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NON-UNIFORM FOURIER TRANSFORMS FOR
MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS

CHANDRAJIT BAJAJ1, BENEDIKT BAUER2, RADHAKRISHNA BETTADAPURA3, AND

ANTJE VOLLRATH4

Abstract. The rigid-body correlation problem seeks the the rigid-body transformation (R, t),
R ∈ SO(3), t ∈ R3 that maximizes the correlation between a pair of input scalar-valued functions
A : R3 7→ C and B : R3 7→ C. Exhaustive solutions to the rigid-body correlation problem take
advantage of the equispaced fast Fourier transform to achieve either translational speedups (over
R3) or rotational speedups (over SO(3)). We present PFcorr, a new exhaustive solution, based on
the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous
solutions, ours achieves a combination of translational and rotational speedups while encouraging,
but not requiring, the presence of non-equispaced grids. PFcorr can be straightforwardly applied to
a variety of problems in protein structure prediction and refinement that involve correlations under
rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate
flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant.

AMS Subject Classification:

Key words: Fast Fourier methods, Motion Groups, Match and Fit, Exhaustive search,
Fast correlations

1. Introduction. The task of evaluating correlations is central to computational
structural biology. The correlation problem—finding the best relative orientation
between a pair of “entities”—manifests itself concretely in various stages of biological
structure elucidation, from molecular replacement [33], where the entities in question
are interatomic vector maps known as Patterson maps, to protein-protein docking [2],
where the entities are a pair of crystal or NMR structures.

The problem of rigid-body correlation is one of optimization: given a pair of real-
or complex scalar-valued functions A and B defined on a grid , find the rigid-body
transformation of B that optimizes its correlation with A. The primary contribution
of this work is PFcorr, a Fourier-based solution to the rigid-body correlation problem
that addresses two major deficiencies in existing Fourier-based approaches; we discuss
these deficiencies in the following section, which also provides a brief overview of
present work in this area.

Our secondary contribution has to do with flexible correlations, a problem com-
plementary to rigid-body correlations. Biomolecules undergo flexible deformations in
solvent, and thus most problem domains that begin by assuming that the protein is
rigid go on to consider its flexibility. The flexible correlation problem can be solved
with a suitable parametrization of the space of flexible motions of the protein, after
which each element of that space is just a rigid entity, conducive to rigid-body cor-
relations. We present for the first time an exhaustive algorithm that, with a suitable
biomolecular flexibility model, can also perform flexible correlations.
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(A) (B)

Fig. 1.1. Sample applications of the correlation algorithm we develop in this work. (A) Protein-
protein docking and alignment. (B) Protein-density map fitting.

2. Related and prior work. The vast number of extant solutions to the rigid-
body correlation problem can be distinguished by a few basic approaches. Iterative
approaches vary in sophistication, ranging from a simple version of steepest ascent [24]
to more powerful techniques such as Powell optimization [44]. Most such approaches
result in locally optimal solutions that, depending on the initial guess, may or may
not be close to the globally optimal correlation. They are thus usually used along
with an exhaustive approach that provides the requisite initial guess.

Feature-based approaches compute and correlate reduced representations of A and
B. An early example of a feature-based approach is the method of vector quantization
[46], in which sets of vectors are used to represent A and B. A similar approach is
geometric hashing [18], whereby critical features on both of A and B are hashed into
a table of values, and a score—related to the correlation score—measures the match
between A and B for a particular relative orientation. Feature-based approaches, used
in docking [34] and fitting [43], result in improved performance due to the reduced
search space, at the possible expense of poor resolution scaling.

Exhaustive approaches attempt to compute the global maximum of the correla-
tion between A and B. Early exhaustive methods to solve the rigid-body correlation
problem relied on a simple and profound insight: by the Fourier cross-correlation the-
orem, computing a discretized, uniformly spaced version of the rigid-body correlation
is equivalent to computing O(1) forward and inverse FFTs [14], turning an effectively
impractical O(N6Nrot) algorithm into a feasible one that scales as O(N3 logNNrot),
where N is the maximum grid-size and Nrot the number of rotations. Combined with
a fast, multi-platform implementation of the FFT [10, 37], this technique, which re-
sults in speedups over the translational search space R3, has found widespread use
in rigid-body docking and fitting routines [2, 21, 25, 45, 47]. For completeness, we
mention the SE(3) = R3 × SO(3) Fourier transform introduced and developed by
Chirikjian et. al [6], which, while applying to topics ranging from the workspace den-
sity of robotic manipulators to the conformational statistics of macromolecules [7],
has so far not been applied to the focus of this work, i.e., correlations over the space
of rigid-body or flexible motions of a protein.

FFT-based techniques are very efficient at surveying the space of translations;
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Fig. 2.1. The uniformity conundrum. (A) A uniform z-y-z Euler Angular grid with angular
resolution = 20◦ leads to (B) a non-uniform sampling of SO(3), with very high angular resolution in
certain regions and “holes” in certain others. By contrast, (C) a highly non-uniform Euler angular
grid leads to (D) a more uniform sampling of SO(3). (C) and (D) were obtained by the techniques
in [22]; they contain fewer samples, exhibit a separation very close to the required angular resolution
of 20◦, and are highly uniform with respect to certain metrics(Section 7). Can a rotationally efficient
rigid-body correlation search algorithm aspire to use the samples in (D)?

unfortunately, though, this space consists for the most part of obviously poor corre-
lations. In most problem domains, the range of plausible solutions exists in a highly
localized band of translations. On the other hand, the band of plausible relative ro-
tations spans the range 0 to 2π for each translation. It is thus more important to
be able to efficiently sample rotational space. Rotational speedups depend on rep-
resenting A and B in a basis more amenable to rotational sampling. In Kovacs and
Wriggers [17], Kovacs et. al [16], and Garçon et. al [11], that basis is the basis of func-
tions on the unit sphere S2, i.e., the family of spherical harmonic functions Y m` (θ, φ),
whereas in the work of Ritchie [30, 32], a radial basis function R`k(r) related to the
Gaussian accompanies the spherical basis. Like their translational counterparts, rota-
tional speedups compute a multiple exponential sum, or an FFT; unlike translational
speedups, the FFT is computed on a uniformly spaced grid of z-y-z Euler angles.

Current exhaustive Fourier-based techniques suffer from two drawbacks.

Drawback 1. The first drawback relates to local refinement: depending as
they do on the equispaced FFT, exhaustive techniques cannot be gracefully used to
refine existing solutions. Say we wish to improve a docking pose, obtained using
a translational FFT speedup with a grid size of xÅ. If we redo the experiment
with a grid size of x

2 , the (3D) FFT becomes eight times as expensive, but more
importantly, it spends much of its time at points on the new grid already excluded
by the initial experiment. A similar argument applies to rotational speedups; in both
these approaches, the concept of a local refinement is largely absent.

