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Abstract

We derive new trace inequalities for NURBS-mapped domains. In addition to Sobolev-type
inequalities, we derive discrete trace inequalities for use in NURBS-based isogeometric anal-
ysis. All dependencies on shape, size, polynomial order, and the NURBS weighting function
are precisely specified in our analysis, and explicit values are provided for all bounding con-
stants appearing in our estimates. As hexahedral finite elements are special cases of NURBS,
our results specialize to parametric hexahedral finite elements, and our analysis also gener-
alizes to T-spline-based isogeometric analysis.

Keywords: trace inequalities, isogeometric analysis, NURBS, T-splines, Nitsche’s method,
parametric hexahedral finite elements, rational basis functions

1 Introduction

Since its introduction in 2005 by Hughes, Cottrell, and Bazilevs [24], isogeometric analysis
has emerged as a powerful design-through-analysis technology. The underling concept behind
isogeometric analysis is simple: utilize the same basis for finite element analysis (FEA) as is
used to describe computer aid design (CAD) geometry. The first instantiations of isogeomet-
ric analysis were based upon Non-Uniform Rational B-Splines (NURBS), and isogeometric
analysis has since been extended to T-spline [4, 16] and subdivision [13] discretizations. Iso-
geometric analysis has shown much promise in a wide variety of application areas such as
structural analysis [15, 17, 28], fluid-structure interaction [5], and electromagnetism [12],
and isogeometric analysis now has a firm theoretical basis [6, 11, 21]. However, a number
of research challenges remain. Among these challenges is the imposition of strong bound-
ary conditions. Unlike Lagrange finite elements, NURBS, T-spline, and subdivision basis
functions do not interpolate function values at nodal points. Imposition of strong bound-
ary conditions is even less straight-forward for fourth-order systems (such as those arising
in Cahn-Hilliard phase-field models [22] and Kirchhoff plate and shell theories [25]) where
strong boundary conditions involving normal derivatives naturally arise. Hence, special care
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must be taken in order to ensure an isogeometric discretization satisfies prescribed strong
boundary conditions.

Recently, Nitsche’s method [29] has been explored as a means of weakly enforcing strong
boundary conditions in isogeometric analysis [8, 18]. This procedure has been found to
be especially powerful in isogeometric flow simulation where a close connection with so-
called turbulent wall models has been discovered [7]. In Nistche’s method, a stabilization
parameter appears which must be chosen large enough to ensure coercivity. Notably, the
parameter should be chosen large enough such that a discrete trace inequality is satisfied.
This requirement results in Nitsche parameters which necessarily depend locally on the
shape of the element and the chosen discretization, but such dependencies have not yet been
made explicit in the context of isogeometric analysis. In this paper, new trace inequalities
for NURBS-based isogeometric analysis are derived where all dependencies on shape, size,
polynomial order, and the NURBS weighting function are precisely specified. Furthermore,
explicit values are provided for bounding constants appearing in our estimates and, as such,
these inequalities can be directly utilized in the design of Nitsche’s stabilization parameter.

An outline of this paper is as follows. In Section 2, we briefly introduce requisite ter-
minology and definitions. In Section 3, we derive a new Sobolev trace inequality for H1

functions defined on NURBS-mapped domains. In Section 4, we derive discrete trace in-
equalities specifically for use in NURBS-based isogeometric analysis. Finally, in Section 5,
we draw conclusions. Before proceeding, we would like to make a couple of remarks. First of
all, the focus of this paper will be exclusively the three-dimensional setting. Similar results
to those presented here hold in the two-dimensional setting, albeit with different constants
and dependencies. Second, while we only discuss NURBS-based isogeometric analysis, our
results immediately apply to any isogeometric discretization technique based on rational
functions. Notably, they apply to T-spline and parametric hexahedral finite element dis-
cretizations. Unfortunately, our results do not extend to subdivision discretizations as they
are not rational.

2 Preliminaries

Throughout this paper, we make use of the classical Lebesgue spaces Lq(D) endowed with
norm ‖ · ‖Lq(D) where 1 ≤ q ≤ ∞ and D ⊂ Rd is a generic open domain for integer d ≥ 1.
We will also utilize the Sobolev spaces Hk(D) for k a positive integer, endowed with norm

‖u‖Hk(D) :=

( ∑
α1+...+αd≤k

∥∥∥∥ ∂α1

∂xα1
1

. . .
∂αd

∂αdxd
u

∥∥∥∥2
L2(D)

)1/2

(1)

and semi-norm

|u|Hk(D) :=

( ∑
α1+...+αd=k

∥∥∥∥ ∂α1

∂xα1
1

. . .
∂αd

∂αdxd
u

∥∥∥∥2
L2(D)

)1/2

. (2)

We denote by ∂D the boundary of an open domain D ⊂ Rd, and we further denote by
‖ · ‖L2(∂D) the Lebesgue norm of order 2 on ∂D. We will occasionally employ the Sobolev
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spaces W k,∞(D) for k a positive integer, and we endow these spaces with norm

‖u‖Wk,∞ :=

( ∑
α1+...+αd≤k

∥∥∥∥ ∂α1

∂xα1
1

. . .
∂αd

∂αdxd
u

∥∥∥∥2
L∞(D)

)1/2

(3)

and semi-norm

|u|Wk,∞ :=

( ∑
α1+...+αd=k

∥∥∥∥ ∂α1

∂xα1
1

. . .
∂αd

∂αdxd
u

∥∥∥∥2
L∞(D)

)1/2

.

Note that these are not the classically defined norms and semi-norms for the W k,∞ spaces.
For matrix-valued functions M : D → Rm×n, we define a spectral L∞ operator norm

‖M‖L∞(D),l :=

∥∥∥∥∥∥ sup
x∈Rm

(∑n
j=1 (

∑m
i=1Mijxi)

2∑m
i=1 x

2
i

)1/2
∥∥∥∥∥∥
L∞(D)

≡ ‖σmax (M)‖L∞(D) (4)

where Mij and xi denote component-wise entries of M and x respectively and σmax denotes
maximum singular value. For third-order tensor-valued functions T : D → Rm×n×o, we
define an analogous L∞ operator norm

‖T‖L∞(D),l :=

∥∥∥∥∥∥ sup
x,y∈Rm

(∑n
j=1 (

∑o
k=1

∑m
i=1 Tijkxiyk)

2

(
∑m

i=1 x
2
i ) (
∑o

k=1 y
2
k)

)1/2
∥∥∥∥∥∥
L∞(D)

(5)

where Tijk denotes a component-wise entry of T. The norms defined by (4) and (5) have been
specially chosen as to simplify the analysis presented in this paper. The rest of this section
will be devoted to a brief introduction of univariate and multivariate B-spline basis functions,
NURBS (non-uniform rational B-spline) basis functions, and the NURBS geometrical map
F . A more complete introduction to NURBS and B-splines may be found in [30], and for an
introductory text on NURBS-based isogeometric analysis, see [14].

