δ, where δ is the distance between left face
and right face. Moreover, we can define the permeability κ of the network by

κ =
k

A
,

where A is the area of the left-side face, and the velocity v satisfies the Darcy’s law:

v =
f

A
=

−k(PR − PL)

Aδ
= −κ∇P.

See Lemma A.2 for more detail. However, when the network model is nonlinear,
the maximal-minimal principle still holds, but q may not be a constant function and
f(PL, PR) depends on PL and PR nonlinearly.

2.2 Macroscopic Continuum Model

Consider a network model over the domain [xL, xR] × [y1, y2] × [z1, z2]. We impose
Dirichlet on the boundaries at xL and xR, and periodic boundary condition (or no
flow Neumann) on the other 4 faces. Let Bδ(x) be the subdomain [x− δ/2, x+ δ/2]×
[y1, y2]× [z1, z2] and Σ(x; δ) be the boundary surface of Bδ(x). By integrating (1) over
Bδ(x) and using the boundary conditions, we have∫

Bδ

S dv =

∫
Bδ

∇ · v dv =

∮
Σ
v · n ds = FΣR

− FΣL
, (7)
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where FΣR
and FΣL

are the fluxes through boundaries at x + δ/2 and x − δ/2 re-
spectively. Dividing δ on the both sides of (7) and taking the limit as δ to 0 lead
to

d

dx
F = lim

δ→0

1

δ

∫
Bδ(x)

Sdv ≡ Q(x), x ∈ (xL, xR). (8)

Hence we obtain a one dimensional equation in macroscopic scale, with its correspond-
ing two or three dimensional network model in microscale. The macroscopic domain
becomes simply [xL, xR] and the unknowns are the macroscopic pressure P and flux
F . The macroscopic pressure P can be viewed as an average pressure of small scale
pressure p on the cross section Σ(x; 0). We assume the flux F is a function of pressure
P , pressure gradient Px and location x. To close the equation (8), the boundary value
of pressure P (xL) = PL and P (xR) = PR are given.

We apply a finite volume discretization for (8). Let N be the number of partitions
of [xL, xR] and ∆x = (xR − xL)/N , xl = xL + l∆x for l = 0, 1, ..., N , . Let Pl be
the approximation of P (xl) and Fl− 1

2
be the approximation of the flux F at xl− 1

2
=

(xl + xl−1)/2 = xL + (l − 1
2)∆x. We assume that the discrete flux Fl− 1

2
is uniquely

determined by adjacent pressure Pl and Pl−1 only. The finite volume discretization of
(8) is to find P0, P1, P2, ..., PN−1, PN such that P0 = PL, PN = PR and

Fl+ 1
2
− Fl− 1

2
=

∫ x
l+1

2

x
l− 1

2

Qdx ≡ Qi∆x for l = 1, 2, ..., N − 1, (9)

2.3 Coupling of the macroscopic model and the network
model

The macroscopic flux Fl− 1
2
is determined by the network model as follows. For each

grid node xl, we choose a subdomain Bδ(xl− 1
2
). We shall call the corresponding portion

of our network over this subdomain the local network centered at xl− 1
2
. Each of such

local network is set up as in Section 2.1 with certain Dirichlet conditions to be discussed
below.

• The macroscopic flux Fl− 1
2
is defined as the flux, denoted by f̂l− 1

2
, through the

corresponding local network:

Fl− 1
2
(Pl−1, Pl) = f̂l− 1

2
.

This flux through the local network domain with some appropriate boundary
conditions.

• The Dirichlet boundary conditions for the subdomain Bδ(xl− 1
2
) at xl− 1

2
±δ/2 are

defined as the values of the macroscopic at the corresponding locations. At the
discretization level, they are approximated by linear interpolation of Pl and Pl−1

on [xl−1, xl] to define an approximation of the pressure P at xl− 1
2
± δ/2. Thus,
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the flux through the local network is a function depending on two macroscopic
pressure values and the center of the subdomain

f̂l− 1
2
= f(xl− 1

2
, Pl−1, Pl),

where f is the function defined by (5) in Section 2.1. More precisely, the Dirichlet
boundary conditions at xl− 1

2
± δ

2 are Pl− 1
2
, L and Pl− 1

2
, R defined by Pl− 1

2
=

(Pl−1 + Pl)/2, and

Pl− 1
2
, L = Pl− 1

2
−D+Pl−1(δ/2), Pl− 1

2
, R = Pl− 1

2
+D+Pl−1(δ/2),

where D+Pl−1 = (Pl−Pl−1)/∆x is the standard divided centered differencing on
Pl−1.

• The source term
∫ x

l+1
2

x
l− 1

2

Qdx =
∫
B Sdv is obtained by summing all source term si

in each pores inside subdomain B. In particular, Qi∆x =
∫ x

l+1
2

x
l− 1

2

Qdx = 0 if we

assume si = 0 in the network model.

Figure 2 shows a schematic representation of coupling macroscale and microscale mod-
els. Since we only use partial information from the whole network model to estimate the
flux locally, and the information of small pressure p in 3D network model is compressed
into microscopic pressure P in one dimension, the computational cost is tremendously
reduced. Under this setting, the flux F can be obtained for any given pressures Pl−1

and Pl, but the explicit expression is unknown, when the underlying network model is
nonlinear. The formal algebraic equations (9) for the macroscopic pressure Pl may be
nontrivial to solve as the relation between Fl− 1

2
, Pl−1 and Pl are not available explic-

itly. In particular, the Newton’s method is not applicable and thus an alternate root
finding scheme is required. We propose a quasi-Newton-like scheme in next section.

2.4 Macro-Micro Iterative Scheme

From the previous section, we see that the flux through a point in the macroscopic
domain can be evaluated from the flux through the corresponding local network. It
remains to recover the pressure values in the macroscopic domain. The difficulty to be
overcome here is that no convenient analytical relation between the macroscopic flux
F and the pressure P is available (or rather assumed). In the following discussion, we
first assume that there is no source term in the system.

At the discrete level, we want to solve the following equations for Pl:

F (xl+ 1
2
, Pl+ 1

2
, D+Pl) = f̂l+ 1

2
(Pl, Pl+1). (10)

D−F (xl+ 1
2
, Pl+ 1

2
, D+Pl) = Ql∆x, l = 1, 2, · · · , N − 1, (11)

with the boundary condition P0 = PL, PN = PR. See Figure 2 for a diagram. We
propose to solve the above coupled equations by simple iterations roughly as follows:
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Pl+1Pl

f̂
l+ 1

2

f̂
l−

1

2

Pl−1

xl xl+1xl−1

F
l+ 1

2

F
l−

1

2

Figure 2: Continuous (macro) scale is discretized using points xl, l = 0, .., N . Macro flux Fl− 1
2

is updated using micro scale simulation (network model) on a representative region within
the segment [xl−1, xl] (local network domain). At the same time, the boundary conditions
(in this sketch, pressure boundary conditions) required for the micro-scale model come from
the macro-scale information (pressure) at end points [xl−1, xl].

The left hand side of Equation (11) will be approximated using P
(n+1)
l as well as P

(n)
l .

We start out from a fundamental assumption that

F (x, P, Px) = f(x, P, Px) = 0, whenever Px = 0.

Suppose further that F is smooth, then mean value theorem suggests that

F (x, P, Px) = FPx(x, P, ξ)Px, (12)

where FPx refers to the partial derivative of F with respect to third variable and ξ is
an intermediate value, which depends on P and x, between 0 and Px. Therefore, we
use

FPx(x, P, ξ) ≈ f̂l+ 1
2
(Pl, Pl+1)/D

+Pl =: −K(Pl, Pl+1). (13)

Hence, the iterative scheme becomes:

−D−
(
K(P

(n)
l , P

(n)
l+1)D

+P
(n+1)
l

)
= Ql∆x. (14)

We next describe details of the algorithm. We shall see, from (19) and (20), that
our proposed scheme can be interpreted as a type of quasi-Newton method at the
macroscopic level for solving the nonlinear equation that is evaluated by a set of local
network simulations.

Algorithm 2.2. Start with an initial guess P(0) = [P
(0)
0 , P

(0)
1 , ..., P

(0)
N ]T with P

(0)
0 =

PL, P
(0)
N = PR and P

(0)
l ̸= P

(0)
l−1 for all l = 1, 2, ..., N . A conventional choice is the

linear interpolation of the boundary conditions. That is, P
(0)
l = l∆x(PR−PL

xR−xL
) + PL.
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For n = 0, 1, ...

1. Evaluate F
(n)

l− 1
2

= f̂l− 1
2
(P

(n)
l−1, P

(n)
l ) for l = 1, 2, ..., N .

2. Compute the effective parameter K
(n)

l− 1
2

and construct the matrices K(n) and h(n)

as defined below:

K
(n)

l− 1
2

= F
(n)

l− 1
2

· δ

(P
(n)

l− 1
2
, L

− P
(n)

l− 1
2
, R
)
= −

F
(n)

l− 1
2

D+P
(n)
l−1

, (15)

K(n) =



K
(n)
1
2

+K
(n)
3
2

−K
(n)
3
2

0 · · · 0

−K
(n)
3
2

K
(n)
3
2

+K
(n)
5
2

−K
(n)
5
2

. . .
...

0 −K
(n)
5
2

. . .
. . . 0

...
. . .