Drawback 2. The second, related, drawback, relates to the question of uniform
sampling in rotational space. While sampling in translational space is straightforward,
involving Cartesian grids with uniform, possibly differing grid-sizes in each indepen-
dent direction, the notions of “uniformity” and “direction” do not translate easily
to the rotational space SO(3). In particular, equispaced Euler angular grids do not
result in equispaced SO(3) samples (Figure 2.1). Due to this, rotational FFT-based
techniques, despite their raison d’étre, are destined to oversample certain regions of
SO(3) while leaving others wholly unexamined1.

1Of course, translational FFT-based techniques can afford to uniformly, albeit inefficiently, sam-
ple SO(3).
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2.1. Proteins and flexibility. Due to the vastness of the space of flexible mo-
tions, protein flexibility can be practically dealt with by (A) conducting all-atomistic
local searches, as in the case of molecular dynamical algorithms [12, 13, 19, 36, 38],
(B) Building a coarse-grained representation of the protein, also known as a do-
main decomposition [1, 9, 26, 35], or (C) A combination of the strategies in (A) and
(B) [41, 42, 48].

Domain-based approaches have so far lacked a search scheme that takes advan-
tage of the translational or rotational speedups that FFT-based approaches can afford.
This has to do with the issue of focusing: in uniform FFT-based techniques, there is
no way to restrict the search space to a small area of interest that can be occupied by
a single domain rather than the entire protein. By contrast, searching over the entire
space for each domain is both time-consuming and results in spurious and geometri-
cally implausible false positives, and sifting through these grows rapidly inefficient as
the number of domains increases. This is also why domain-based flexibility algorithms
such as those in Topf et. al [40, 41] and Trabuco et. al [42] prefer Monte-Carlo-based
or steepest-ascent-based search schemes.

2.2. Primary contributions.
1. Rigid-body correlations. We address the drawbacks in Section 2 with a

pair of rotationally exhaustive, non-equispaced techniques to compute rigid-
body correlations. Using the concept of Wigner-d-Chebyshev and Chebyshev-
exponential transforms first articulated by one of the authors in Potts et.al [27],
we convert Equation 3.1 into a multiple exponential sum, which we then com-
pute using a combination of non equispaced SO(3) transforms [27] and non
equispaced FFTs [15]. The resulting family of techniques, which we call
PFcorr, has the following properties:
• Sampling robust. The technique is capable of efficiently computing

correlations over arbitrary samples in R3 × SO(3).
• Compatible. It can be used along with existing equispaced FFT-based

techniques.
• General. It unifies the rotationally-exhaustive paradigms in Kovacs

and Wriggers, Ritchie, and Ritchie et. al [11, 17, 30, 32].
PFcorr thus provides an alternative to existing rigid-body correlation tech-
niques.

2. Flexible correlations. The second half of this work presents an algorithm
that uses PFcorr to explore correlations in multi-domain search spaces. The
non-uniformity inherent to PFcorr implies that these correlations can be fo-
cused in a specific subset of R3×SO(3), while its exhaustive nature guarantees
that it is not sensitive to local optima.

We believe that the above properties, along with its speed, make PFcorr a realistic
and in many ways preferable alternative to existing correlation search schemes.

2.3. Secondary contributions. One of the two halves of PFcorr depends on
a mixed radial/spherical basis (introduced in the following section), which in turn
depends on looking up translation matrix (T-Matrix) entries for SO(3). The high
complexity of computing the T-matrix entries means that they often have to be pre-
computed and stored. We outline an efficient algorithm, based on polynomial update
rules, to compute T-Matrix entries that, while not obviating the need for precompu-
tation and storage, has nevertheless a lower complexity than existing algorithms.

Finally, this work also aims to be a self-contained overview of correlation tech-
niques that depend on expressing the input scalar valued functions in terms of ro-
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tationally invariant bases. In particular, we prove all relevant properties inherent
to our mathematical framework, even ones that may be seen as elementary and/or
well-known.

Note: We defer most multi-line proofs to the Appendix.

3. Background. Let A,B : R3 7→ C be a pair of scalar-valued functions. We
define the rigid-body correlation problem as follows.

Definition 3.1. Rigid-body correlation problem. Let A : R3 7→ C and
B : R3 7→ C be a pair of scalar-valued functions. Define

C(Ri, tj) =

∫
R3

A(x)B(Rix + tj)dx,

i ∈ {1 . . . Nrot}, j ∈ {1 . . . Ntrans} (3.1)

as the rigid-body correlation between A and B for a given set S = {(Ri, tj)}, Ri ∈
SO(3), tj ∈ R3 of rigid-body transformations. The rigid-body correlation problem is
to maximize C(Ri, tj) over the set S.

The rigid-body correlation problem is a non-convex geometric optimization prob-
lem, and the several problem domains in computational biology to which it applies can
be distinguished by their choice of A and B. In protein-protein docking, for instance,
A and B are affinity functions that represent a relevant property, such as shape or
electrostatics, of the underlying protein; in protein-density map fitting, A is a blurred
representation of the atoms of the protein, while B is (usually) the density map itself.

All approaches to the rigid-body correlation problem begin by representing A
and B in terms of appropriate orthogonal basis functions. For instance, FFT-based
techniques that produce speedups over translations tj of B are obtained by expanding
A and B in Fourier bases. Similarly, speedups over the space of rotations Ri of B are
effected by first expanding A and B in spherical Fourier bases. We adopt an instance
of the latter approach in this work, and as a preliminary, introduce the basis functions
in question in the following discussion.

3.1. Orthogonal radial and spherical basis functions. Let the spherical
coordinates of x ∈ R3 be (r,u), where r ∈ R+ is the radial coordinate and u =
(θ, φ) ∈ [0, π) × [0, 2π] the polar and azimuthal components of S2 respectively. The
weighted Laguerre polynomials are radial bases for complex scalar-valued functions
on S2.

Definition 3.2. Weighted Laguerre polynomials. For r ∈ R+
0 , `, k ∈

N0, k > `, the weighted Laguerre polynomials R`k : R+ → R are given by

R`k(r) = βk`e
− r22λ

r√
λ

`
L
`+ 1

2

k−`−1

(
r2

λ

)
with

βk` =

√
2(k − `− 1)!

λ
3
2 Γ(k + 1

2 )

where L`k are the Laguerre polynomials [39], and λ ∈ R+ dictates the rate of decay
of the basis function.
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Lemma 3.3. For r ∈ R+
0 , `, k ∈ N0, k > `, the functions R`k(r) satisfy∫ ∞

0

R`k(r)R`n(r)r2dr = δk,n.

The weighted Laguerre polynomials have been described in detail in the quantum
mechanics literature, where they arise naturally as radial bases to solutions of certain
harmonic oscillators [5]. They have also recently been used in Ritchie [31] in the
context of 6 dimensional rigid-body docking.