2.1 Univariate B-splines

For two positive integers p and n, representing degree and dimensionality respectively, let us
introduce the ordered knot vector

Ξ := {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} (6)

where
ξ1 ≤ ξ2 ≤ . . . ξn+p+1.

Given Ξ and p, univariate B-spline basis functions are constructed recursively starting with
piecewise constants (p = 0):

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(7)
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For p = 1, 2, 3, . . ., they are defined by

Bp
i (ξ) =

ξ − ξi
ξi+p − ξi

Bp−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bp−1
i+1 (ξ). (8)

When ξi+p − ξi = 0, ξ−ξi
ξi+p−ξi is taken to be zero, and similarly, when ξi+p+1 − ξi+1 = 0,

ξi+p+1−ξ
ξi+p+1−ξi+1

is taken to be zero. B-spline basis functions are piecewise polynomials of degree

p, form a partition of unity, have local support, and are non-negative.
Let us now introduce the vector ζ = {ζ1, . . . , ζm} of knots without repetitions and a

corresponding vector {r1, . . . , rm} of knot multiplicities. That is, ri is defined to be the
multiplicity of the knot ζi in Ξ. By construction,

∑m
i=1 ri = n + p + 1. We assume that

ri ≤ p + 1. Let us further assume throughout that r1 = rm = p + 1, i.e, that Ξ is an
open knot vector. At the point ζi, B-spline basis functions have αj := p − rj continuous
derivatives. Therefore, −1 ≤ αj ≤ p− 1, and the maximum multiplicity allowed, rj = p+ 1,
gives a discontinuity at ζj. By construction, α1 = αm = −1.

2.2 Multivariate Tensor-Product B-splines

The definition of multivariate B-splines follows easily through a tensor-product construc-
tion. Let us focus on the three-dimensional case. Notably, let us consider the unit cube
Ω̂ = (0, 1)3 ⊂ R3, which we refer to as the patch. Mimicking the one-dimensional case, given
integers pd and nd for d = 1, 2, 3, let us introduce open knot vectors Ξd = {ξ1,d, . . . , ξnd+pd+1,d}
and the associated vectors ζd = {ζ1,d, . . . , ζmd,d}, {r1,d, . . . , rmd,d}, and αd = {α1,d, . . . , αmd,d}.
There is a parametric Cartesian mesh Qh associated with these knot vectors partitioning the
parametric domain Ω̂ into rectangular parallelepipeds. Visually,

Qh = {Q = ⊗d=1,2,3 (ζid,d, ζid+1,d) , 1 ≤ id ≤ md − 1} . (9)

For each element Q ∈ Qh we associate a parametric mesh size hQ = hQ,max where hQ,max

denotes the length of the largest edge of Q. Also, for each element, we define a shape
regularity constant

λQ =
hQ

hQ,min

(10)

where hQ,min denotes the length of the smallest edge of Q.
We associate with each knot vector Ξd (d = 1, 2, 3) univariate B-spline basis functions

Bpd
i,d of degree pd for i = 1, . . . , nd. On the mesh Qd, we define the tensor-product B-spline

basis functions as

Bp1,p2,p3
i,j,k := Bp1

i,1B
p2
j,2B

p3
k,3, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3. (11)

Like their univariate counterparts, multivariate B-spline basis functions are piecewise poly-
nomial, form a partition of unity, have local support, and are non-negative.
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2.3 NURBS

Let us define a set of positive weights wijk for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3. The
so-called NURBS (Non-Uniform Rational B-Spline) basis functions are defined to be

Rp1p2p3
i,j,k :=

wijkB
p1,p2,p3
i,j,k

w
, i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3, (12)

where Bp1p2p3
ijk are the B-spline basis functions defined in the previous subsection and w is

the weighting function defined by

w =

n1,n2,n3∑
i=1,j=1,k=1

wijkB
p1,p2,p3
i,j,k . (13)

Note that as multivariate B-spline basis functions form a partition of unity, the NURBS
basis reduces to the B-spline basis when the weights are chosen to be unity. Also note that
the NURBS basis functions are pointwise positive and form a partition of unity.

In NURBS-based isogeometric analysis, the physical domain is defined through a NURBS
geometrical mapping

F =

n1,n2,n3∑
i=1,j=1,k=1

PijkR
p1p2p3
ijk (14)

where Pijk ∈ R3 are the so-called control points. F is a parametrization of the physical
domain Ω of interest, that is,

F : (0, 1)3 → Ω.

We assume throughout that F is invertible, with smooth inverse F−1, on each element
Q ∈ Qh. NURBS are capable of representing all conic sections, such as circles and ellipses,
and cylinders, spheres, tori, ellipsoids, are also exactly representable. In general, more
than one patch must be utilized to represent a chosen geometry. In this situation, proper
constraints should be enforced in order to ensure global continuity. For more on multi-patch
geometries, see Chapter 2 of [14].