. . .
. . . −K

(n)

N− 3
2

0 · · · 0 −K
(n)

N− 3
2

K
(n)

N− 3
2

+K
(n)

N− 1
2


,

(16)

h(n) = [Q1 +K
(n)

1− 1
2

PL/∆x2, Q2, ..., QN−2, QN−1 +K
(n)

N− 1
2

PR/∆x2]T . (17)

3. Update P(n+1) by solving the linear equation

K(n)P(n+1) = ∆x2h(n).

Alternatively, define

G(P) =
[
D+F1− 1

2
−Q1, D

+F2− 1
2
−Q2, ..., D

+FN−1− 1
2
−QN−1

]T
(18)

The solution of (9) is the root of G. By using the relation F
(n)

l− 1
2

= −K
(n)

l− 1
2

D+P
(n)
l−1,

we have G(P(n)) = 1
∆x2K

(n)P(n) − h(n), where K(n) and h(n) are defined in the
same way as before. We have

P(n+1) = (
1

∆x2
K(n))−1h(n) = P(n) − (

1

∆x2
K(n))−1G(P(n)). (19)

Stop when a chosen numerical convergence criterion is met.

Remark 2.3. The proposed iterative scheme has several good properties. The matri-
ces K(n) are symmetric positive definite and tridiagonal. Therefore the linear equation
K(n)P(n+1) = ∆x2h(n) can be solved in O(N) operations (for example by Cholesky

decomposition), and the solution P (n+1) satisfies max-min property. That is, P
(n+1)
l

is between the boundary value PL and PR. This guarantees the proposed macro-micro
iterative scheme will never show numerical blowup.
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Remark 2.4. When there is no source term inside the network model, it is not hard

to see P
(n)
l − P

(n)
l−1 ̸= 0 for all l and n unless boundary the conditions PL and PR are

the same. However, when there is a nonzero source (or when considering 2D and 3D

macroscopic models discussed in Section 2.4.1), P
(n)
l −P

(n)
l−1 can be zero for some l and

n. In this case the effective coefficient K
(n)

l− 1
2

is not well defined and we estimate K
(n)

l− 1
2

by

K
(n)

l− 1
2

= −f̂l− 1
2
(P

(n)
l−1, P

(n)
l−1 +∆P ) · ∆x

∆P
,

where ∆P is a small positive number(we choose 10−12 in our numerical experiments).

First we show if the scheme is convergent, it converges to a solution of (9).

Lemma 2.5. If P(n) converges to P∗ = [P ∗
1 , P

∗
2 , ..., P

∗
N ]T as n tends to infinity, then

P ∗
1 , P

∗
2 , ..., P

∗
N solve equation (9).

Proof. By substituting K
(n)

l− 1
2

in (15) into the linear equation K(n)P(n+1) = ∆x2h(n),

we have  F
(n)

l+ 1
2

D+P
(n)
l

D+P
(n+1)
l −

 F
(n)

l− 1
2

D+P
(n)
l−1

D+P
(n+1)
l−1 = Ql∆x

By taking the limit, we have F ∗
l+ 1

2

−F ∗
l− 1

2

= Ql∆x for l = 1, 2, ..., N and hence we have

G(P∗) = 0.

In classical models, the conductances cij in the network model depend on geological
structure only and are assumed constant in time. In this case, the proposed method is
identical to the classical upscaling methods and no iteration is needed for solving P.

Lemma 2.6. Suppose the conductance cij in the network model for computing the
flux fi− 1

2
is independent of both macroscopic pressure P and microscopic pressure p,

then the macro-micro iteration scheme converges in one step. Moreover, the proposed
iterative scheme coincides with the Newton’s method.

Proof. By Lemma A.2, the effective parameter Kn
l−1/2 is independent of P(n) and

therefore independent of n. It follows P(1) and P(n) satisfy the same linear system

and hence P(1) = P(n) for all n. Since K
(n)

l− 1
2

is independent of P(n), it is easy to check

1

∆x2
K(n) =

∂G

∂P
(P(n)), the Jacobian of G at P(n), and the iteration is just Newton’s

method.

For general flux functions Fl− 1
2
, (19) still holds in our method, but 1

∆x2K is not

equal to the Jacobian of G. Recall that

Fl− 1
2
(Pl, Pl−1) = f̂l− 1

2
(Pl−1, Pl) = −Kl− 1

2
(Pl, Pl−1)D

+Pl−1

11



for some nonnegative function Kl− 1
2
(Pl, Pl−1). If Kl− 1

2
is differentiable with respect to

Pl and Pl−1, a direct computation shows that the Jacobian of G is

J =
∂G

∂P
=

1

∆x2
K+

1

∆x2
A, (20)

where A is tridiagonal with

Al,k = (Pl − Pl+1)
∂Kl+ 1

2

∂Pk
− (Pl−1 − Pl)

∂Kl− 1
2

∂Pk
, for k = l − 1, l, l + 1 (21)

Therefore our method is a quasi-Newton’s method derived by discarding the matrix A
in Jacobian of G.

Theorem 2.7. Let P∗ be a root of G. Suppose there exists η > 0 and constants M
and λ < 1 such that Kl− 1

2
are C2 for l = 1, 2, ...N and ∥K−1∥ ≤ M , ∥K−1A∥ ≤ λ

whenever ∥P − P∗∥ < η. Then there exists η∗ > 0 such that for initial vector P(0)

satisfies ∥P(0)−P∗∥ < η∗, the sequence P(n) generated by the scheme converges to P∗.

Proof. Since Kl− 1
2
are C2 for l = 1, 2, ...N for ∥P − P∗∥ < η, Taylor expansion of G

at P is
0 = G(P∗) = G(P) + J(P)(P∗ −P) +R(P),

where J is the Jacobian ofG, and the remainderR(P) satisfies ∥R(P)∥ ≤ R1∥P−P∗∥2
for some constant R1. Therefore, for ∥P(n) −P∗∥ < η

G(P(n)) = −J(P(n))(P∗ −P(n))−R(P(n))

Combining with (20) leads to

P(n+1) = P(n)−(
1

∆x2
K(n))−1G(P(n)) = P∗+K−1A(P(n))(P∗−P(n))+∆x2K−1R(P(n))

(22)
Let R2 = MR1∆x2 and η∗ = min{η, (1− λ)/(2R2)}. Assume ∥P(n) −P∗∥ < η∗, then
we have

∥P(n+1)−P∗∥ ≤ λ∥(P(n)−P)∗∥+R2∥P(n)−P∗∥2 ≤ (
1 + λ

2
)∥(P(n)−P)∗∥ < η∗ (23)

Hence by induction, if ∥P(0) −P∗∥ < η∗

∥P(n) −P∗∥ ≤ (
1 + λ

2
)n∥(P(0) −P)∗∥ < (

1 + λ

2
)nη∗ (24)

which converges to 0.

Let us summarize a few key points of the proposed algorithms presented above.

1. The effective continuum equation is discretized as in (9), leading to a nonlinear
system of equations for the macroscopic pressure Pl.

12



2. Local network simulations are used to evaluate the nonlinear fluxes F at points
designated by the discretization (9).

3. Since no explicit analytic form is available for the macroscopic flux F , in order
to solve (9) for Pl, the proposed scheme utilizes an idea from Taylor expansion
of the flux function.

Below, we present an example which studies the efficiency of our proposed method
as a solver for nonlinear equations. To do this, we ignore the additional difficulties that
may be caused by items 2 and 3 listed above by assuming that the analytical form of
the macro flux is known and that the values of the flux can be evaluated without any
errors. We compare the performance of the proposed scheme to two classical iterative
root finding schemes: Newton’s method and Broyden’s method [16].

Experiment 1. (Comparison of different nonlinear solvers for computing
macro pressure) Consider the flux function

F (Pl−1, Pl) = −
(
Pl−1 + Pl

2

)
D+Pl−1 =

P 2
l−1 − P 2

l

2∆x
, for l = 1, 2, . . . , N.

We look for the solution {Pl}Nl=0 of the equation

F (Pl−1, Pl) = F (Pl, Pl+l), for l = 1, 2, . . . , N,

with the boundary conditions P0 = 1 and PN = 0. For the given boundary condition,
the exact solution is given by Pl =

√
1− l/N . Recall that

G(P) =
[
D+F1− 1

2
−Q1, D

+F2− 1
2
−Q2, ..., D

+FN−1− 1
2
−QN−1

]T
,

where Fl− 1
2
:= F (Pl−1, Pl), l = 1, 2, · · · , N−1, and the solution P = (P0, P2, · · · , PN )T

is the root of G(P). In this example, Ql = 0 for all l. Thus, in this setup, Newton’s
method, the proposed method and Broyden’s method are all of the same form:

P(n+1) = P(n) −
(
M(n)

)−1
G(P(n)),

with different choices for the matrix M(n).

• Newton’s method: M(n) = J(P(n)), the Jacobian of G at P(n). The Jacobian J in
this example is a tridiagonal matrix with Jl,l = Pl/∆x2, Jl,l+1 = −Pl+1/(2∆x2)
and Jl+1,l = −Pl/(2∆x2)

• The proposed method: M(n) = K(n)/∆x2 as described in (19). The K in this
example is tridiagonal with Kl,l = (Pl−1 + 2Pl + Pl+1)/2 and Kl,l+1 = Kl+1,l =
−(Pl+1 + Pl)/2.