The family of spherical harmonic functions, indexed by degree ` and order m,
form a spherical basis for complex scalar-valued functions in S2.

Definition 3.4. Spherical harmonics. For any ` ∈ N0 and m = −`, . . . ` the
spherical harmonics of degree ` are defined as

Y m` (ξ) =

√
2`+ 1

4π
P
|m|
` (cos θ)eimφ

where Pm` : [−1, 1] → R are associated Legendre polynomials, cf. [39], that arise as
the derivatives of ordinary Legendre polynomials P`(x).
The spherical harmonics satisfy the orthogonality relation∫

S2
Y m` (ξ)Y m

′
`′ (ξ) dξ = δ``′δmm′ . (3.2)

Combining each of the orthogonality relations, we see that the functionsR`k(r)Y m` (u)
for k, ` ∈ N, k > l ≥ |m| are orthonormal with respect to the inner product:

〈R`k(r)Y m` (u), R`
′

k′(r)Y
m′

`′ (u)〉 =

∫ ∞
0

R`k(r)R`
′

k′(r)r
2dr

∫
S2
Y m` (u)Y m

′
`′ (u)du

= δk,k′δ`,`′δm,m′ . (3.3)

3.2. Multi-basis framework. As a first step in solving the rigid-body corre-
lation problem in Equation 3.1, PFcorr represents A and B in terms of orthogonal
basis functions. PFcorr offers two distinct choices of basis functions:

1. Mixed radial/spherical bases. Following Ritchie [32], it can use Laguerre
polynomials R`k for the radial basis and the spherical harmonic functions Y m`
for the spherical basis, or,

2. Pure spherical basis. Following Kovacs [17] and Garçon [11], it can use
Y m` for the spherical basis on each radial slice r.

The orthogonality of the radial and spherical bases functions results in the fol-
lowing two expansions.

Mixed radial/spherical basis expansion. The mixed radial/spherical repre-
sentation of a scalar valued function A : R3 7→ C is given by

A(x) = A(r,u) = lim
L→∞

L∑
k=1

k−1∑
`=0

l∑
m=−`

âk`mR
`
k(r)Y m` (u) (3.4)

with coefficients

âk`m =

∫
R+

∫
S2
A(r,u)R`k(r)Y m` (u)r2dudr. (3.5)
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Pure spherical basis expansion. The pure spherical representation of a scalar
valued function A : R3 7→ C for a given radial coordinate r is given by

Ar(u) = lim
L→∞

L∑
l=0

l∑
m=−l

â`m(r)Y m` (u) (3.6)

with coefficients

â`m(r) =

∫
S2
Ar(u)Y m` (u)du, (3.7)

where Ar(u) = A(r,u).
For computational purposes, the term L in Equations 3.4 and 3.7 is set to values

between 20 and 30, depending on the application.

3.3. Rotations in R3. An orthogonal 3× 3 matrix with unit determinant rep-
resents a rotation in R3. The special orthogonal group SO(3) is the collection of these
matrices

SO(3) = {R ∈ R3×3 : RTR = I, |R| = 1},

equipped with the usual group action, and neutral and inverse elements. The Z-Y-Z
Euler angle decomposition of a rotation R ∈ SO(3) is the representation

R = R(α, β, γ) = RZ(α) RY (β)RZ(γ),

with angles α, γ ∈ [0, 2π) and β ∈ [0, π], and the Y -axis and Z-axis rotation matrices

RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , RZ(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

The space of Euler Angles (α, β, γ) parametrizes the space SO(3) of rotations.
The space of square integrable functions in SO(3) is denoted L2 (SO(3)) and

defined via the standard inner product

〈f, g〉 =

∫ 2π

0

∫ π

0

∫ 2π

0

f(α, β, γ)g(α, β, γ) sinβ dγ dβ dα.

A convenient orthogonal basis for L2(SO(3)) are the Wigner-D functions Dm,n
`

with degree ` and orders m,n with max{|m|, |n|} ≤ ` are given by the explicit expres-
sion

Dm,n
` (α, β, γ) = e−imα dm,n` (cosβ) e−inγ

where dm,n` are the Wigner-d functions

dm,n` (x) = ε

(
s!(s+ µ+ ν)!

(s+ µ)!(s+ ν)!

)1/2

2−
µ+ν

2 (1− x)
µ
2 (1 + x)

ν
2 P

(µ,ν)
`−L∗(x), (3.8)

P
(µ,ν)
`−L∗(x) are the Jacobi polynomials and

µ = |n−m|, ν = |n+m|,
L∗ = max{|m|, |n|}, s = `− L∗,

ε =

{
1, if m > n,

(−1)n−m, if m ≤ n.
7



Note that dm,n` is a polynomial of degree ` if m + n is even. Otherwise, it is a
polynomial of degree `− 1 times a factor of (1− x2)1/2.

The Wigner-D functions satisfy the orthogonality condition

〈Dm,n
` , Dm′,n′

`′ 〉 =
8π2

2`+ 1
δ`,`′δm,m′δn,n′ .

3.4. Rotating basis expansions of scalar-valued functions. The expansion
âklm or âlm of a scalar valued function can be rotated by rotating the basis functions
used to generate it. In particular, since the spherical harmonic functions Y m` are
rotationally invariant, i.e.

Y n` (Ru) =
∑̀
m=−`

Y m` (u)Dnm
` (R), for |m| ≤ `,u ∈ S2,R ∈ SO(3), (3.9)

we have, for R ∈ SO(3),

A(Rx) = A(r,Ru) =

∞∑
k=1

k−1∑
`=0

∑̀
m,n=−`

âk`mD
m,n
` (R)R`k(r)Y m` (u).

A similar result holds for the radial-basis independent coefficients âlm.

3.5. Translating basis expansions of scalar-valued functions. Let tz =
zez be a translation along the z-axis. Then, following Ritchie [30] and Danos and
Maximon [8]

A(x+ tz) = Atz (r,u) =

L∑
k=1

k−1∑
l=0

l∑
m=−l

l∑
n=−l

∞∑
j=1

j−1∑
h=0

âklmT
|n|
jh,kl(∆z)R

h
j (r)Y nh (u) (3.10)

where T
|n|
jh,kl are the SO(3) translation matrix entries for the translation ∆z. Note

that the translation matrices apply only to mixed radial-spherical basis expansions
âklm; for pure spherical basis expansions, the coefficients âlm for each radial slice r
have to be recomputed after each translation t ∈ R3.

Ritchie derives an analytic expression for the translation coefficients T
|m|
kl,k′l′ in the

case of Laguerre basis functions [30].