For each element Q in the parametric domain there is a corresponding physical element
K = F(Q). We define the physical mesh to be

Kh = {K : K = F(Q), Q ∈ Qh} = F(Qh). (15)

We define for each physical element K ∈ Kh a physical mesh size

hK = ‖∇F‖L∞(Q),lhQ (16)

where Q is the pre-image of K and ∇F is the matrix of partial derivatives of the coordinate
components of F (i.e., (∇F)ij = ∂Fi

∂ξj
). We introduce the space Vh of NURBS on Ω (which

is the push-forward of the space of NURBS on the patch (0, 1)3)

Vh := span
{
Rp1p2p3
i,j,k ◦ F−1

}n1,n2,n3

i=1,j=1,k=1
. (17)

In isogeometric analysis, the space Vh is utilized as the trial space in a Galerkin or Petrov-
Galerkin method. Note that the functions in Vh are smooth on each physical element K ∈
Kh, and the NURBS basis functions and weighting function are smooth on each parametric
element Q ∈ Qh.
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3 A Sobolev Trace Inequality for

NURBS-Mapped Domains

Sobolev trace inequalities play an important role in the analysis of partial differential equa-
tions and their numerical solution. Generally speaking, these inequalities involve bounding
the trace norm of a function by a constant multiplied by its interior norm. The precise
value of this constant and its dependency on domain shape and size has been the focus of a
collection of papers in the mathematics literature. Optimal Sobolev trace constants for the
half-plane were derived by Beckner [10] and Escobar [20] based on earlier work of Lions [27].
Optimal constants for general domains were derived in [3], but the derived constants are
specified in terms of an awkward and computationally prohibitive limiting procedure. Ex-
plicit, but not necessarily optimal, Sobolev trace constants for simplices and parallelepipeds
were presented by Vesser and Verfürth in [32] for use in finite element a posteriori error
estimation. In this section, we present a new Sobolev trace inequality for NURBS-mapped
domains. This trace inequality is completely explicit with respect to mesh size, parametric
shape regularity, and local measures of the NURBS parametric mapping F , and appropriate
values are provided for the bounding constant appearing in our estimate. It should be noted
that while the derived inequality is not necessarily sharp, special care is taken to ensure that
the estimate is easily computable for utilization in numerical simulation.

3.1 General Lipschitz Domains and the Unit Cube

We begin with the standard Sobolev trace theorem for general Lipschitz domains. Its proof
may be found in [1], for example.

Theorem 3.1. If D ⊂ R3 is a Lipschitz domain, then H1(D) is continuously embedded in
L2(∂D). That is, there exists a positive constant C∗(D) such that, for all f ∈ H1(D),

‖f‖2L2(∂D) ≤ C∗(D)‖f‖2H1(D). (18)

The constant C∗(D) appearing above necessarily depends on the domain D, but the the-
orem does not explicitly specify such a dependence. In order to arrive at such a dependence
for NURBS-mapped domains, let us first present the following corollary to Theorem 3.1.

Corollary 3.1. There exists a positive constant Cu such that, for all f ∈ H1((0, 1)3),

‖f‖2L2(∂(0,1)3) ≤ Cu‖f‖2H1((0,1)3). (19)

Note that the optimal constant appearing in (19) is precisely the maximizer of the
Rayleigh quotient

‖f‖2L2(∂(0,1)3)

‖f‖2H1((0,1)3)

(20)

where f ∈ H1((0, 1)3. Hence, the optimal constant is equivalent to the largest eigenvalue
λmax of the generalized variational eigenproblem: Find f ∈ H1((0, 1)3), λ ∈ R+ such that

(f, g)L2(∂(0,1)3) = λ (f, g)H1((0,1)3) , ∀g ∈ H
1((0, 1)3). (21)
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In order to arrive at the value of λmax, we have numerically solved (21) using Galerkin’s
method in conjunction with a sequence of nested tri-cubic B-spline spaces. These computa-
tions reveal that the value of λmax, up to ten significant figures, is

λmax = 6.165748028 . . . (22)

This value provides a sharp lower bound for the constant Cu appearing in Corollary 3.1. It
is interesting that the Rayleigh quotient (20) is nearly maximized for constant f . This is
also true for the unit line and the unit square.

3.2 The Rectangular Parallelepiped

We now derive a Sobolev trace inequality for the rectangular parallelepiped by utilizing a
scaling argument. We note that the trace inequality is similar in nature to that of Corollary
4.5 of [32], but our method of proof and final result are ultimately different.

Lemma 3.1. Let D ⊂ R3 denote a rectangular parallelepiped whose length, width, and height
are h1, h2, and h3 respectively. Then, for all f ∈ H1(D),

‖f‖2L2(∂D) ≤
CuM

V

(
‖f‖2L2(D) +N |f |2H1(D)

)
(23)

where Cu is a positive constant chosen large enough such that inequality (19) of Corollary
3.1 is satisfied and

M := max {h1h2, h2h3, h1h3} ,
N := max

{
h21, h

2
2, h

2
3

}
,

V := h1h2h3 = the volume of D.

Proof. Let f ∈ H1(D) denote an arbitrary function. We write

‖f‖2L2(∂D) =

∫
∂D

f 2ds.

We now expand the surface integral. We write∫
∂D

f 2ds =

∫
Dtop

+

∫
Dbottom

+

∫
Dleft

+

∫
Dright

+

∫
Dfront

+

∫
Dback

f 2ds (24)

where Dtop denotes the top of the parallelepiped D and the other notation follows. Before
proceeding, let g : [0, 1]3 → D̄ denote the unique face-preserving affine function mapping
the (closed) unit cube onto D̄, the closure of the open domain D. That is, g maps the top
face of the unit cube to the top face of D and so on. Let us now parameterize the surface
integral using g. We write:∫

Dtop

f 2ds = h1h2

∫ 1

0

∫ 1

0

f 2(g(x1, x2, 1))dx1dx2∫
Dbottom

f 2ds = h1h2

∫ 1

0

∫ 1

0

f 2(g(x1, x2, 0))dx1dx2∫
Dleft

f 2ds = h2h3

∫ 1

0

∫ 1

0

f 2(g(0, x2, x3))dx2dx3
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∫
Dright

f 2ds = h2h3

∫ 1

0

∫ 1

0

f 2(g(1, x2, x3))dx2dx3∫
Dfront

f 2ds = h1h3

∫ 1

0

∫ 1

0

f 2(g(x1, 0, x3))dx1dx3∫
Dback

f 2ds = h1h3

∫ 1

0

∫ 1

0

f 2(g(x1, 1, x3))dx1dx3.

Noting the double integrals in the above expressions correspond to integration of the pullback
F = f ◦ g over the faces of the unit cube, we may insert the above six equations into (24) to
obtain

‖f‖2L2(∂D) ≤M

∫
∂(0,1)3

F 2dS = M‖F‖2L2(∂(0,1)3) (25)

where
M = max {h1h2, h2h3, h1h3} .