• The Broyden’s method: M(n) is a rank-one updated matrix constructed from
M(n−1) that satisfies

M(n)
(
P(n) −P(n−1)

)
= G(P(n))−G(P(n−1))

13
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Figure 3: Comparison of 3 different iteration methods for the testing problem with N = 10

and
M(n)Q = M(n−1)Q, ∀Q ⊥

(
P(n) −P(n−1)

)
The initial matrix M(0) is typically chosen to be the Jacobian of G at P(n) or
the identity matrix I.

We first remark that in general J is not necessary symmetric but K used in our scheme
is.

For all tested methods, the initial guess in this experiment is chosen to be P
(0)
l = 1−

l/N . The stopping criteria for three methods is the norm of the residual ∥G(P(n))∥∞ <
10−12. In the Broyden’s scheme we set the initial matrix M(0) to be either the Jacobian
J(P(0)) evaluated at the initial guess or the identity matrix IN−1.

The number of partitions N is chosen to be 10 and 50. When N = 10, in Figure 3,
it shows all three methods converge to the correct solution. Newton’s method requires
the fewest iterations to converge. Broyden’s method with Jacobian as initial matrix
and the proposed method need almost the same number of iterations. Broyden’s
method with IN−1 as initial matrix converges slightly more slowly. We can see the
initial guess of matrix M(0) is important for Broyden’s method. When N = 50, in
Figure 4, it shows only Newton’s method and the proposed method converge to the
correct solution. Broyden’s method diverges for either choice of M(0). The numbers of
iterations are similar to the number of iterations used in the case N = 10 for Newton’s
and the proposed methods. It suggests that both methods do not suffer from higher
dimensionality of solution in this particular example and that the performance of our
scheme is comparable to Newton’s method.

2.4.1 Presence of Source Terms

In previous discussions, we assume there is no source term in the network model. This
is not the case when there are injection and production domains inside the network

14



0 5 10 15 20
10

−20

10
−10

10
0

10
10

10
20

Number of Iterations

R
es

id
ue

 ||
G

(P
)|

| ∞

 

 
Newton method
The proposed method
Broyden with Jacobian
Broyden with I

N−1

0 5 10 15 20
10

−20

10
−10

10
0

10
10

10
20

Number of Iterations

R
es

id
ue

 ||
P

−
P

(n
) || ∞

 

 
Newton method
The proposed method
Broyden with Jacobian
Broyden with I

N−1

Figure 4: Comparison of 3 different iteration methods for the testing problem with N = 50

model. Recall that S and si are the source or sink terms in the continuous equation
(1) and network model (3) respectively. When si ̸= 0 for some i the microscopic flux
depends on boundary conditions, source term si inside the network model and the
location of the cross section Σx. Denote those si inside the local network domain
Bδ(xl− 1

2
) by sl− 1

2
. The local flux of the local network domain Bδ(xl− 1

2
) is defined by

f̂l− 1
2
(Pl−1, Pl, sl− 1

2
) =

∑
i∈ICL

∑
j∈ICR

cij(pi − pj), (25)

where pi is the solution of the conservation law (3) with source or sink terms sl− 1
2
and

the index set ICL
and ICR

consist indices i ∈ ICL
and j ∈ ICR

such that pore i is on
the left hand side of the central cross section Σx

l− 1
2

and pore j is on the right hand

side. The macroscopic flux now is defined by Fl− 1
2
(Pl−1, Pl) = f̂l− 1

2
(Pl−1, Pl, sl− 1

2
).

In the one dimensional models, the discretized system (9) becomes finding {Pl}Nl=0

such that P0 = PL, PN = PR and

f̂l+ 1
2
(Pl+1, Pl, sl+ 1

2
)− f̂l− 1

2
(Pl−1, Pl, sl− 1

2
) = Ql∆x (26)

Here we require the average source term Ql satisfies the compatible condition:

Ql∆x =

∫
B∆x(xl)

Sdv =
∑
i∈Il

si,

where the index set Il is the collection of index i such that pore i is inside the domain
B∆x(xl) = [xl − ∆x/2, xl + ∆x/2] × [y1, y2] × [z1, z2]. The condition holds when we
have information about the full network model or we have statistic data of the network
model. Notice that in this case, f̂l− 1

2
(Pl−1, Pl, sl− 1

2
) may not vanish when Pl = Pl−1.
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Therefore, there may not exit a function q such that f̂l− 1
2
(Pl−1, Pl, sl− 1

2
) = (Pl −

Pl−1)q(Pl−1, Pl) as before and we can not apply our macro-micro iteration directly.
When the network model is linear, we can modify the equation to apply our algo-

rithm. By linearity of the solution of the network model, we have

f̂l− 1
2
(Pl−1, Pl, sl− 1

2
) = fl− 1

2
(Pl−1, Pl) + f̂l− 1

2
(0, 0, sl− 1

2
), (27)

where f(Pl−1, Pl) is the flux obtained from network model with zero source as defined
in Section 2.1. The system of equation (26) is rewritten as

fl+ 1
2
(Pl+1, Pl)− fl− 1

2
(Pl−1, Pl) = Ql∆x− f̂l+ 1

2
(0, 0, sl+ 1

2
) + f̂l− 1

2
(0, 0, sl− 1

2
).

The right hand side is independent of Pl and can be computed easily. After obtaining
the right hand side, we apply our macro-micro scheme to get Pl and the solution is
convergent in one step since the system is linear.

The decomposition (27) is no longer valid in the case of nonlinear networks with
source terms. Suppose that for a given macro pressure, Pl−1 and Pl, we solve the
corresponding local nonlinear network model and obtain the pressure p̃i at node i.
Then we evaluate the flux f̂ according to (25). With the computed pressure {p̃i}, we
define an equivalent linear network model by the conductance c̃ij := c(p̃i, p̃j). Denote

by f̂L
l− 1

2

(Pl−1, Pl, sl− 1
2
; {c̃i,j}) the flux in the linear network model with conductance

c̃ij , boundary conditions Pl−1, Pl and source term sl− 1
2
. Obviously, with c̃ij defined by

the solution of the local nonlinear network, we have the following identity

f̂l− 1
2
(Pl−1, Pl, sl− 1

2
) = f̂L

l− 1
2

(Pl−1, Pl, sl− 1
2
; {c̃i,j}) (28)

= fL
l− 1

2

(Pl−1, Pl; {c̃i,j}) + f̂L
l− 1

2

(0, 0, sl− 1
2
; {c̃i,j}), (29)

where fL
l− 1

2

(Pl−1, Pl; {c̃i,j}) = f̂L
l− 1

2

(Pl−1, Pl,0; {c̃i,j}). Under this setting fL satisfies

the property fL
l− 1

2

(Pl−1, Pl; {c̃i,j}) = 0 if Pl−1 = Pl and we can use it to find solution of

(26). by our macro-micro iteration. We summarize the macro-micro iterative scheme
for nonlinear network model with nonzero source for 1D Model as following

Algorithm 2.8. Start with an initial guess P(0) = [P
(0)
0 , P

(0)
1 , ..., P

(0)
N ]T with P

(0)
0 =

PL, P
(0)
N = PR and P

(0)
l ̸= P

(0)
l−1 for all l = 1, 2, ..., N .

For n = 0, 1, ...

1. Solve nonlinear network model to get obtain the pressure {p(n)i } and then evaluate

the flux f̂l− 1
2
(P

(n)
l−1, P

(n)
l , sl− 1

2
) according to (25).

2. Create a new linear network model with conductance cij(p
(n)
i , p

(n)
j ) to compute

f̂L
l− 1

2

(0, 0, sl− 1
2
) and define

f
(n)

l− 1
2

= f̂l− 1
2
(P

(n)
l−1, P

(n)
l , sl− 1

2
)− f̂L

l− 1
2

(0, 0, sl− 1
2
; {c̃(n)i,j })
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3. Compute the effective parameter

K
(n)

l− 1
2

= −f
(n)

l− 1
2

/D+P (n)

and construct the matrix K(n) as in (16) and h(n) defined by

h
(n)
l =


Q1 −D+f̂

(n)

1− 1
2

+K
(n)
1
2

PL∆x−2, l = 1

Ql −D+f̂
(n)

l− 1
2

, 1 < l < N

QN −D+f̂
(n)

N− 1
2

+K
(n)

N− 1
2

PR∆x−2, l = N,

where f̂
(n)

l− 1
2

= f̂L
l− 1

2

(0, 0, sl− 1
2
; {c̃(n)i,j }) obtained in (2).

4. Update Pn+1 by solving the linear equation

K(n)P(n+1) = ∆x2h(n),

Stop when a chosen numerical convergence criterion is met.

The proof of convergence of the iterative scheme is similar to Theorem 2.7.

2.5 Numerical Experiments

In the following numerical experiments, we compare the results computed from full
network simulations and the proposed multiscale simulations. The testing full network
model has 1001×20 nodes arranged in a long rectangle domain. Each node is connected
by 6 nearby nodes and the length of throats are 1 unit in horizontal and vertical
direction, and are

√
2 unit in diagonal direction. The radii of the throats are randomly

generated from the uniform distribution [(1−λ)r0, (1+λ)r0] and the conductance c is
determined by

c =
πr4

8 lµ
.