Definition 3.5. Translation matrix entries for SO(3). The translation
coefficients are expressed as [30]

T
|m|
k′l′,kl(t) = (3.11)

exp(−z2/4λ)

l+l′∑
n=|l−l′|

All
′|m|
n

k−l+k′−l′−2∑
j=0

Ckl,k
′l′

j M !(z2/4λ)n/2L
(n+1/2)
M (z2/4λ),

(3.12)
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where

M = j + (l + l′ − n)/2,

Ck
′l′,kl
j =

k−l−1∑
j=0

k′−l′−1∑
j′=0

δn,j+j′XkljXk′l′j′ ,

Xklj =

[
(k − l − 1)!(1/2)k

2

]1/2
(−1)k−l−j−1

j!(k − l − j − 1)!(1/2)l+j+1
,

(1/2)n = 1/2 · (1/2 + 1) · (1/2 + 2) . . . (1/2 + n− 1) is the Pochhammer symbol,

Lαk (x) =

k∑
j=0

(
k + α
k − j

)
(−x)j

j!
are generalized Laguerre polynomials,

Al
′l|m|
n = (−1)n+l′−l)/2+m(2n+ 1) [(2l′ + 1)(2l + 1)]

1/2
(
l′ l n
0 0 0

)(
l′ l n
m −m 0

)
,

and

(
a b c
α β γ

)
denotes the Wigner 3-j symbol given by

(
a b c
α β γ

)
=

(−1)a−b−γ
√

∆(abc)
√

(a+ α)!(a− α)!(b+ β)!(b− β)!(c+ γ)!(c− γ)!

tmax∑
t=tmin

(−1)t

x
,

∆(abc) =
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!
,

x =

t!(c− b+ t+ α)!(c− a+ t− β)!(a+ b− c− t)!(a− t− α)!(b− t+ β)!,

where tmin = max(0, b− c− α, a+ β − c) and tmax = min(a+ b− c, a− α, b+ β).

Naively computing T-Matrix entries for fixed k, l, k′, l′,m takes O(L3Nt) steps,
where Nt is the number of translations. The overall complexity is thus L5 ·O(L3Nt) =
O(L8Nt).

4. Rigid-body correlations. Radial/spherical harmonic expansions can be used
to compute rigid-body correlations. Let A and B be scalar-valued functions, and let
B undergo rotations R relative to A. We are interested in the pure rotational cor-

relation C(R) =

∫
R3

A(x)(B(Rx))dx, where the overbar represents complex conju-

gation2. The following two lemmas can be established, respectively, for mixed-basis
coefficients âklm, b̂klm and pure spherical basis coefficients âlm, b̂lm:

Lemma 4.1.

C(R) =

L∑
k=1

k−1∑
`=0

∑̀
m=−`

∑̀
m′=−`

(−1)mâk`−m(−1)m
′
b̂k`−m′D

m,m′

` (R). (4.1)

2The conjugation is used to simplify algebraic manipulations, and is otherwise redundant.
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(A) (B) (C)

Fig. 4.1. Schematic of the rigid-body correlation search scheme introduced in this work. Here
A,B are two complex or real scalar-valued functions. (A) Initial positions of A and B in different
coordinate frames. (B) A and B are translated to share the same origin. (C) A rigid-body motion
comprising a single translation z along the z-axis and five rotations (αA, βA, γA, αB , βB) about the
z- and y-axes.

Lemma 4.2.

C(R) =

L∑
`=0

∑̀
m=−`

∑̀
m′=−`

(−1)m(−1)m
′
Dm,m′

` (R)

∫
R+

â`−m(r)b̂`−m′(r)r
2dr. (4.2)

To derive the expression for general rigid-body correlations (Figure 4.1) C(R, t) =∫
R3

A(x)B(Rx + t)dx, we can use Equation 3.10 along with an elementary fact: every

rigid-body motion (R, t) can be factored into a combination of five rotations and a
single translation about the z-axis3. Let these five rotations be parametrized by z-y-z
Euler angles RA = (αA, βA, γA) and RB = (0, βB , γB). Then we obtain, for the
mixed-basis functions:

Lemma 4.3.

C(R, t) =
∑
klmn

âk`mD
n,m
` (RA)

∑
k′`′m′

(−1)nb̂k′`′m′D
−n,m′
`′ (RB)T

|n|
k`,k′`′(z). (4.3)

Following an observation in Garçon et. al [11], it is not as efficient to use the
pure spherical basis expansions to express a general rigid-body correlation. Instead,
Equation 4.2 is used along with a scan of the translational degrees of freedom, in
which the basis coefficients are recomputed for each distinct t ∈ R3.

Lemmas 4.2 and 4.3 have also been obtained in Kovacs and Wriggers [16] and
Ritchie [30]. To our knowledge, this is the first explicit establishment of the straight-
forward Lemma 4.1.

5. The tools: Wigner-d-Chebyshev, Chebyshev-exponential and SO(3)
transforms. The Wigner-d polynomials are the main obstacle between Equations 4.1
and 4.3 and their expression as exponential, FFT-amenable sums; existing approaches
to computing rigid-body correlations use one of a pair of well-known transformations

3It is enough to see that every translation t can be expressed as two rotations and a single
translation along the z-axis. Starting at the origin, the point t can be reached by translating along
the z-axis by ‖t‖, and then rotating about the z and y−axes by θ and φ, the spherical coordinates
of t.
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to express these polynomials as exponentials. Here we use a combination of Wigner-d-
Chebyshev/Chebyshev-exponential transforms [27], briefly described below, to effect
the same conversion. This conversion enables us to compute Equations 4.1 and 4.3
over arbitrary samples in R3 × SO(3).

Consider the summation

∑
`=max |m|,|n|

f̂`mnd
m,n
` (cosβ).

Potts et.al [27] convert the above summation to an exponential sum via a two
step process. The first step is the Wigner-d-Chebyshev transform. Let T`(cosβ) be
the family of Chebyshev polynomials of the first kind.

Definition 5.1. Wigner-d-Chebyshev Transform. Let f̂`mn ∈ C. The
Wigner-d-Chebyshev transform of f̂`mn is the set of coefficients ĝ`mn ∈ C such that

L∑
`=max |m|,|n|

f̂`mnd
m,n
` (cosβ) =


L∑
`=0

ĝlmnT`(cosβ) if m+ n is even

sinβ

L−1∑
`=0

ĝlmnT`(cosβ) if m+ n is odd.

(5.1)

The Wigner-d-Chebyshev transform is computed by using a three-term recurrence
relationship for the Wigner-d functions, along with a fast polynomial transform [28].
This transform is independent of β, and can be performed in O(L log2 L) steps for
each distinct m,n.

The second step, the Chebyshev-exponential transform, involves converting Cheby-
shev coefficients ĝ`mn into exponential coefficients ĥ`mn.