By Corollary 3.1,

‖F‖2L2(∂(0,1)3) ≤ Cu

(
‖F‖2L2((0,1)3) + |F |2H1((0,1)3)

)
(26)

where Cu is a positive constant chosen large enough such that (19) is satisfied. Applying a
change of variables using the inverse of g to map back from the unit cube to D, we obtain

‖F‖2L2((0,1)3) =
1

V
‖f‖2L2(D) (27)

and

|F |2H1((0,1)3) =
h21
V
‖∂xf‖2L2(D) +

h22
V
‖∂yf‖2L2(D) +

h23
V
‖∂zf‖2L2(D) ≤

N

V
|f |2H1(D) (28)

where V = h1h2h3 and N = max {h21, h22, h23}. The proof follows from combining (25)-
(28).

As a direct corollary of the above lemma, we have the following.

Corollary 3.2. Let D ⊂ R3 denote a rectangular parallelepiped whose length, width, and
height are h1, h2, and h3 respectively. Let hD = max {h1, h2, h3} and let λD ≥ 1 denote the
local shape regularity constant

λD =
hD

min {h1, h2, h3}
. (29)

Then, for all f ∈ H1(D),

‖f‖2L2(∂D) ≤ CuλD

(
h−1D ‖f‖

2
L2(D) + hD|f |2H1(D)

)
(30)

where Cu is a positive constant chosen large enough such that (19) is satisfied.
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3.3 NURBS-Mapped Domains

Armed with the theoretical results appearing in the previous subsection, we can finally prove
a trace inequality for H1 functions living on the physical mesh Kh which is explicit with
respect to size and shape. The inequality is a simple consequence of pull-back operations
between physical space and parametric space. Before proceeding, we would like to remark
that the trace inequality provided here naturally extends to any rectangular parallelepiped
mapped using a smooth mapping F . Hence, it extends to iso- and subparametric hexahedral
finite elements which are commonly used in practice.

Theorem 3.2. Let K ∈ Kh and let Q = F−1(K). Then, for all f ∈ H1(K),

‖f‖2L2(∂K) ≤ CuλQλK

(
h−1K ‖f‖

2
L2(K) + hK |f |2H1(K)

)
(31)

where Cu is a positive constant chosen large enough such that (19) is satisfied, λQ is the local
shape regularity constant of Q,

λK = ‖cof(∇F)‖L∞(Q),l‖det(∇F−1)‖L∞(K)‖∇F‖L∞(Q),l, (32)

cof(∇F) is the cofactor matrix of ∇F, and det(∇F−1) is the determinant of ∇F−1.

Proof. Let f ∈ H1(K). We write

‖f‖2L2(∂K) =

∫
∂K

f 2ds.

Let us separate the surface integral into a collection of integrals over “faces”. That is, let us
write ∫

∂K

f 2ds =

∫
Ktop

+

∫
Kbottom

+

∫
Kleft

+

∫
Kright

+

∫
Kfront

+

∫
Kback

f 2ds

where we have defined, for example, Ktop = F (Qtop) where Qtop is the top face of the
rectangular parallelepiped Q. Note that, by construction,

Q = ⊗d=1,2,3(ζid,d, ζid+1,d)

for some 1 ≤ id ≤ md − 1 where d = 1, 2, 3. We can then write the surface integral for the
top face of K as∫

Ktop

f 2ds =

∫ ζi2+1,2

ζi2,2

∫ ζi1+1,1

ζi1,1

f 2 (F (ξ1, ξ2, ζi3+1,3)) J(ξ1, ξ2, ζi3+1,3)dξ1dξ2

where

J(ξ1, ξ2, ξ3) =

∣∣∣∣∂F(ξ1, ξ2, ξ3)

∂ξ1
× ∂F(ξ1, ξ2, ξ3)

∂ξ2

∣∣∣∣ .
As DF is smooth on Q, we have that

J(ξ1, ξ2, ζi3+1,3) ≤ ‖cof(∇F)‖L∞(Q),l
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for all ξ1 ∈ (ζi1,1, ζi1+1,1) and ξ2 ∈ (ζi2,2, ζi2+1,2) where cof(∇F) is the cofactor matrix of
∇F . Thus,∫

Ktop

f 2ds ≤ ‖cof(∇F)‖L∞(Q),l

∫ ζi2+1,2

ζi2,2

∫ ζi1+1,1

ζi1,1

f 2 (F (ξ1, ξ2, ζi3+1,1)) dξ1dξ2.

Note that the remaining double integral in the above expression is precisely the surface
integral for the square of the pullback f ◦ F over the top face of Q. If we repeat the above
process for the other faces of K and sum all of the resulting expressions, we obtain the
inequality

‖f‖2L2(∂K) ≤ ‖cof(∇F)‖L∞(Q),l ‖f ◦ F‖2L2(∂Q) . (33)

Now let us apply the trace inequality given by Corollary 3.2. This gives

‖f ◦ F‖2L2(∂Q) ≤ CuλQ

(
h−1Q ‖f ◦ F‖

2
L2(Q) + hQ|f ◦ F|2H1(Q)

)
(34)

where λQ is the shape regularity constant for element Q and Cu is a positive constant chosen
large enough such that (19) is satisfied. An application of change of variables, Hölder’s
inequality (see Appendix A), and the definition of the spectral norm for matrices results in

‖f ◦ F‖2L2(Q) ≤ ‖det(∇F−1)‖L∞(K)‖f‖2L2(K) (35)

|f ◦ F|2H1(Q) ≤ ‖det(∇F−1)‖L∞(K)‖∇F‖2L∞(Q),l|f |2H1(K) (36)

where det(∇F−1) is the determinant of ∇F−1. Combining (33)-(36) gives

‖f‖2L2(∂K) ≤ CuλQ‖cof(∇F)‖L∞(Q),l

(
C1h

−1
Q ‖f‖

2
L2(K) + C2hQ|f |2H1(K)

)
. (37)

where
C1 = ‖det(∇F−1)‖L∞(K)

and
C2 = ‖det(∇F−1)‖L∞(K)‖∇F‖2L∞(Q),l,

and combining (37) with the definition

hK = ‖∇F‖L∞(Q),lhQ

finally gives the desired result.

It should be noted that the constant λQλK appearing in the above theorem is a di-
mensionless measure of physical shape regularity. This can be seen by observing that
‖cof(∇F)‖L∞(Q),l is a measure of how planes in Q are expanded under F , ‖∇F‖L∞(Q),l

is a measure of how lines in Q are lengthened under F , and ‖det(∇F−1)‖L∞(K) is an inverse
measure of how volumes in Q are expanded under F . The multiplication of these three
quantities by the local parametric shape regularity gives the physical shape regularity. Also,
recall that we have a sharp lower bound estimate for the bounding constant Cu appearing in
(31). Hence, Theorem 3.2 gives a practically computable trace constant. Finally, note that
if F is taken to be the identity mapping, then λK = 1. If we had utilized alternative matrix
norms in our analysis such as the Frobenius norm, we would have obtained λK > 1.