We choose r0 = 0.01, λ = 0.5, and µ = 1 and the boundary condition is the Dirichlet on
x-direction: p = 100 on the left hand side and p = 0 on the right hand side, and periodic
boundary condition in y direction. In the simulations using the proposed mulitscale
algorithms, we divide the domain into N blocks, each of the dimension δ× 20, so that
the center of each block corresponds to the node x l

2
described in Section 2.3. At the

microscopic level, we experimented with a few local networks with different sizes.
In the following experiments, we fix δ = 10, 15, 20 and set N = 5, 10, 20, 30 to test

the convergence of the proposed algorithm. We compare the flux FD and the pressure
PD computed from direct full simulation on 1001 × 20 nodes with the flux FH and
the pressure PH computed by the proposed multiscale algorithm using either sampling
methods. The pressure PD is the average value of fine scale pressure on each y-direction
section. The relative errors of flux eF and of pressure eP are defined by

eF =
|FH − FD|

|FD|
and eP =

∥PH − PD∥∞
∥PD∥∞

,
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where ∥ · ∥∞ is the supreme norm of vectors. There are 3 kinds of relations between
fij and the pressure difference pi−pj testing in network model simulation: linear flux,
quadratic flux in pressure and quadratic flux in velocity.

Experiment 2. (Linear flux) This is a standard linear network model in which the
flux fij is given by

fij = −cij(pi − pj).

We run 1000 realizations of the radius of each throat to obtain the corresponding
conductance cij . The averaged relative errors eP and eF obtained from different N
and δ are listed below:

ep ef
δ = 10 δ = 15 δ = 20 δ = 10 δ = 15 δ = 20

N = 5 0.0348 0.0284 0.0240 0.0936 0.0626 0.0487
N = 10 0.0267 0.0217 0.0185 0.0883 0.0585 0.0440
N = 20 0.0195 0.0151 0.0122 0.0864 0.0556 0.0403
N = 30 0.0157 0.0115 0.0086 0.0864 0.0554 0.0412

We observe that both errors are well controlled for each parameter. The pressure
error decreases as the number of blocks N increases or the sampling size δ increases,
but the flux error is mainly controlled by sampling size δ. We will explain how to
improve proposed method to get convergence in flux in Section 2.6. The magnitude
of the errors indicates that it is suitable to set macroscopic system as an 1D model
when conductance is uniformly distributed, even we only use partial information of the
whole network model.

Experiment 3. (Quadratic flux in pressure) The flux fij in the network model is
given by

fij = −1

2
cij(pi + pj)(pi − pj),

and the conductance is 1
2cij(pi+pj) which depends on nearby pressures pi and pj . The

formula is a simplified version of Poiseuille’s equation for compressible fluids [13]:

f =
πr4

16µl

(
p2i − p2o

po

)
= c

(pi + po)(pi − po)

2po
,

where pi is inlet pressure, po is outlet pressure. Poiseuille’s equation is used for a
compressible fluid in a tube the volumetric flow rate and the linear velocity is not
constant along the tube.

We use fix point iterations to solve nonlinear network system. We start with the

solution p
(0)
i of the linear network model with conductance cij . Then we update the

conductance by 1
2cij(p

(n)
i + p

(n)
j ) and solve the new pressure p

(n+1)
i . The process is

repeated until ∥p(n+1)− p(n)∥∞ < 10−11. The average of errors eP and eF among 1000
times realization on each radius of the throat are tabulated below:
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ep ef
δ = 10 δ = 15 δ = 20 δ = 10 δ = 15 δ = 20

N = 5 0.0137 0.0109 0.0092 0.0373 0.0249 0.0195
N = 10 0.0101 0.0083 0.0071 0.0325 0.0217 0.0168
N = 20 0.0091 0.0071 0.0057 0.0306 0.0200 0.0150
N = 30 0.0072 0.0053 0.0040 0.0306 0.0198 0.0146

Similar to the results from the linear flux case, we observe that the pressure errors
decrease as the number of blocks N increases and the flux error is mainly controlled
by sampling size δ. For computational cost, the number of iterations for each full
network model simulation is around 30 and it takes around 200 seconds on a moderate
laptop running at 2.3 GHz. In the simulations using the proposed algorithm and full

local sampling, at most 5 iterations is needed for compute each K
(n)
l from solving

local network problems, and around 10 iterations is needed outer loop to obtained

convergent values of P
(n)
l . The multiscale algorithm with full sampling took 30-60

seconds. In general, larger number of blocks (hence smaller local network domains)
results in shorter run time. For partial sampling, we can see the errors are under 10%
even we only sample 10% data (Nδ = 100) from original domain. The computational
time reduces to 10 seconds only to get a full convergent result.

Experiment 4. (Quadratic flux for high velocity flows) The flux fij in the
network model is given by

fij
cij

+ βf2
ij = −(pi − pj).

The formula is derived from the Forchheimer equation:

−dp

dx
=

µ

K
· v + ρβv2,

where p is the pressure, v is the flux velocity, K is the permeability and µ is the
viscosity, ρ is the fluid density and β is the non-Darcy coefficient of the porous medium.
The Forchheimer equation is the standard equation for describing high-velocity flow in
petroleum engineering [35, 47]. In our simulation, by solving the quadratic equation,
we used the following formula:

fij =
−1 +

√
1− 4βc2ij(pi − pj)

2βcij
≃ −

(
cij + βc3ij |pi − pj |

)
(pi − pj)

The conductance in this case is
(
cij + βc2ij |pi − pj |

)
and depends on nearby pressures

pi and pj . The parameter β is chosen to be 1012 on purpose in order to amplify
nonlinear effects in our simulations. The average error from 1000 realizations is given
below
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Figure 5: Comparison of pressure and flux obtained from multiscale model and direct sim-
ulation.

ep ef
δ = 10 δ = 15 δ = 20 δ = 10 δ = 15 δ = 20

N = 5 0.0173 0.0139 0.0114 0.0366 0.0240 0.0193
N = 10 0.0127 0.0102 0.0084 0.0322 0.0213 0.0169
N = 20 0.0094 0.0071 0.0058 0.0297 0.0193 0.0141
N = 30 0.0074 0.0054 0.0041 0.0305 0.0201 0.0150

Experiment 5. (Presence of source and sink terms in a linear network) The
testing full network model has 101 × 100 nodes arranged in a rectangle domain and
the conductance is chosen randomly as in Experiment 2. The boundary condition
is 10 on both left and right sides and periodic in y direction. The source term is
zero except s = 10−7 at position (17, 17) and s = −10−7 at (83, 83). The network is
nonlinear with conductance equal to cij(pi + pj). We use the 1D Macro model with
blocks N = 5, 10, 20 and sampling length is fixed to be 5 in each sampling domain. We
compare the average pressure and flux obtained by multiscale model and direct full
network model simulation in Figure 5. We can see the proposed method captures the
cross flux and average within a reasonable range of error.

2.6 Further Discussion on the Boundary Conditions for
Local Network Model

From previous experiments, we notice that flux error of the proposed method is not
convergent as number of blocks N increase. To understand this phenomena, we change
our setting to fix total size of sampling domain Nδ and vary N . Notice that the total
computational cost is approximately proportional to the total size of sampling domain
Nδ. We choose Nδ = 40, 100, 200, 400 and set N = 3, 5, 7, 10 to repeat the Experiment
2. The results are shown as dash lines in Figure 6. We observe that both pressure
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and flux errors increase as the number of blocks N increases, especially for flux errors.
This is due to the artificial boundary condition: the pressure value on the boundary
of each block must be the same.

In general, errors from the boundary conditions used in local network simulations
dominate the error from the macroscale model which becomes smaller N increases.
This explains the why lower number of blocksN resulted in smaller errors, and suggests
that Dirichlet boundary condition for the local networks can lead to larger errors in
the flux evaluation. In classical homogenization theory, the homogenized coefficient
is obtained by solving cell problems and the boundary condition for the cell problem
is periodic after subtracting a linear function [12]. Using the similar idea, we can
incorporate the macroscopic pressure Pl and Pl−1 with the flux function Fl− 1

2
.

Given macroscopic pressures Pl at xl, and Pl−1 at xl−1, we create a microscopic
pressure profile pL on the sampling subdomain Bδ(xx− 1

2
) by linearly interpolating Pl

and Pl−1 in x-direction. To determine the macroscopic flux Fl− 1
2
, we solve the pressure

p̃ such that p̃ satisfies the equation (4) on Bδ and p̃ − pL satisfies periodic condition
on the boundary of Bδ. The flux f̃l− 1

2
is then defined by

f̃l− 1
2
=

∑
i∈IL

∑
j∈Ii

cij(p̃i − p̃j),

and Fl− 1
2
= f̃l− 1

2
. Notice that under this construction, p̃ needs not to be the same value

on the left or right faces of Bδ and the artificial boundary effect should be reduced.
We shall refer this this boundary condition as the ”linearly adjusted periodic boundary
condition.”