Definition 5.2. Chebyshev-exponential Transform. Let ĝ`mn ∈ C. The
Chebyshev-exponential transform of ĝ`mn ∈ C is the set of coefficients ĥ`mn ∈ C such
that

L∑
`=0

ĝ`mnT`(cosβ) =

L∑
`=−L

ĥ`mn exp(−i`β). (5.2)

The latter is a straightforward computation, taking advantage of the relationship

cosβ = exp(iβ)+exp(iβ)
2 . Like the Wigner-d-Chebyshev transform, it is independent of

β, and takes O(L) steps. The transformation from Wigner-d coefficients f̂ to expo-

nential coefficients ĥ thus takes a total of O(L log2 L) steps. This pair of conversions
is at the heart of the fast SO(3) transform.

5.1. The SO(3) Fourier transform. To efficiently calculate either of Equa-
tions 4.1 and 4.3, we use the fast SO(3) Fourier Transform [27].

Definition 5.3. SO(3) Fourier transform. Let f̂`mn ∈ C, and (αq, βq, γq) ∈
SO(3), q ∈ {1 . . . , Q}. The SO(3) Fourier transform of f̂`mn is the set of coefficients
F (αq, βq, γq) ∈ SO(3) such that

F (αq, βq, γq) =

L∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂`mnD̃
m,n
` (αq, βq, γq). (5.3)
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This sum can be transformed into an FFT-amenable sum [27]. We have

F (αq, βq, γq) =

L∑
m=−L

L∑
n=−L

L∑
`=max(|m|,|n|)

f̂`mn

× exp(−imαq)dm,n` (cosβq) exp(−inγq).

Using the Wigner-d-Chebyshev and Chebyshev-exponential transforms, the in-
nermost sum can be transformed into a triple exponential sum:

F (αq, βq, γq) =

L∑
m=−L

L∑
n=−L

L∑
`=−L

ĥ`mn exp(−imαq) exp(−i`βq) exp(−inγq). (5.4)

If the nodes (αq, βq, γq) are equispaced, an FFT can be used to compute Equa-
tion 5.4. If they are non-equispaced, however, the non-uniform fast Fourier trans-
form [15] comes to our rescue.

Definition 5.4. Non-equispaced Fast Fourier Transform. Let ĥ`mn ∈ C.
Then the non-equispaced Fast Fourier Transform (NFFT) computes Equation 5.4 for
arbitrary nodes i ∈ {1 . . . Q} in O(L3 logL+Q) steps.

An explanation of the techniques behind the NFFT is beyond the scope of this
work; however, in the discussions to follow, we shall see how the non-equispaced nature
of the NFFT actually provides PFcorr with a crucial advantage.

We now have a set of techniques to compute the SO(3) Fourier transform intro-
duced at the beginning of this section.

Lemma 5.5. The SO(3) Fourier transform can be computed in O(L3 log2 L+Q)
steps (Potts et.al [27]).

Proof. Use the Wigner-d-Chebyshev and Chebyshev-exponential transforms to
convert Equation 5.3 to Equation 5.4 in O(L3 log2 L) steps, and then use the NFFT
to compute the remaining sum in O(L3 logL+Q) steps.

6. Rigid-body correlations: main results. We use the machinery of the non-
uniform SO(3) transform to compute Equations 4.1, 4.2, and 4.3 (Theorems 6.1, 6.2,
and 6.3). We also outline a way to speed up computations of the SO(3) translation
matrix entries (Theorem 6.4).

Theorem 6.1. The pure rotational correlation C(R) (Equation 4.1) can be com-
puted in O(L4 +NR) steps, where NR is the number of distinct rotations R .

Theorem 6.2. The pure rotational correlation C(R) (Equation 4.2) can be com-
puted in O(L3 log2 L+NR +L3I) steps, where NR is the number of distinct rotations

R and I is the complexity of computing the integral
∫
R+ â(r)b̂(r)r2dr for a given pair

of scalar-valued functions â, b̂ : R+ 7→ C.
Theorem 6.3. The general rigid-body correlation C(R, t) (Equation 4.3) can

be computed in O(L6 + L4NRB + NRBNRA)Nt steps, where NRA and NRB are the
number of rotations of A and B respectively, and Nt is the number of 1 dimensional
translations.

Theorem 6.4. The translation matrix entries in Equation 3.5 for SO(3) can be
computed in O(L7 + L6Nt), where Nt is the number of 1 dimensional translations.
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Theorems 6.1 and 6.3 are the main correlation-based results of this work, and
are respectively proven by the pair of algorithmic Recipes 1 and 2 presented in the
appendix. Theorem 6.2 follows directly from Theorem 6.1.

With these theorems established, we can now outline algorithms to perform fast
rigid-body correlations given a pair of scalar-valued functions as input. Algorithm 1
uses the mixed radial/spherical basis, while Algorithm 2 uses the pure spherical har-
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monic basis functions.

Algorithm 1: Fast Rotational Matching with mixed radial/spherical basis
functions

Input: L : Expansion degree;
G : Spherical grid with sizes Nr, Nθ, Nφ in the radial, polar and azimuthal
directions respectively. Let N = max(Nr, Nθ, Nφ);
A,B : R3 7→ C : scalar-valued functions sampled on G centered at r = 0;
M⊂ R3 × SO(3) : a finite set of rigid-body motions;

1 foreach (k, `,m) with |m| ≤ ` ≤ k ≤ L do

2 Calculate the coefficients âk`m and b̂k`m using Equation 3.5;
3 end
4 if t == 0 ∀(R, t) ∈M then
5 Find the maximum value of C(R) =

∫
R3 A(x)B(Rx)dx ∀R ∈M using the

steps in the proof of Theorem 6.1;
6 else Find the maximum value of
C(R, t) =

∫
R3 A(x)B(Rx + t)dx ∀(R, t) ∈M using the steps in the proof of

Theorem 6.3;
Output: The maximum correlation C ∈ C between A and B;

7 Complexity: O(Ccoeff + CPFcorr) flops, where Ccoeff = O(L3N3) is the
complexity of computing the coefficients âklm, and CPFcorr = O(L4 +NR) in
the pure rotational case or O(L6 + L4NRB +NRBNRA)Nt in the general case;

Algorithm 2: Fast Rotational Matching with pure spherical harmonic basis
functions

Input: L : Expansion degree;
G : Spherical grid with sizes Nr, Nθ, Nφ in the radial, polar and azimuthal
directions respectively. Let N = max(Nr, Nθ, Nφ);
A,B : R3 7→ C : scalar-valued functions sampled on G centered at r = 0;
T ⊂ R3 × SO(3) : a finite set of pairs {(t,R)}, where t ∈ R3 is a translation
and R ⊂ SO(3) is a finite set of rotations corresponding to t;

1 foreach r ∈ G do
2 foreach (`,m) with |m| ≤ ` ≤ L do
3 Compute âlm(r) using Equation 3.7;
4 end