Remark. Technically, F is a mapping of the open set (0, 1)3 and consequently not a vector
field. That being said, ∇F is a common abuse of notation meaning DF in the sense of
calculus on manifolds [26].
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4 Discrete Trace Inequalites for Isogeometric Analysis

Discrete trace inequalities belong to a special class of inverse-type inequalities which are
posed over discrete function spaces. Discrete trace inequalities play an important role in
the selection of stabilization parameters for Nitsche’s method [29], and they also play a
critical role in the design of symmetric interior penalty methods [2, 34]. Heretofore, the
derivation of explicit discrete trace inequalities has been largely limited to simplex elements
[19, 31, 33]. In this section, we derive new explicit discrete trace inequalities for use in
NURBS-based isogeometric analysis where all dependencies on shape, size, polynomial order,
and the NURBS weighting function are precisely specified. As in the previous section, special
care is taken to ensure that the derived estimates are easily computable for use in numerical
simulation.

4.1 Discrete Trace Inequalities for Tensor-Product
Polynomials on Rectangular Parallelepipeds

We begin this section by deriving discrete trace inequalities for tensor-product polynomials
on rectangular parallelepipeds. In order to conduct such a derivation, we will need the
following lemma.

Lemma 4.1. Let Ph = Pp1,p2,p3 denote the space of tensor-product polynomials of order
(p1, p2, p3) defined on R3. Then, for all ph ∈ Ph,

‖ph‖2L2(∂(0,1)3) ≤ Cinv(p1, p2, p3)‖ph‖2L2((0,1)3) (38)

where
Cinv(p1, p2, p3) = 2

(
(p1 + 1)2 + (p2 + 1)2 + (p3 + 1)2

)
. (39)

Proof. Let ph ∈ Ph. Since ph is a tensor-product polynomial of order (p1, p2, p3), we can
write

ph(x1, x2, x3) =

p1,p2,p3∑
i=0,j=0,k=0

CijkNi(x1)Nj(x2)Nk(x3)

where Nl is the normalized shifted Legendre polynomial of order l such that∫ 1

0

Ni(x)Nj(x)dx =

{
1 if i = j
0 else

and Cijk ∈ R are appropriately chosen constants. By construction,

‖ph‖2L2((0,1)3) =

p1,p2,p3∑
i=0,j=0,k=0

C2
ijk.

Now let us decompose

‖ph‖2L2(∂(0,1)3) =

∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(0)Nj(x2)Nk(x3)

)2

dx2dx3 +

∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(1)Nj(x2)Nk(x3)

)2

dx2dx3+

11



∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(x1)Nj(0)Nk(x3)

)2

dx1dx3 +

∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(x1)Nj(1)Nk(x3)

)2

dx1dx3 +

∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(x1)Nj(x2)Nk(0)

)2

dx1dx2 +

∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(x1)Nj(x2)Nk(1)

)2

dx1dx2. (40)

If we take advantage of the orthonormality properties of our shifted Legendre polynomials,
we can write∫ 1

0

∫ 1

0

(
p1,p2,p3∑

i=0,j=0,k=0

CijkNi(0)Nj(x2)Nk(x3)

)2

dx2dx3 =

p2,p3∑
j=0,k=0

(
p1∑
i=0

CijkNi(0)

)2

.

Now we employ Theorem 3.1 of [33], which states that

|f(0)| ≤ (p+ 1)‖f‖L2(0,1) (41)

for every polynomial f of degree p. Since
∑p1

i=0CijkNi is a polynomial of degree p1 for every
j, k, we can utilize Theorem 3.1 of [33] and orthonormality to obtain

p2,p3∑
j=0,k=0

(
p1∑
i=0

CijkNi(0)

)2

≤ (p1 + 1)2
p2,p3∑

j=0,k=0

∫ 1

0

p1∑
i=0

(CijkNi(x1))
2 dx1

= (p1 + 1)2
p1,p2,p3∑

i=0,j=0,k=0

C2
ijk

= (p1 + 1)2‖ph‖2L2((0,1)3)

By repeating this process to bound the other five terms appearing in (40), we obtain the
desired expression.

We would like to mention that while the constant Cinv appearing in the above trace
inequality is not necessarily sharp, it is completely explicit with respect to polynomial order.
We believe this to be a significant advantage of our derived estimate. Alternatively, one can
solve the generalized eigenvalue problem inferred by (38) to arrive at a sharper bounding
constant (see, for example, [23]).

Lemma 4.2. Let D ⊂ R3 denote a rectangular parallelepiped whose length, width, and height
are h1, h2, and h3 respectively, and define Ph = Pp1,p2,p3 to be the space of tensor-product
polynomials of degree (p1, p2, p3). Let hD = max {h1, h2, h3} and let λD ≥ 1 denote the local
shape regularity constant

λD =
hD

min {h1, h2, h3}
. (42)

12



Then, for all ph ∈ Ph,
‖ph‖2L2(∂D) ≤ CinvλDh

−1
D ‖p

h‖2L2(D). (43)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by Equation (39).

Proof. Let ph ∈ Ph. We utilize the same scaling argument as in the proof of Lemma 3.1.
Notably, letting g : [0, 1]3 → D̄ denote the unique face-preserving affine function mapping
the closed unit cube onto D̄ (the closure of D) and defining P h = ph ◦ g, we can write

‖ph‖2L2(∂D) ≤M

∫
∂(0,1)3

(
P h
)2
dS = M‖P h‖2L2(∂(0,1)3)

where
M = max {h1h2, h2h3, h1h3} .

By Lemma 4.1,
‖P h‖2L2(∂(0,1)3) ≤ Cinv‖P h‖2L2((0,1)3)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by Equation (39). A simple
change of variables formula gives

‖P h‖2L2((0,1)3) =
1

h1h2h3
‖ph‖2L2(D)

and the desired result follows by concatenating all of the above equalities and inequalities.