By a small modification of Lemma A.2, the solution p̃ is always solvable and unique
up to a constant if the network system is linear. We determine the unique solution by
choosing p̃ such that the average of p̃ is Pl− 1

2
, L = Pl− 1

2
−D+Pl−1(δ/2) on the left face

of Bδ and the average of p̃ on the right face is Pl− 1
2
, R = Pl− 1

2
+D+Pl−1(δ/2), automat-

ically by this choice. We also have that f̃(Pl−1, Pl) = −kD+Pl−1 for some constant
function k. Hence the macro-micro iteration scheme converges in one iteration.

To compare the performance of two different boundary condition, we testify the
same problem in Experiment 2 with linear flux. We perform the comparison for partial
sampling method only. The relative errors in pressure eP and in flux eF versus different
number of sampling blocksN for two different boundary condition are plotted in Figure
6. The result shows that the linearly adjusted periodic boundary condition is slightly
worse than Dirichlet boundary condition in fitting the microscopic pressure, but the
error in flux is smaller than using Dirichlet boundary condition, and the error is no
longer increasing as the number of blocks increase. The error in pressure and flux
decrease as the total sampling length Nδ increases. In Figure 7, we present the
relative errors as a function of Nδ in log-log plot. The numerical results suggest the
error eP ∼ (Nδ)−α and eF ∼ (Nδ)−β with α close to 0.59 and β close to 0.58. This
implies that for fixed δ(or N) both errors are convergent as N(or δ) increases.
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Figure 6: The relative error of pressure eP (left) and flux eF (right) versus different number
of sampling blocks N for two different boundary conditions. The solid line is for the linearly
adjusted periodic boundary condition and the dash line is for Dirichlet boundary condition.
Four different color lines stands for different total length of the sampling domain Nδ.
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Figure 7: Log-log plot of the relative error of pressure eP (left) and flux eF (right) versus
different total lengthes of the sampling domain Nδ by using the linearly adjusted periodic
boundary condition. Four different color lines stand for different number of blocks N .
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Figure 8: Schematic of 2D macroscale model.

3 Multi-Dimensional Models

In Section 2, a one dimensional macroscopic PDE is coupled with multi-dimensional
microscopic network models. Such coupling multiscale models are valid when the
variation in the network conductance is predominately in one coordinate direction. In
this kind of network models, contours of the microscopic pressure in the network are
approximately planar and so it is reasonable to expect a one dimensional macroscopic
model. In this section, we describe how our framework can be easily applied to couple
multi-dimensional continuum equations with multi-dimensional networks.

We start with the conservation law (1) posed in a rectangular domain with suitable
boundary conditions. We use a finite volume discretization to solve the PDE. Divide
the domain into N1 ×N2 coarse blocks. Let xo be the center of a block, and V be the
corresponding control volume. See Figure (8). Hence, (1) implies that∮

∂V
v · n ds =

∫
V
S dv = S̄(xo)Vol(V ), (30)

where S̄ is the mean of the source term inside V . Let FN , FS , FW , and FE denote the
fluxes through the four edges of V.

FN + FS + FW + FE = S̄(xo)Vol(V ) (31)

We first consider the case in which S ≡ 0. Similar to the one dimensional setting,
the flux F across each edge is evaluated as f̂ coming from local network simulations
on a δ × δ size sampling domain Bδ with boundary condition from given pressure P .
For instances, FE and FN are defined

FE = vi+ 1
2
,j · nx ∆y = f̂ (x)(Pi,j , Pi+1,j , Pi,j+1, Pi+1,j+1, Pi,j−1, Pi+1,j−1)(∆y/δ),

FN = vi,j+ 1
2
· ny ∆x = f̂ (y)(Pi,j , Pi,j+1, Pi+1,j , Pi+1,j+1, Pi−1,j , Pi−1,j+1)(∆x/δ),
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where f̂ (x) and f̂ (y) are flux evaluations from the local network simulations described
below. In the following discussion, we only present the detail on FE at xi+ 1

2
,j .

As in the one dimensional case, an explicit algebraic formula for the macroscopic
flux F as a function of pressure and pressure gradient is not readily available. However,
formulas (12) and (14) can be generalized easily since v = (v1, v2) = 0 when ∇P = 0.
Taylor expansion shows

v1(x, P,∇P ) = ∂Pxv1(x, P, ξ1, ξ2)Px + ∂Pyv1(x, P, ξ1, ξ2)Py, (32)

where (ξ1, ξ2) are the intermediate values. Then the flux f̂ (x) can be approximated by

f̂ (x)(Pi,j , Pi+1,j , Pi,j+1, Pi+1,j+1, Pi,j−1, Pi+1,j−1) ≈
(
(∂Pxv1)Px +

(
∂Pyv1

)
Py

)
δ,

and the pressure gradient ∇P is approximated by forward and central difference of P :
Px ≈ Dx

+Pi,j and Py ≈ Dy
0Pi+ 1

2
,j , where Pi+ 1

2
,j = (Pi,j + Pi+1,j)/2 and

Dy
0Pi+ 1

2
,j =

Pi+ 1
2
,j+1 − Pi+ 1

2
,j−1

2∆y
=

(Pi+1,j+1 + Pi,j+1)− (Pi+1,j−1 − Pi,j−1)

4∆y
.

The flux f̂ (x) is evaluated from the local network simulation over Bδ(xi+ 1
2
,j) with the

linearly adjusted periodic boundary conditions inspired by a recent work by Engquist,
Holst and Runborg [30]. The microscopic pressure p with the condition that p− pL is
periodic on the sampling domain Bδ; here

pL(x) = Ui+ 1
2
,j · x+ Pi+ 1

2
,j (33)

with the vector Ui+ 1
2
,j = [Dx

+Pi,j , D
y
0Pi+ 1

2
,j ]

T which is an approximation of ∇P at

xi+ 1
2
,j , and x is the position of the pore inside Bδ. The flux f̂ (x) is then computed

according to (5) by the microscopic pressure p. Another choice of boundary condition
for p is the Dirichlet boundary condition: p = pL on the boundary of Bδ.

The ”coefficients” ∂Pxv1 and ∂Pyv1 can be approximated by the additional local
network simulations of replacing Ui+ 1

2
,j in (33) by [Dx

+Pi,j , 0]
T and [0, Dy

0Pi+ 1
2
,j ]

T re-

spectively. More precisely, we define K1,1

i+ 1
2
,j
and K1,2

i+ 1
2
,j
as following

K1,1

i+ 1
2
,j
= f̂ (x)(Pi,j , Pi+1,j , 0, 0, 0, 0)/(δ Dx

+Pi,j),

K1,2

i+ 1
2
,j
= f̂ (x)(Pi+ 1

2
,j , Pi+ 1

2
,j , Pi,j+1, Pi+1,j+1, Pi,j−1, Pi+1,j−1)/(δ Dy

0Pi+ 1
2
,j),

(34)

to approximate ∂Pxv1 and ∂Pyv1. Other coefficients K1,1

i− 1
2
,j
, K1,2

i− 1
2
,j
, K2,1

i,j± 1
2

, K2,2

i,j± 1
2

are

defined analogously.
Now we are ready to describe our Macro-micro iterations. For a given macro-

scopic pressure P
(n)
i,j , we compute the coefficients (K1,1

i± 1
2
,j
)(n), (K1,2

i± 1
2
,j
)(n), (K2,1

i,j± 1
2

)(n),
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(K2,2

i,j± 1
2

)(n) as in (34). The updated macroscopic pressure P
(n+1)
i,j is obtained by solving

the sparse linear system

F
(n)
N + F

(n)
S + F

(n)
W + F

(n)
E = 0,

where

F
(n)
E =

(
(K1,1

i+ 1
2
,j
)(n)Dx

+P
(n+1)
i,j + (K1,2

i+ 1
2
,j
)(n)Dy

0P
(n+1)

i+ 1
2
,j

)
∆y,

F
(n)
N =

(
(K2,1

i,j+ 1
2

)(n)Dx
0P

(n+1)

i,j+ 1
2

+ (K2,2

i,j+ 1
2

)(n)Dy
+P

(n+1)
i,j

)
∆x.

Similar to one dimensional model, the coefficient K’s are constant if the network model
is linear, and therefore the iteration converges in one step. The Macro-micro iteration
is still a quasi-Newton type method and the convergence result can be showed by a
modification of proof in Theorem 2.7.

Remark 3.1. When there is non-zero source present in the network model, the local
flux f (x) and f (y) involve the network source term s. However, the nonlinearity induced
by the source term s can be removed by the way we introduced in Section 2.4.1.

Experiment 6. (Two dimensional problem with three disconnected channels
with large conductance) Consider a two dimensional network model with 1001 ×
1000 pores located on a regular lattice. Each grid node in the lattice is connected
to six nearby pores as we depicted in Experiment 2. The radius of each throat is a
random number chosen from uniform distribution on [(1−λ)r0, (1+λ)r0], except three
channels; see Figure 9. The channels are composed by horizontal segment connecting
pores (i, j) to (i+1, j), i ∈ [1, 400] and j ∈ [245, 255] for the first channel, i ∈ [301, 700]
and j ∈ [495, 505] for the second channel and i ∈ [601, 1000] and j ∈ [745, 755] for the
second channel. The radius in the channels is 10r0. The pressure corresponding to
this network model does not approximate to parallel lines. If we use 1D-model with 5
blocks full sampling to simulate this network model, the relative error of flux is around
2000%. This large error is caused by misinterpreting connection of 3 channels. In
1D-model, each sampling region has a high conductance channel penetrated through,
and therefore the regenerative parameter is very high. The induced coarse scale in
1D system has all larger parameters connected together. Three disconnected channels
becomes connected and penetrate through the whole region in 1D model, and therefore
the computed macroscopic flux is over estimated. To resolve the issue, we need a multi-
dimensional macroscopic model.