5 end
6 foreach (t,R) ∈ T do
7 Translate B(x) by t ;
8 foreach (`,m) with |m| ≤ ` ≤ L do

9 Compute b̂lm(r) using Equation 3.7;
10 end
11 Compute C(R) =

∫
R3 A(x)B(R(x + t))dx ∀R ∈ R using the steps in the

proof of Theorem 6.2.
12 end

Output: The maximum correlation C ∈ C between A and B;
13 Complexity: O((Ccoeff + CPFcorr)|T |) flops, where Ccoeff = O(N2L2), and
CPFcorr = O(L3 logL+NR);

7. Rigid-body correlations: numerical results and discussion. There are
three sources of error in PFcorr. The first is the expansion error, i.e., the error
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L A/M/MC∗ A/M/MC†

3 1.21e-5/1.48e-5/1.56e-10 1.51e-4 / 1.82e-4 / 1.81e-10
4 1.93e-5/1.22e-4/1.71e-10 1.26e-4 / 1.75e-4/1.84e-10
5 1.91e-5/1.23e-4/1.83e-10 1.38e-4 / 1.68e-4/ 1.85e-10
6 1.37e-5/1.67e-5/1.53e-10 1.44e-4 / 1.88e-4 / 1.76e-10
7 1.58e-5/1.71e-5 /1.78e-10 1.32e-4 / 1.51e-4 / 1.81e-10
8 1.61e-5 /1.78e-5/1.72e-10 1.22e-4 / 1.48e-4/ 1.71e-10
9 1.67e-5/1.70e-5/1.72e-10 1.31e-4 / 1.44e-4 / 1.82e-10
10 1.61e-5/1.9e-5 /1.77e-10 1.34e-4/ 1.39e-4 / 1.85e-10
11 1.73e-5/ 1.88e-5/1.79e-10 1.32e-4/ 1.38e-4/ 1.84e-10
12 1.72e-5/ 1.82e-5 /1.41e-10 1.32e-4 / 1.4e-4 / 1.81e-10

Table 7.1
Errors between the naively computed correlation and the correlation as computed by Recipes 1

and 2 for two real-valued functions A,B : R3 → R at varying expansion degrees over 500 randomly-

generated rigid-body rotations. In each case, error =
|naive−recipe|
|naive| . ∗ : Average error/maximum

error/maximum complex value for Recipe 1. † : Average error/maximum error/maximum complex
value for Recipe 2. Beyond L = 12, the naive correlation is exceedingly slow to compute. The above
experiment was conducted with radial/spherical bases; similar results hold for pure spherical bases,
as the speedup scheme for these bases is the same as that used for Recipe 1.

(A) (B)

Fig. 7.1. Time taken by each of the algorithms in Section 6. (A) Time taken by Recipe 1 at a
fixed degree. (B) Time taken by Recipe 1 at a fixed number of rotations. (C). Time taken by Recipe
2 at fixed degree. (D) Time taken by the T-Matrix algorithm. See also Figure 7.2.

(A) (B)

Fig. 7.2. Time taken by each of the algorithms in Section 6, part 2. (A) Time taken by Recipe
2 at fixed degree. (B) Time taken by the T-Matrix algorithm. See also Figure 7.1.
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induced by truncating the basis expansion at a finite value of L. The second is the
representation error, i.e., the error induced in numerically integrating the coefficients
in Equation 3.5. The third is the NFFT error, i.e., the error induced by approximating
the exponential sums by the NFFT.

Following Ritchie, Ritchie et. al, and Garçon et. al [11, 30, 32], the first two
sources of error can be respectively mitigated by choosing an expansion degree between
20 ≤ L ≤ 25, and using a single-point quadrature rule. We provide further evidence
supporting the former assertion in the following subsection.

The NFFT approximates exponential sums with a kernel basis expansion, provid-
ing a choice of several kernels, and several parameters govern the actual error of the
expansion. In our implementation, we choose the Gaussian kernel with an oversam-
pling factor of 3 (See Potts et. al [29]), resulting in the errors in Table 7.1. We note
that, in solutions to the correlation problem, the absolute value of a correlation is
less important than its value relative to other rigid-body rotations, i.e., the ability of
the search scheme to discriminate between two different rigid-body motions. A mea-
sure of this ability is presented in the following subsection in the context of sampling
arbitrary subsets of SE(3).

We provide timing information in Figure 7.1 and 7.24. For Recipe 1 (Figure 7.1),
we see that the linear scaling with respect to the number of rotations and the quartic
scaling with respect to expansion degree predicted by Theorem 6.1 are reproduced by
the implementation. For Recipe 2 (Figure 7.2), the scaling with respect to expansion
degree is not very important, as typically L6, the leading expansion term, is much
less than L4NRB , which, for practical correlation problems, is in turn less than the
product of the number of rotations NRANRB . We hence examine how Recipe 2 scales
with respect to the product NRANRB ; Figure 7.2(A), shows that the scaling is linear,
as expected.

For the T-Matrix computation in Theorem 6.4 (Figure 7.2 (B)), a dramatic
speedup with respect to the naive algorithm is observed in L ≥ 10 regime, where
the L7 v/s L8 scaling is apparent. However, for typical values of L (see following
paragraph), the computation times are still too slow to be usable in the inner loop of
any Fourier-based correlation approach, including our own. Like prior work that uses
the T-Matrix (see the introduction for an overview), we thus prefer to precompute
and store T-Matrix entries for given values of z and λ (See Definition 3.5).

From a practical standpoint, our rigid-body correlation search is seen to be a
viable, if somewhat slower, alternative to existing rigid-body correlation search tech-
niques. Most of the degradation in performance is due to the NFFT, which uses, in
its implementation, an oversampled FFT to enable the non-uniformity inherent to
it. Following Ritchie [32], we choose L to typically lie between 20 and 25, in which
case typical run times for an exhaustive correlation involving about 1.5e7 distinct
rigid-body samples lie between 2 and 3 minutes. We also note that, other than the
argument in Section 7.1, there is no reason to prefer the non-uniformity inherent to
PFcorr, and, if performance is a concern, each of the steps involving the NFFT can
be replaced by the equispaced FFT.

7.1. Sampling arbitrary subsets of SE(3); addressing the drawbacks of
existing techniques. The main advantage of PFcorr is in sampling arbitrary (finite)
subsets of the space SE(3) = R3 × SO(3) of rigid-body motions. In our implementa-

4All timing information is from a single-threaded, dual core Macbook Pro at 2.5 GhZ with 8GB
of RAM.
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Fig. 7.3. Average top-ranking Z-Scores for recipe 1 at varying degrees. The rotational sampling
fineness is fixed at 8◦.

tion, this is as simple as specifying a set of rigid-body motions on which correlations
are to be performed. By contrast, all prior techniques require an equispaced Euler
Angular grid for rotational search, a property that results in a highly non-uniform
search of the space of rotations (See Drawback 2 in the introduction).