4.2 Discrete Trace Inequalities for NURBS-Based Isogeometric
Analysis with Locally Constant Weighting Function

In this subsection, we derive discrete trace inequalities for isogeometric functions defined
on NURBS-mapped domains where the weighting function is locally constant. This setting
arises frequently in practice such as when polynomial-based B-splines are employed instead
of more general NURBS discretizations. Furthermore, this setting makes for a much more
straight-forward analysis which will be expanded upon later. We begin with the following
lemma, which bounds the element trace of an isogeometric function by its interior L2 norm.

Lemma 4.3. Let K ∈ Kh and Q = F−1(K). Suppose that the NURBS weighting function
w, defined by (13), is chosen such that it is constant over Q. Then, for all uh ∈ Vh, defined
in (17),

‖uh‖2L2(∂K) ≤ CinvλQλKh
−1
K ‖u

h‖2L2(K) (44)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local shape
regularity constant of Q, and λK is the shape regularity constant defined by (32).

Proof. Let uh ∈ Vh. To begin, we employ a change of variables from physical space to
parametric space and utilize a similar argument to that used in the proof of Theorem 3.2 to
arrive at

‖uh‖2L2(∂K) ≤ ‖cof(∇F)‖L∞(Q),l‖uh ◦ F‖2L2(∂Q).
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Noting that by supposition uh ◦ F is a polynomial over Q, we invoke Lemma 4.2 to obtain
the expression

‖uh‖2L2(∂K) ≤ CinvλQh
−1
Q ‖cof(∇F)‖L∞(Q),l‖uh ◦ F‖2L2(Q)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local shape
regularity constant of Q, and hQ is the length of the largest side of Q. Finally, mapping back
to physical space, we have

‖uh‖2L2(∂K) ≤ CinvλQh
−1
Q ‖cof(∇F)‖L∞(Q),l‖det(∇F−1)‖L∞(K)‖uh‖2L2(K).

The lemma follows by recalling the definitions of λK and hK .

Before proceeding, we would like to note the similarity in form between the inequalities
appearing in Theorem 3.2 and Lemma 4.3. Notably, both contain a bounding constant,
a shape regularity factor, and mesh scaling terms. Furthermore, the bounding constants
appearing in both inequalities are explicitly given.

We now present an inequality which bounds the element boundary normal derivative
of an isogeometric function by its interior H1 semi-norm. Such an inequality plays an
important role in the design and analysis of Nitsche’s method as applied to second-order
elliptic problems.

Lemma 4.4. Let K ∈ Kh and Q = F−1(K). Suppose that the NURBS weighting function
w is chosen such that is constant over Q. Then, for all uh ∈ Vh,

‖∇uh · n‖2L2(∂K) ≤ CBCinvλQλKh
−1
K |u

h|2H1(K) (45)

where n is the unit outward-facing normal, Cinv = Cinv(p1, p2, p3) is the positive constant
defined by (39), λQ is the local shape regularity constant of Q, λK is the shape regularity
constant defined by (32),

CB =
(

1 +
√

3‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K),lhK

)2
, (46)

and ∇2F−1 is the third-order tensor-valued function(
∇2F−1

)
ijk

=
∂2F−1i

∂xj∂xk
. (47)

Proof. Let uh ∈ Vh. To begin, we employ a change of variables from physical space to
parametric space:

‖∇uh · n‖2L2(∂K) ≤
∫
∂K

|∇uh|2ds

≤ ‖cof(∇F)‖L∞(Q),l

∫
∂Q

|
(
∇F−1 ◦ F

)T ∇ (
uh ◦ F

)
|2dt. (48)

Note that we cannot immediately utilize Lemma 4.2 as the components of the vector(
∇F−1 ◦ F

)T ∇ (
uh ◦ F

)
14



are not necessarily polynomial. For this reason, we employ the decomposition

∇F−1 ◦ F = D = D + D′ (49)

where
D = D(ξc)

and ξc is the centroid of Q. Inserting the decomposition (49) into (48), applying the Cauchy-
Schwarz inequality, invoking the definition of the spectral norm for matrices, and then ap-
plying Hölder’s inequality on the resulting term involving D′, we obtain

‖∇uh · n‖2L2(∂K) ≤ Ccof

((∫
∂Q

|DT∇
(
uh ◦ F

)
|2dt

)1/2

+ ‖D′‖L∞(Q),l|uh ◦ F|H1(∂Q)

)2

where
Ccof = ‖cof(∇F)‖L∞(Q),l

We can now finally invoke Lemma 4.2, giving us the result

‖∇uh · n‖2L2(∂K) ≤ CtraceCcof

((∫
Q

|DT∇
(
uh ◦ F

)
|2dξ

)1/2

+ ‖D′‖L∞(Q),l|uh ◦ F|H1(Q)

)2

(50)

where
Ctrace = Cinv(p1, p2, p3)λQh

−1
Q .

Again invoking the decomposition (49), the Cauchy-Schwarz inequality, the definition of the
spectral norm for matrices, and Hölder’s inequality, we obtain(∫

Q

|DT∇
(
uh ◦ F

)
|2dξ

)1/2

≤
(∫

Q

|DT∇
(
uh ◦ F

)
|2dξ

)1/2

+ ‖D′‖L∞(Q),l|uh ◦ F|H1(Q).

(51)

By concatenating (50) and (51), we arrive at

‖∇uh · n‖2L2(∂K) ≤ CtraceCcof

((∫
Q

|DT∇
(
uh ◦ F

)
|2dξ

)1/2

+ 2‖D′‖L∞(Q),l|uh ◦ F|H1(∂Q)

)2

(52)

Note that a change of variables gives(∫
Q

|DT∇
(
uh ◦ F

)
|2dξ

)1/2

≤ ‖det
(
∇F−1

)
‖1/2L∞(K)|u

h|H1(K) (53)

and (36) gives

|uh ◦ F|H1(Q) ≤ ‖det
(
∇F−1

)
‖1/2L∞(K)‖∇F‖L∞(Q),l|uh|H1(K). (54)
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To complete the proof, we recognize that, by Taylor’s theorem,

‖D′‖L∞(Q),l = ‖D−D‖L∞(Q),l

≤
√

3

2
hQ‖∇D‖L∞(Q),l

≤
√

3

2
hQ‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K),l

≤
√

3

2
hK‖∇2F−1‖L∞(K),l (55)

Combining (52)-(55) with the definitions of the physical mesh size hK and the physical shape
regularity constant λK results in the desired final expression.