We divide the domain into N ×N blocks and use δ × δ local network to estimate
the macroscopic flux F on each edge of the control volume and apply the proposed 2D
model and algorithm. In Table 1, we list the relative pressure error eP and relative
flux error eF for different numbers of coarse blocks and different sampling domain
size. We can see the flux and pressure in 2D-model is significantly improved from the
results obtained from 1D model. Notice that the errors decrease as N increase even
the our error analysis in Appendix B is not applied in this case. The pressure and flux
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Figure 9: The left subfigure demonstrates the horizontal conductance of the network. The
intensity of the image corresponds to the size of the conductance. Three white segments
represents the throats with radius equal to 10r0. The center subfigure shows the pressure
contours obtained by the solving for the full network model. The right subfigure shows the
pressure contours computed by the proposed method. In the computation, a 20× 20 coarse
blocks are used and each sampling domain is 10× 10.

Table 1: The relative pressure error eP and relative flux error eF by using 2D-model with
N ×N blocks and δ × δ sampling domains.

ep ef
δ = 5 δ = 10 δ = 20 δ = 5 δ = 10 δ = 20

N = 5 0.2580 0.2522 0.2475 0.4558 0.4744 0.4758
N = 10 0.2912 0.2744 0.2764 0.3444 0.3575 0.3670
N = 20 0.0665 0.0697 0.0634 0.1022 0.0714 0.0629
N = 40 0.0558 0.0542 0.0546 0.0620 0.0410 0.0305

errors are less than 10% for N = 20 and δ = 5. We only use such few information
to capture the macro scale behavior correctly. The errors are large when N = 5,
and 10 because in these cases the sampling domains do not cover the top and bottom
channels. The resulted representative parameter K only capture one channel. When
we increase number of coarse blocks to 20, three channels have been captured. The
coarsening parameter exhibits 3 disconnected channel and the coarse scale pressure
contour present the similar behavior to the network scale pressure. This numerical
example shows full macroscopic model can capture the coarse scale information more
accurate than 1D model.

Experiment 7. (Homogenization to an anisotropic elliptic equation) In this
experiment, we testify the proposed macroscopic flux and iterative algorithm satisfy
the results under the classical homogenization setting. Consider a network model
comes from the discretization of the elliptic PDE:

−∇ · (aϵ(x)∇u(x)) = 0, x ∈ [0, 1]× [0, 1] (35)
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with oscillatory coefficient aϵ(x) = a(x/ϵ), where

a(x) = sin(4x1) + 0.1 sin 2π(x1 + 1.41x2) + 0.1 cos 2πx2 + 1.20001.

Notice that this choice of a leads to an anisotropic homogenized equation. The
anisotropic is defined by the effective diffusion tensor Ā whose eigenvectors do not
align with vectors formed by connecting grid nodes. With this feature, we are able to
test if our proposed multiscale algorithm captures the anisotropy.

We discretize the domain into 600 × 600 squares and each vertex represents a
pore and each edge represents a throat. The conductance of the throat is the value
of a at the middle point of the throat. We apply the Dirichlet boundary condition
u(x) = (x1 + 1)2(x2 + 1)2 on the boundary of the microscale network domain. The
solution of the network model is a numerical approximation of the solution of (35). We
discretize the network model into N ×N coarse blocks and use δ× δ sampling domain
Bδ to obtain macroscopic pressure P by our macro-micro algorithm. We use periodic
boundary condition obtained from macro pressure in local network simulation.

We choose ϵ to be 0.001 and 0.0001, the sampling length δ to be 0.01, 0.0167,
and N to be 6, 8, 10, 12, 15, 20, 30, 40 and compare the value of micro-pressure p with
macro-pressure P at the same position. The relative error in pressure ep is defined as
before. See Figure 10 for results.

We can observe that ep is convergent to 0 as N increases before the error is about
size ϵ, and convergence is of second order. From our error analysis in Appendix B,
we know the error is control by both mocroscale and microscale discretization er-
ror and homogenization error. Macroscale discretization error is of order 1/N2 and
homogenization error is of ϵ. When N is large enough, the error is dominated by
homogenization and can not be controlled by increasing N . This coincides with the
error analysis we have in Appendix B.

Because of the choice of the constant 1.41 inside the sinus function, the sampling
domains does not coincide with the cell problems exactly and the estimated coefficients
are different for each sampling domain. However, the error is still smaller by using
δ = 0.01 than using δ = 0.167. This is because when δ = 0.01, the sampling size is an
integer multiple of ϵ for both ϵ = 0.001 and ϵ = 0.0001.

4 Fracturing of soft sediments

We propose a simple model to simulate propagation of a fracture in a soft (unconsoli-
dated) sediment in this section. The purpose is to give an example of a network scale
process that is not easily represented by an effective equation at the continuum scale,
and to show the potential of coupling fluid and solid mechanics.

Pumping highly pressurized fluid into a sediment can cause selected throats (fluid
pathways) to widen, and thereby allows the fracturing fluid to enter and extend the
crack further into the formation. In our model, cracks or fractures are represented
as those throats with very high conductance, while the network connectivity remains
fixed. This simplified view is intuitively correct in unconsolidated sands.
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Figure 10: The relative error in pressure versus the number of coarse blocks. The left figure
is the case when ϵ = 0.001 and the right figure is when ϵ = 0.0001. The dash line represents
y = 1/N2.

If a throat, such as the one depicted in Figure 11, is filled with fluid, the pore
pressure acts both in normal direction to the grain walls (normal stress, shown in
blue), as well as parallel to them (shear stress, shown in red).

The throat depicted will open wider if the total of normal forces (i.e. those labelled
blue) pushing the grain labelled Gr1 upwards, as well as the grain Gr2 downwards, is
larger than total of the shear forces acting on both of the grains [40, 45]. Since all
forces act on the surface of the same area (length in 2D) a, when the balance is made
over all of the normal (solid arrow) forces that act in y direction and divided by a, we
obtain stress

σN = −1

2
(σ

(1)
N + σ

(2)
N ),

where

σ
(1)
N ≈ (pi,j+1 − 2pi,j + pi,j−1), σ

(2)
N ≈ (pi+1,j+1 − 2pi+1,j + pi+1,j−1).

The shear stresses (dash arrow) acting in y direction on the two grains above and below
the throat are equal to 2σN in this case. The throat widens if the total stress is larger
in magnitude than some critical value GC , that is G = a(σN + σT ) > GC , where a is
the length of the throat. The latter is similar to the concept of the crack extension
force from plane elasticity [40, 45], and we will use the same name for it.

Note that in general, the normal and shear forces would also be balanced by gravity
acting on each grain as well as the effect of earth stresses (confinement). [45] gives a
simple way of incorporating earth stresses in a network setting. In our simple network,
however, the grains do not touch and thus there is no way to transmit those stresses
throughout the grain network. We thus impose limitations that mimic confinement
effects as follows.

In our model on local network level, we modify the radii of the throats according
to their extension force value. A throat is characterized as a part of fracture when
its radius is close to a predefined value rmax; this large size of radius leads to large

28



Figure 11: Illustration for computing stress using local information. Pore space (gray) and
grains (white) near the throat connecting pore (i, j) and pore (i + 1, j). Pore centers are
marked with circles. Normal forces to grain surfaces exerted by pore pressure are depicted
with solid arrows, shear forces exerted on grains by viscous forces in motion are shown by
the dashed arrows.

Figure 12: Snapshots of fracture simulation. The thick lines represent fracture (updated
radius bigger than 8r0.) The top one is c = 2, and the middle one is c = 2.5 and the
bottom one is c = 4. Note that the fracture appears to have disconnected components due
to periodic boundary conditions. The fracture is connected indeed.
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conductance. If a pore is connected to a throat that is identified as part of a fracture,
then the pore is called a fracture node. Further, in each iteration, we check the crack
extension force G of each throat that is connected to a fracture node. In case that
G > GC for such a throat, we update its radius r by r = H(G) for a Heaviside-like
function H. Otherwise, its radius stays the same as before. Here we choose

H(G) = rmax
2

π
tan−1(

G−GC

s
) for G > GC , (36)

where rmax is the maximum conductance value used in the simulation and s is a suitable
scaling. The conductance of this throat is then updated according to its new radius.
Notice that we only update the conductance of throats connected to a fracture node
and the resulting fracture is always a connected path.

We assume that once the fracture is formed, it will not close afterwards. Therefore,
in our algorithm, the radius is only updated when the proposed value rnew is bigger
than previous one rold. That is

rnew = max{rold,H(G)}.

Finally, subsurface formations are under confining pressure (dependent on the depth)
and cannot expand freely. In order to simulate that behavior, we confine the radii of
throats by restricting the sum of the radii in each column and each row to be less than
a given constant. That is, if we denote the radius of the throat connecting pore(i, j)
and pore (i+1, j) by ri+ 1

2
,j , pore(i, j) and pore (i, j+1) by ri,j+ 1

2
, then

∑
j ri+ 1

2
,j and∑

i ri,j+ 1
2
are bounded above by given numbers for all i and j. Therefore only certain

number of throats in each row and column can be part of fracture. If the sum of the
proposed radii exceed the restriction in certain column, we reassign radii to satisfy the
constraint. We update throats according to the order of radii in previous step in each
column and row since larger conductance is easier to expand.