What subset of R3 × SO(3) is best? For exhaustive correlations between a pair
of scalar-valued functions, one good answer to this question is: one that uniformly
samples the space of rotations SO(3). As we mention in the introduction, most
of the uncertainty in the rigid-body correlation problem lies in the space of rigid-
body rotations, and it is thus more important to sample this space as uniformly
as possible. There are several existing techniques that, given an angular sampling
criterion, provide a set of samples that are uniform with respect to accepted metrics
of uniformity. We use the approach in Mitchell [22], in which the metrics of local
separation and global coverage compete to provide a set of highly uniform samples in
SO(3). See also Figure 2.1.

The ability to sample and correlate over arbitrary subsets of SE(3) is only useful
if, for a particular expansion degree, the fineness of the rotational sample size does not
exceed the accuracy with which âklm and b̂klm represent A and B respectively (See
Equation 3.6). Such a scenario would give rise to correlations that are so close to each
other as to be essentially indistinguishable, and would result in a set of correlations
clustered around the average. To measure this tendency, we compute the z-score
z = x−µ

σ , a measure of the distance of each individual correlation from the average.
The results, in Figure 7.3, indicate that (A) the top-ranking Z-score increases with
increase in degree, as expected, leveling off at L ≥ 20, where the error due to floating-
point calculations begins to rival the error due to representation, and (B) even at very
low expansion degrees, the top-ranking score is 3 standard deviations from the mean,
indicating a very high confidence. Figure 7.3 also presents another argument as to
why the regime 20 ≤ L ≤ 25 is best, as the latter provides a balance between the
errors of representation and floating-point computation.

8. Flexible correlations: main results. We present an algorithm (Algo-
rithm 3) for domain-based protein matching. This algorithm, given as input

1. A protein P,
2. A hierarchical domain decomposition, defined in Section 8.1, of P,
3. A scalar-valued function B : R3 7→ R representing a stationary target, and,
4. A scalar-valued representation A of P,

produces as output the optimal correlation between A and B under rigid-body
motions of the domains of P. Algorithm 3 makes use of the ability of PFcorr to
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uniformly sample arbitrary subsets of R3 × SO(3).

Algorithm 3: Greedy multi-domain matching

Input:
1. P : Protein;
2. DD = {Di,MG}, i ∈ {1 . . . ND} : A domain decomposition of P;
3. R(DDi) :

An operator that converts Di ∈ DD into a representation Ai : R3 7→ R;
4. A : R3 7→ R : Scalar-valued function representing P, computed using R;
5. B : R3 7→ R : Target scalar-valued function;
6. PQ :

Empty priority queue with elements (j, r), j ∈ Z+, r ∈ R ordered least-first w.r.t r;

Output: The optimal correlation between Ai and B under rigid-body
transformations of Ai, i ∈ {1 . . . ND}.

1 Use PFcorr to find the optimal rigid-body transformation (R, t) relating A to
B;

2 foreach Di ∈ DD do
3 Compute the correlation Ci ←

∫
R3 AiBdx between each domain Di and

the target B;
4 Push (i, Ci) to PQ;

5 end
6 i← 1;
7 while i ≤ ND do
8 k ← PQ[ND − i− 1].j;
9 Di ← Dk;

10 i← i+ 1;

11 end
12 foreach Di ∈ DD, i 6= 1 do
13 Using flexors Fi−1,i, compute the set of relative motions

Ti−1,i ← {(Rk
i−1,i, t

k
i−1,i)}, k ∈ {1 . . . N i

T} of Di relative to Di−1;

14 Compute the set of absolute motions Ti ← {(Rk
i , t

k
i )}, k ∈ {1 . . . N i

T} for
each rigid-body transformation in the set Ti−1,i relative to the stationary
domain D1;

15 end
16 foreach (i, Ci) ∈ PQ do
17 Use PFcorr to find the optimal rigid-body transformation (Ri, ti) ∈ Ti

relating Ai to B;

18 end

19 Complexity: O(CPFcorrND) flops, where CPFcorr is the complexity of
PFcorr.

8.1. Domain-based protein flexibility framework. We assume a generic
framework for domain-based protein flexibility. This framework consists of ideas from
domain-decomposition of proteins that have existed in various forms over the past
decade (see especially Maiorov and Abagyan [20]), as well as a set of techniques,
described, for instance, in Bajaj et. al [3], to assign motions to each of these domains.

Let a protein crystal structure P comprise a set of atoms. Designate a subset of P
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as a domain D. A domain decomposition of P is a set DD = {Di}, 1 ≤ i ≤ nDD, where
Di is a domain. A hierarchical domain decomposition HD = {DDi}, 1 ≤ i ≤ nHD is
a set of domain decompositions DDi such that each domain in DDi is a subdomain
of some domain in DDi−1 (See, for example, Bettadapura et. al [4]). For each DDi of
the hierarchical domain decomposition HD, a motion graph MG specifying relative
motions between domains of DDi can be specified. The motion graph consists of a set
of edges Fij , called flexors, between pairs of domains i, j that undergo relative motion.
The geometric properties of each flexor imply a set of rigid-body transformations
(Rk

i,j , t
k
i,j), k ∈ {1 . . . NT} applied to Dj relative to Di [3].

8.2. Algorithm for flexible matching. Algorithm 3 applies to a particular
domain decomposition of P, i.e, it applies to a particular index in the hierarchical do-
main decomposition of P. It uses the ability of PFcorr to sample arbitrary subsets of
SE(3) to match representations of domains Ai ∈ A to a target scalar-valued function
B : R3 7→ R. Note by contrast that a classic equispaced Fourier-based correlation
scheme would not be able to perform the tasks in Algorithm 3 without also produc-
ing several results that do not belong to the chosen subset of SE(3). This focusing
property enables PFcorr to combine the merits of both local and global optimization
schemes in the following sense. The algorithm is local in that it is restricted to the
chosen subset of SE(3), but global in that it samples that subset exhaustively. It thus
combines the speed of a local search without being sensitive, as local search algorithms
are, to local optima.