Note that if we take the physical mesh size hK → 0 and keep the parametric mapping F
fixed, the constant CB appearing in the above theorem will tend to 1.0. Hence, we recover
a similar inequality to that appearing in Lemma 4.3. This suggests that we may be able to
ignore in practice higher-order terms due to the nonlinear geometrical mapping.

By employing a similar method of proof to that of Lemma 4.4, we can obtain discrete
trace inequalities for higher-order boundary derivatives. For example, we can show that for
a given element K ∈ Kh with Q = F−1(K),

‖∆uh‖2L2(∂K) ≤ CBCinvλQλKh
−1
K ‖u

h‖2H2(K)

for every uh ∈ Vh where
CB = 1 +O(hK).

Such an inequality plays an important role in the design and analysis of Nitsche’s method
as applied to fourth-order elliptic problems. It can be shown that the explicit form for the
constant CB appearing in the above inequality is substantially more complicated than the
corresponding constant appearing in Lemma 4.4, and this trend only worsens with further
differentiation. Moreover, note that a full H2 norm appears rather than just the H2 semi-
norm. However, in practice, it may be sufficient to replace CB with one and the H2 norm
with the H2 semi-norm.

4.3 Discrete Trace Inequalities for NURBS-Based Isogeometric
Analysis with General Weighting Function

Finally, we are ready to derive discrete trace inequalities for NURBS-based isogeometric
analysis with general weighting function. We begin with the following theorem, which is a
straight-forward extension of Lemma 4.3 to the general setting.

Theorem 4.1. Let K ∈ Kh and Q = F−1(K). Then, for all uh ∈ Vh,

‖uh‖2L2(∂K) ≤ CwCinvλQλKh
−1
K ‖u

h‖2L2(K) (56)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local shape
regularity constant of Q, λK is the shape regularity constant defined by (32), and

Cw =

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

‖w‖2L∞(Q). (57)
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Proof. The proof proceeds in a similar manner to that of Lemma 4.3. Let uh ∈ Vh. We
employ a change of variables from physical space to parametric space to arrive at

‖uh‖2L2(∂K) ≤ ‖cof(∇F)‖L∞(Q),l‖uh ◦ F‖2L2(∂Q).

Now, we utilize Hölder’s inequality to obtain

‖uh‖2L2(∂K) ≤ ‖cof(∇F)‖L∞(Q),l

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

‖w(uh ◦ F)‖2L2(∂Q).

Noting that w(uh ◦F) is a polynomial over Q, we invoke Lemma 4.2 to obtain the expression

‖uh‖2L2(∂K) ≤ CinvλQh
−1
Q ‖cof(∇F)‖L∞(Q),l

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

‖w(uh ◦ F)‖2L2(Q)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local shape
regularity constant of Q, and hQ is the length of the largest side of Q. Finally, using Hölder’s
inequality again and then mapping back to physical space, we have

‖uh‖2L2(∂K) ≤ CwCinvλQh
−1
Q ‖cof(∇F)‖L∞(Q),l‖det(∇F−1)‖L∞(K),l‖uh‖2L2(K)

where

Cw =

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

‖w‖2L∞(Q) .

The lemma follows by recalling the definitions of λK and hK .

We now present an extension of Lemma 4.4 to the general setting.

Theorem 4.2. Let K ∈ Kh and Q = F−1(K). Then, for all uh ∈ Vh,

‖∇uh · n‖2L2(∂K) ≤ CNCinvλQλKh
−1
K |u

h|2H1(K) (58)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local shape
regularity constant of Q, λK is the shape regularity constant defined by (32),

CN =
(
C

1/2
1 + C

1/2
2

)2
, (59)

C1 = CB

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

(
‖w‖L∞(Q) + π−1Cdet‖∇F−1‖L∞(K),l |w|W 1,∞(Q) hK

)2
, (60)

C2 =

(
π−1Cdet‖∇F−1‖L∞(K),l

∣∣∣∣ 1

w

∣∣∣∣
W 1,∞(Q)

‖w‖L∞(Q) hK

)2

, (61)

CB =
(

1 +
√

3‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K),lhK

)2
, (62)

and
Cdet = ‖det(∇F)‖1/2L∞(Q)‖det(∇F−1)‖1/2L∞(K). (63)
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Proof. Let uh ∈ Vh. We employ a change of variables from physical space to parametric
space to arrive at

‖∇uh · n‖2L2(∂K) ≤
∫
∂K

|∇uh|2ds

≤ ‖cof(∇F)‖L∞(Q),l

∫
∂Q

|DT∇
(
uh ◦ F

)
|2dt

≤ ‖cof(∇F)‖L∞(Q),l

∫
∂Q

∣∣∣∣DT∇
(

1

w
w(uh ◦ F)

)∣∣∣∣2 dt (64)

where we have denoted
D = ∇F−1 ◦ F .

The product rule gives

∇
(

1

w
w(uh ◦ F)

)
=

1

w
∇
(
w(uh ◦ F)

)
+ w(uh ◦ F)∇

(
1

w

)
which in conjunction with (64) and the Cauchy-Schwarz inequality provides the expression

‖∇uh · n‖2L2(∂K) ≤
(
A1/2 +B1/2

)2
(65)

where

A = ‖cof(∇F)‖L∞(Q),l

∫
∂Q

∣∣∣∣ 1

w
DT∇

(
w(uh ◦ F)

)∣∣∣∣2 dt
and

B = ‖cof(∇F)‖L∞(Q),l

∫
∂Q

∣∣∣∣w(uh ◦ F)DT∇
(

1

w

)∣∣∣∣2 dt.
Invoking Hölder’s inequality and the definition of the spectral norm for matrices, we can
write

A ≤ ‖cof(∇F)‖L∞(Q),l

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

∫
∂Q

∣∣DT∇
(
w(uh ◦ F)

)∣∣2 dt (66)

and

B ≤ ‖cof(∇F)‖L∞(Q),l

∣∣∣∣ 1

w

∣∣∣∣2
W 1,∞(Q)

‖∇F−1‖2L∞(K),l‖w(uh ◦ F)‖2L2(∂Q) (67)

where we have taken advantage of our special definition for the W 1,∞ semi-norm. We now
proceed on separate paths to bound the A and B terms. We begin with the A term (66).
Using an argument identical to the one appearing in the proof of Lemma 4.4, we obtain the
bound

A ≤ CBCinvλQλKh
−1
K

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

|(w ◦ F−1)uh|2H1(K)

where Cinv = Cinv(p1, p2, p3) is the positive constant defined by (39), λQ is the local shape
regularity constant of Q, λK is the shape regularity constant defined by (32), and

CB =
(

1 +
√

3‖∇F‖L∞(Q),l‖∇2F−1‖L∞(K),lhK

)2
.
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The product-rule, Cauchy-Schwarz, and Hölder’s then give

A ≤ CBCinvλQλKh
−1
K

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

(
A

1/2
1 + A

1/2
2

)2
(68)

where
A1 = ‖w‖2L∞(Q) |u

h|2H1(K)

and
A2 = |w|2W 1,∞(Q) ‖∇F−1‖2L∞(K),l‖uh‖2L2(K).