Experiment 8. (Full network simulation with the proposed fracture model)
We consider a network with pores and edges coming from a regular lattice Z2 over
the domain [0, 100] × [0, 20]. We set p = 1 at the left boundary and p = 0 on the
right, and periodic in the two horizontal boundaries. The initial radii of throats are
randomly generated from the uniform distribution [(1−λ)r0, (1+λ)r0] with r0 = 0.01
and λ = 0.5, except for the conductance of the throat connecting pore (1, 11) to pore
(2, 11). The conductance for that particular throat is set to be rmax = 10r0 = 0.1 as
the initial onset of a fracture in the network. We use the linear flux-pressure gradient
relation as in Experiment 2 to compute pressure in each fixed state. Then we update
conductance according to the computed pressure. The critical crack extension force
GC for each throat is a constant with a small random perturbation. The random
perturbation reflects the fact that some locations are easier fractured than others in
reality. The upper bound of the sum of radii is 20cr0 in each columns and 100cr0 in
each row. We choose c to be 2, 2.5 and 4. When a updated radius becomes bigger
than 8r0, the throat is marked as a part of fracture. See Figure 12 for snap shots of
simulations involving different c. We can see the fracture is more concentrated when c
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is small and spread out when c is large. However, the fracture pattern stay unchanged
when c is larger than 4. This is the effect resulting from the constraint on the sum
of throat radii. Finally, we notice that even though the network model used in the
simulations are constructed from a regular grid, sufficiently irregular fractures could
still develop.

Experiment 9. (Multiscale simulations with the fracture model in local net-
works) In this experiment, we incorporate our quasi-static fracture development model
for two dimensional networks into the multiscale algorithm. We consider a full net-
work consisting of pores and edges taken from a regular Cartesian lattice over the
domain [0, 10000]× [0, 20]. No source inside the network and the boundary conditions
are Dirichlet in x-direction with p = 1000 and p = 0 on left and right hand side and
periodic in the two horizontal boundaries. The radii of throats are initially randomly
generated from the uniform distribution [(1 − λ)r0, (1 + λ)r0] with r0 = 0.01 and
λ = 0.5, we choose the viscosity µ = 1. We divide the whole network into 10 blocks,
and evaluate the macroscopic fluxes by simulations using local networks obtained from
the 101 × 20 pores centering at each block and use the linear flux-pressure gradient
relation as in Experiment 2 to compute pressure in each local network.

We now apply our quasi-static fracture development model described as in Exper-
iment 8 on the first local network, and the rest local networks stay unchanged. The
conductance connecting pore (1, 11) to pore (2, 11) in the first local network is set
to be rmax = 10r0 = 0.1 to represent initialization of a fracture. Then we develop
fracture in the first block until it stops or reaches the right hand side of the block.
In addition to the rules to develop fracture in Experiment 8, we impose an additional
condition to control fracture development. In each static state, there is a 1− γ prob-
ability that we stop fracture development. We compute Pi in each fix static state and
set γ = 0.9941/(P0−P1). It means the larger macro pressure gradient the higher chance
to propagate the fracture. The number 0.994 is chosen by 0.551/100 and therefore it
has roughly 0.55 probability for fracture to reach the right hand side of the first block.

If fracture reaches the right hand side of the first block, then we keep developing
fracture in the second block. We initialize a fracture in the second block by setting the
radii of the throats connected to the fracture nodes in the second local network to be
10r0 and perform the same fracture development simulation. Now the probability γ =
0.9941/(P1−P2) and the rest local networks stay unchanged. Inductively, we continue
this process until the fracture development stops or reaches the right hand side of the
last local network domain to obtain final macro pressure P and flux F .

We run 1000 realizations on initial conductances and compare the macro pres-
sure and the flux obtained from fracture development simulation with thew macro
pressure and flux obtained from the original conductances. Figure 13 shows that the
pressure profiles change rather non-trivially according different fracture configurations
that developed in the simulations (the left figure), and in contrast pressure profiles are
essentially linear without the fracture model (the right figure). Since conductance is
uniformly distributed we can expect the effective permeability is almost the same for
each constant if no fracture development is involved. Therefore the macro pressure is
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Figure 13: Comparison of macro scale pressure profile. The left hand side figure is the
pressure profile of 1000 realizations with fracture development. The right hand side figure
is the pressure profile of 1000 realizations without any modification on radii of throat.

almost linear. On the other hand, when fracture development reaches an equilibrium,
the effective permeability of the local network becomes larger than those without frac-
ture development. Hence the flux with fracture development is larger than the flux
without fracture development; this is a natural consequence since fractures increase
effective permeability. Figure 15 shows the histograms of the fluxes computed from
our simulations using different random realizations of the underlying networks con-
ductances. We can see the fluxes without fracture development form a bell shape
distribution with very small deviation. On the other hand, the fluxes from simulations
with fracture development form a significantly different distribution. Here,we report
the total fluxes through the entire network. If we use r0 = 0.01 to compute the effective
conductance, we get K ≃ πr40/(8µ) · 20 and therefore, the flux is K∇P ≃ 7.854 · 10−9.
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A Properties of Network models

We present two simple properties of network models in this section.

Lemma A.1. Suppose that any two nodes in the domain are connected by a continuous
path of throats, and the conductance cij > 0 for each i and j ∈ Ii. Then the pressure
p satisfies the maximal and minimal principle, i.e.,

max
i∈I

{pi} = max
i∈I\I(0)

{pi}, and min
i∈I

{pi} = min
i∈\I(0)

{pi}.
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Figure 14: Comparison of macro scale flux in each realization. The left figure is the flux
with fracture development and the right figure is the flux without fracture development.
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Figure 15: Histogram of flux. The left figure is the flux with fracture development and
the right figure is the flux without fracture development. We omit those realizations that
resulted in very large fluxes in the left figure.
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Proof. By contradiction, suppose that maximum is attained at an interior node; i.e.
maxi∈I(0){pi} > maxi∈I\I0{pi}. Let IM denote the largest index set containing all

index i such that pi = maxj∈I{pj}. Then IM ⊆ I(0) ⊂ I and there exist indices
i∗ ∈ IM and j∗ ∈ Ii∗ such that j∗ /∈ IM . Since pi∗ = maxi∈I{pi} and cij > 0, we have∑

j∈Ii∗

ci∗,j(pi∗ − pj) ≥ ci∗,j∗(pi∗ − pj∗) > 0

which contradicts to (4). The proof of the minimal principle is analogous.

Lemma A.2. Suppose any two nodes in the network can be connected by a continuous
path of throats, and the conductance cij > 0 and is independent of pi and pj for all
i ∈ I, j ∈ Ii.

1. Then there exists a unique solution {pi}i∈I(0) satisfying (4) and the Dirichlet
boundary conditions at the left and the right network boundaries, and periodic
condition in the remaining faces.

2. If the conductance cij is also independent of PR and PL, then there exists a
nonnegative constant k depending only on cij such that the flux take the form

f = −k(PR − PL)/δ,

where δ is the distance between left face and right face.

Proof. Rewritten (4) as
Cp = b, (37)

where p is the vector whose entries are pi for i ∈ I(0) and b is determined by the
boundary conditions PR and PL. Since C is a square matrix independent of p, it
suffices to show that C is injective. Suppose b = 0, then it is easy to see PL = PR = 0.
Max-Min principle (Lemma A.1) implies p = 0. Hence C is invertible and p is uniquely
solvable.

Let p∗ be the solution of (37) with PR = 1 and PL = 0 and p be the solution of
(37) with arbitrary PR and PL. By linearity of the system (37), p = (PR−PL)p∗+PL.
Denoting the flux resulting from the boundary values PR, PL by f(PL, PR), we see
that f(PL, PR) = (PR − PL)f(1, 0). Let k = −f(1, 0)δ. It is clear that k > 0 as a
consequence of the maximal-minimal principle, and f(PL, PR) = −k(PR − PL)/δ.

B Error Analysis for the Elliptic Homogeniza-

tion Case

In this section, we investigate the error between the microscopic pressure and macro-
scopic pressure computed by our method. Our observation is that equation (3) can
be interpreted as a discretization of an elliptic problem under some assumption on the
network configuration. For such systems, we can estimate the accuracy of our proposed
multiscale method via (numerical) homogenization theory.
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For simplification, we only demonstrate two dimensional case, but the argument
works for higher dimensional cases also. Let Ω = [xL, xR] × [yB, yT ] be a rectangular
domain. Consider the following elliptic equation

−∇ · (aϵ(x)∇pϵ(x)) = 0, x ∈ Ω; pϵ(x) = g(x), x ∈ ∂Ω; (38)

where aϵ(x) := a(x,x/ϵ) for some positive smooth function a(x,y) that is periodic
in y with period 1 in first and second coordinates for any fixed x, and g is the given
Dirichlet boundary condition. The parameter ϵ is a small positive number that refers
to the length scale of rapid oscillation of coefficient. We divide the domain into n×m
partitions and let δx = (xR−xL)/n, xi = xL+iδx and δy = (yT−yB)/m, yj = yB+jδx,
where n and m are chosen large enough to resolve ϵ scale. Let xi,j = (xi, yj). We
discretize(38) by

−aϵ(xi+ 1
2
,j)

pi+1,j − pi,j
δx

+ aϵ(xi− 1
2
,j)

pi,j − pi−1,j

δy

− aϵ(xi,j+ 1
2
)
pi,j+1 − pi,j

δx
+ aϵ(xi,j− 1

2
)
pi,j − pi,j−1

δy
= 0

(39)

where xi+ 1
2
,j is the middle point (quadrature point) of xi.j ,xi+1,j and pi,j is the nodal

value of the finite element solution to approximate pϵ(xi,j). By standard convergence
theory, we have

∥pi,j − pϵ(xi,j)∥ < C1(ϵ, a)h
2, (40)

where h = max{δx, δy} and C1(ϵ, a) is a constant independent of h but may depend
on a, ϵ and boundary value g.