We now proceed to bounding the B term. Recalling (67) and employing Lemma 4.2, we
have

B ≤ CinvλQh
−1
Q ‖cof(∇F)‖L∞(Q),l

∣∣∣∣ 1

w

∣∣∣∣2
W 1,∞(Q)

‖∇F−1‖2L∞(K),l‖w(uh ◦ F)‖2L2(Q).

Invoking Hölder’s inequality, we further write

B ≤ CinvλQh
−1
Q ‖cof(∇F)‖L∞(Q),l

∣∣∣∣ 1

w

∣∣∣∣2
W 1,∞(Q)

‖w‖2L∞(Q) ‖∇F−1‖2L∞(K),l‖uh ◦ F‖2L2(Q).

We finally map back to physical space, obtaining the expression

B ≤ CinvλQλKh
−1
K

∣∣∣∣ 1

w

∣∣∣∣2
W 1,∞(Q)

‖w‖2L∞(Q) ‖∇F−1‖2L∞(K),l‖uh‖2L2(K). (69)

Collecting Equations (65), (68), and (69) and rearranging terms, we have

‖∇uh · n‖2L2(∂K) ≤ CinvλQλKh
−1
K

(
Ã1/2 + B̃1/2

)2
(70)

where

Ã = CB

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

(
‖w‖L∞(Q) |u

h|H1(K) + |w|W 1,∞(Q) ‖∇F−1‖L∞(K),l‖uh‖L2(K)

)2
and

B̃ =

(∣∣∣∣ 1

w

∣∣∣∣
W 1,∞(Q)

‖w‖L∞(Q) ‖∇F−1‖L∞(K),l‖uh‖L2(K)

)2

.

Our objective is to bound the ‖uh‖L2(K) terms in Ã and B̃ with terms proportional to
|uh|H1(K). We recognize that

‖∇uh · n‖2L2(∂K) = ‖∇
(
uh − zh

)
· n‖2L2(∂K) (71)

for all constant zh ∈ Vh. Let us choose zh to be equal to

zh =
1

|Q|

∫
Q

(
uh ◦ F

)
dξ
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where |Q| is the volume of the parallelepiped Q. Using change of variables and Hölder’s
inequality, we have

‖uh − zh‖L2(K) ≤ ‖det(∇F)‖1/2L∞(Q)‖u
h ◦ F − zh‖L2(Q).

Since zh is equal to the average of uh ◦ F over Q, we can employ Poincaré’s inequality for a
rectangular parallelepiped domain [9] to further write

‖uh − zh‖L2(K) ≤ π−1hQ‖det(∇F)‖1/2L∞(Q)|u
h ◦ F|H1(Q).

Finally, we map back to K:

‖uh − zh‖L2(K) ≤ π−1hK‖det(∇F)‖1/2L∞(Q)‖det(∇F−1)‖1/2L∞(K)|u
h|H1(K). (72)

By replacing uh with uh − zh in (70) and applying inequality (72), we obtain the desired
final expression.

Note that if we take the physical mesh size hK → 0 and keep the parametric mapping

F fixed, the constant CN appearing in the above theorem will tend to
∥∥ 1
w

∥∥2
L∞(Q)

‖w‖2L∞(Q).

Hence, we recover a similar inequality to that appearing in Theorem 4.1 with mesh refine-
ment. This suggests that we may be able to ignore in practice higher-order terms due to the
nonlinear geometrical mapping. Moreover, if the NURBS weighting function is chosen such
that it is locally constant, we recover the inequality appearing in Lemma 4.4. Finally, by
employing a similar method of proof to that of Theorem 4.2, we can obtain discrete trace
inequalities for higher-order boundary derivatives. For example, we can show that for a given
element K ∈ Kh with Q = F−1(K),

‖∆uh‖2L2(∂K) ≤ CNCinvλQλKh
−1
K ‖u

h‖2H2(K)

for every uh ∈ Vh where

CN =

∥∥∥∥ 1

w

∥∥∥∥2
L∞(Q)

‖w‖2L∞(Q) +O(hK).

5 Conclusions

In this paper, we have derived new trace inequalities for use in NURBS-based isogeometric
analysis. All dependencies on shape, size, polynomial order, and the NURBS weighting func-
tion are precisely specified in our analysis, and explicit values are provided for all bounding
constants appearing in our estimates. Consequently, these inequalities can be directly uti-
lized in the design of stabilization parameters appearing in Nitsche’s method, an attractive
candidate for the weak enforcement of strong boundary conditions in isogeometric analysis.
As hexahedral finite elements are special cases of NURBS, our results specialize to paramet-
ric hexahedral finite elements. Moreover, as our results are local in the sense that they apply
element-wise, our analysis generalizes to T-spline-based isogeometric analysis.
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A An Alternate Hölder Inequality

Lemma A.1. Let D ⊂ Rd denote an open domain for d a positive integer. If f ∈ L∞(D)
and g ∈ L2(D), then

‖fg‖L2(D) ≤ ‖f‖L∞(D)‖g‖L2(D). (73)

Proof. Let f ∈ L∞(D) and g ∈ L2(D). By construction,

‖fg‖L2(D) = ‖f 2g2‖1/2L1(D).

By the classical Hölder Inequality,

‖fg‖L2(D) ≤
(
‖f 2‖L∞(D)‖g2‖L1(D)

)1/2
=

(
‖f‖2L∞(D)‖g‖2L2(D)

)1/2
= ‖f‖L∞(D)‖g‖L2(D). (74)
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