On the other hand, the discrete system defined in (39) can be viewed as equations
of conservation law of a linear network model for pressures pi,j pores; see equation (4):
the graph of the network model is simply square lattice grids and each pore connects
to four adjacent pores. The conductance ci+ 1

2
,j of the throat connecting pore (i, j) and

pore (i+ 1, j) is given by
ci+ 1

2
,j = aϵ(xi+ 1

2
,j)/δx,

and conductance ci,j+ 1
2
of the throat connecting pore (i, j) and pore (i, j+1) is defined

analogously.
Suppose we apply the macroscopic 2D model and macro-micro algorithm to this

network model. Then the macroscopic pressure P satisfies

−K1,1

k+ 1
2
,l
Dx

+Pk,l +K1,1

k− 1
2
,l
Dx

−Pk,l −K2,2

k,l+ 1
2

Dy
+Pk,l

+K2,2

k,l− 1
2

Dy
−Pk,l −K1,2

k+ 1
2
,l
Dy

0Pk+ 1
2
,l +K1,2

k− 1
2
,l
Dy

0Pk− 1
2
,l

−K2,1

k,l+ 1
2

Dx
0Pk,l+ 1

2
+K2,1

k,l− 1
2

Dx
0Pk,l− 1

2
= 0

(41)

where Kk± 1
2
,l’s and Kk,l± 1

2
’s are obtained from local network simulation discussed in

section 3 with local network on Bδ. Here we omit the upper index (n) since the network
is linear, Kk± 1

2
,l’s and Kk,l± 1

2
’s are constants independent of macroscopic pressure P.
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Our goal is to study the error between the macroscopic pressure P and the microscopic
pressure pϵ by using techniques in homogenization.

The homogenized equation of (38) is simply

−∇ ·
(
Ā(x)∇P

)
= 0, x ∈ Ω; P (x) = g(x), x ∈ ∂Ω (42)

where Ā is the homogenized coefficient which can be obtained by solving a cell problem
(See [12] for more detail). Then standard homogenization theory has that

∥P − pϵ∥∞ < C2(a)ϵ, (43)

where the constant C2 depends on a only.
Notice that Ā can be a nondiagonal 2× 2 matrix even a is a scalar. We use Āi,j to

denote which the (i, j) entry of Ā. The homogenized equation can be discretized by

−Ā1,1(yk+ 1
2
,l)D

x
+P k,l + Ā1,1(yk− 1

2
,l)D

x
−P k,l − Ā2,2(yk,l+ 1

2
)Dy

+P k,l

+ Ā2,2(yk,l− 1
2
)Dy

−P k,l − Ā1,2(yk+ 1
2
,l)D

y
0P k+ 1

2
,l + Ā1,2(yk− 1

2
,l)D

y
0P k− 1

2
,l

− Ā2,1(yk,l+ 1
2
)Dx

0P k,l+ 1
2
+ Ā2,1(yk,l− 1

2
)Dx

0P k,l− 1
2
= 0

(44)

where yk,l = (xL + k∆x, yB + l∆y) and yl+ 1
2
is the middle point (quadrature point)

of yk,l and yk+1,l. Again, we have the estimate

∥P k,l − P (yk,l)∥ < C3(a)H
2, (45)

where H = max{∆x,∆y} and C3 is independent of H. We observe that P k,l and
Pk,l satisfy similar equations (41) and (44). If we can estimate the difference between
coefficients in (41) and (44), then we have error estimate between P k,l and Pk,l.

Let V be a piecewise linear function on Bδ(yk+ 1
2
,l) that is a square centered at the

quadrature point yk+ 1
2
,l with length δ. For each linear function V and Bδ(yk+ 1

2
,l), let

vϵ be the solution of

−∇ · (aϵ(x)∇vϵ(x)) = 0, x ∈ Bδ(yl+ 1
2
)

vϵ(x) = V (x), x ∈ ∂Bδ(yl+ 1
2
)

(46)

The HMM method [23] suggests to estimate the homogenized coefficient A at quadra-
ture point by AH , which is defined as

∇WAH(yk+ 1
2
,l)∇V =

1

δ2

∫
Bδ(yk+1

2 ,l
)
∇wϵ(x)aϵ(x)∇vϵ(x) dx,

where vϵ and wϵ are solutions of (46) associated with V and W respectively. Notice
that (46) implies ∫

Bδ(yk+1
2 ,l

)
∇(wϵ(x)−W )aϵ(x)∇vϵ(x) dx = 0
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Therefore we have

∇WAH(yk+ 1
2
,l)∇V = ∇W ·

 1

δ2

∫
Bδ(yk+1

2 ,l
)
aϵ(x)∇vϵ(x) dx

 = ∇W · F (∇V ),

where F (∇V ) is the average of aϵ(x)∇vϵ(x) on Bδ.
On the other hand, the local network solution pi,j for computing local flux f̂ in our

scheme is exactly the discrete solution of (46) using grid size δx and δy with boundary
condition given by linear interpolation of a linear function obtained from Pk,l, Pk+1,l,

Pk,l+1, Pk+1,l+1, Pk,l−1, Pk+1,l−1. And our local flux f̂ is mean value of discrete flux in
each throats. Since the discretization has second order accuracy in pressure, we have
first order accuracy in flux and also its mean value:

∥F (∇P )− f̂∥ ≤ C1h.

By choosing ∇W to be [1, 0]T and [0, 1]T and using the definition of K’s in our algo-
rithm with the above flux estimate, we get

|A1,m
H (yk± 1

2
,l)−K1,m

k± 1
2
,l
| ≤ C1h, |A2,m

H (yk,l± 1
2
)−K2,m

k,l± 1
2

| ≤ C1h

for m = 1, 2. By triangle inequality, we obtain the error between coefficients:

|Kk+ 1
2
,l − Ā(yk+ 1

2
,l)| ≤ |K1,m

l+ 1
2

−A1,m
H (yl+ 1

2
)|+ |A1,m

H (yl+ 1
2
)− Ā1,m(yl+ 1

2
)|

≤ C1h+ e(HMM),
(47)

where e(HMM) = ∥AH(yk+ 1
2
,l)− Ā(yk+ 1

2
,l)∥. Combining (41), (44) and (47), it leads

to
∥P k,l − Pk,l∥ ≤ C5(e(HMM) + h) (48)

Denote ik, jl the indices such that xik,jl = yk,l, for each k and l. Using (40), (45), (43)
and (48), we obtain the final estimate

∥Pk,l − pik,jl∥ ≤ ∥Pk,l − P k,l∥+ ∥P k,l − P (yk,l)∥+ ∥P (yk,l)− pϵ(yk,l)∥+ ∥pϵ(yk,l)− pik,jl∥
< C1(ϵ, a)h+ C6(a)(H

2 + ϵ+ e(HMM)).

(49)

Recall that the HMM error e(HMM) can be controlled by

e(HMM) ≤
{

C4ϵ, if δ = ϵ
C4(δ + ϵ/δ), else

(50)

See [26] for more reference. Summarizing above discussion, we have proved

Theorem B.1. Given a 2D linear network model whose graph is simply a lattice grids,
and each pores connect to adjacent four pores. Suppose the conductance ci+ 1

2
,j of the

throat connecting pore (i, j) and pore (i+ 1, j) is given by

ci+ 1
2
,j = aϵ(xi+ 1

2
,j)/δx,
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and the conductance ci,j+ 1
2
of the throat connecting pore (i, j) and pore (i, j + 1) is

given by
ci,j+ 1

2
= aϵ(xi,j+ 1

2
)/δx,

where aϵ(x) = a(x, x/ϵ) for some continuous a(x,y) and a is periodic function in y
with period 1. Let pi,j be the pressure of the network model and Pk,l is the macroscopic
pressure computed from macro-micro algorithm with sampling size δ. Let ik, jl denote
the index such that pik,jl and Pk,l are at the same point. Then there exists constants
C and D such that

∥Pk,l − pik,jl∥ <

{
C(ϵ, a)h+D(a)(H2 + ϵ), if δ = ϵ
C(ϵ, a)h+D(a)(H2 + ϵ+ δ + ϵ

δ ), else
(51)

where C depends on a and ϵ, and D depends on a only.
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[7] I. Babuška, G. Caloz, and J. E. Osborn. Special finite element methods for a class
of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal.,
31(4):945–981, 1994.
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