9. Conclusion. We have presented PFcorr, a non-uniform correlation search
scheme. PFcorr displays the following properties: (A) It is sampling robust, making
searches over arbitrary subsets of SE(3) efficient while retaining the capabilities of
classical exhaustive Fourier-based search schemes, (B) It is compatible with existing
equispaced FFT-based techniques, in the sense that its non-equispaced nature is de-
sirable but not necessary, and (C) Its algorithms extend to the rotationally exhaustive
paradigms in Kovacs and Wriggers, Ritchie, and Ritchie et. al [11, 17, 30, 32]. We
have also presented an algorithm to compute translation matrix entries for SO(3) that
achieves a better scaling than existing naive algorithms. Finally, we have presented
an algorithm for multi-dimensional flexible correlations that leverages the sampling
robustness of PFcorr. PFcorr applies to several fields within computational biology,
including, most notably, molecular fitting and docking, where the above properties
make it a natural and efficient tool for correlation-amenable search.
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Appendix. Proof of Lemma 3.3. Let λ = 1. We have

∫ ∞
0

R`k(r)R`n(r)r2dr = βk`βn`

∫ ∞
0

e−r
2

r2`L
`+ 1

2

k−`−1

(
r2
)
L
`+ 1

2

n−`−1

(
r2
)
r2dr.
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By substituting first r2 = x, and then α = `+ 1
2 , k
′ = k − `− 1 and n′ = n− `− 1 ,

we get ∫ ∞
0

R`k(r)R`n(r)r2dr = βk`βn`

∫ ∞
0

e−xx`L
`+ 1

2

k−`−1(x)L
`+ 1

2

n−`−1(x)
x

2
√
x

dx

=
1

2
βk`βn`

∫ ∞
0

e−xxαLαk′(x)Lαn′(x)dx.

Using the orthogonality of the Laguerre polynomials, and back-substituting k′ and
n′, this simplifies to∫ ∞

0

R`k(r)R`n(r)r2dr =
1

2
βk`βn`

Γ(k′ + α+ 1)

k′!
δk′n′ =

1

2
βk`βn`

Γ(k + 1
2 )

(k − `− 1)!
δkn

= β2
k`

Γ(k + 1
2 )

2(k − `− 1)!
δkn = δkn

after inserting βk`. The extension to general λ is straightforward. �
Proof of Lemma 4.1.
Using the basis expansions of A and B,

C(R) =

∫
R×S2

∑
k`m

âk`mR
`
k(r)Y m` (u)

∑
k′`′m′m′′

b̂k′`′m′R
l′

k′(r)D
m′′,m′

` (R)Y m
′′

`′ (u)r2drdu.

(9.1)
Putting the basis-function orthogonality conditions∫

R
R`k(r)R`

′

k′(r)r
2dr = δkk′ (9.2)

and ∫
S2
Y m` (u)Y m

′
`′ (u)du = δmm′δ``′ (9.3)

into Equation 9.1 yields the desired result. �
Proof of Lemma 4.3.

C(R, t) =

∫
R3

A(x)B(Rx + t)

⇒ C(αA, βA, γA,∆z, βB , γB) =

∫
R+×S2

∑
klmn

âklmD
n,m
` (RA)R`k(r)Y n` (u)

×
∑

k′`′m′n′

b̂k′`′m′Dn′m′
`′ (RB)

∞∑
j=0

j−1∑
h=0

T
|n′|
jh,k`(−z)R

h
j (r)Y n

′
h (u)r2dudr,

which, after a routine invocation of the orthogonality conditions in Equations 9.2
and 9.3, reduces to the desired result. �
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Proof of Theorem 6.1.
Rewriting Equation 4.1 as

C(R) =

L−1∑
`=0

∑̀
m=−`

∑̀
m′=−`

L∑
k=`+1

(−1)mâk`−m(−1)m
′
× b̂k`−m′Dm,m′

` (α, β, γ)

enables us to compute it in two steps.
Recipe 1.
1. Compute the innermost sum

f̂`mm′ =
∑
k

(−1)m
′
âk`−mb̂k`−m′

in O(L4) steps.
2. Use the SO(3) Fourier transform to compute the remaining sum

C(R) =

L∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂`mn exp(−imα)dm,n` (cosβ) exp(−inγ)

in O(L3 log2 L+NR) steps, where NR is the number of unique rotations R.
The overall cost is O(L4), the cost of the most expensive first step. �
Proof of Theorem 6.2. There are O(L3) integrals

∫
R+ â(r)b̂(r)r2dr, and once these

have been computed, the triple sum in Equation 4.2 is an SO(3) Fourier transform,
and can be computed, from Lemma 5.5, in O(L3 log2 L+Q) steps. �

Proof of Theorem 6.3.
Rewriting Equation 4.3 as

C =

L−1∑
l=0

∑̀
m=−`

∑̀
n=−`

L∑
k=`+1

âk`mD
n,m
` (RA)

×
L−1∑

m′=−(L−1)

L−1∑
`=max(|m′|,|n|)

(−1)nD−n,m
′

`′ (RB)×
L∑

k′=`′+1

b̂k′`′m′T
|n|
k`,k′`′(−z)

enables us to compute it in four steps.
Recipe 2.
1. Compute

ĉk``′nm′ =

L∑
k′=`′+1

b̂k′`′m′T
|n|
k`,k′`′(−z)

in O(L6) steps.
2. Via the Wigner-d-Chebyshev and Chebyshev-exponential transforms, convert

L−1∑
m′=−(L−1)

L−1∑
`′=max(|m′|,|n|)

ĉk``′nm′D
−n,m′
`′ (RB)
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to

L−1∑
m′=−L+1

L−1∑
`′=−L+1

d̂kll′nm′e
−im′γBe−i`

′βB

in O(L5) steps.
3. Using the NFFT, compute

êkln(−∆z, βB , γB) =

L−1∑
m′=−L+1

L−1∑
`′=−L+1

d̂k``′nm′ exp(−im′γB) exp(−i`′βB)

for all sets of (βB , γB) in O(L5 logL+NRBL3) steps.
4. Compute

C =

L−1∑
`=0

∑̀
m=−`

∑̀
n=−`

L∑
k=`+1

âk`mêk`n(−∆z, βB , γB)Dn,m
` (RA)

using Recipe 1 in O(NRB (L4 + L3 logL+NRA)) steps.
The overall cost is O(L6 + L5 logL+NRB (L3 + L4) +NRBNRA)NT , or O(L6 +

L4NRB +NRBNRA)Nt. �
Proof of Theorem 6.4.

The translation coefficients T
|m|
k′l′,kl(z) · exp(z2/4λ) are polynomials of degree

max(n+ 2M) = max(n+ 2(j +
l + l′ − k

2
)) = max(2j + l+ l′) = 2k− l+ 2k′ − l′ − 4.

Let d = 2k − l + 2k′ − l′ − 4, n = min(p, l + l′)− s and i = p−n
2 Then Equation 3.12

can be arranged to obtain

T
|m|
k′l′,kl(z) exp(z2/4λ) =

2k−l+2k′−l′−4∑
p=0

αp · zp

where

αp =

min(p,l+l′)−|l−l′|∑
s=0

All
′|m|
n

k−l+k′−l′−2∑
j=max(i− l+l′−n2 ,0)

Ck,l,k
′l′

j M !
(1/2)M+n+1

(M − i)!(1/2)n+i+1
· 1

(−4λ)i · i!
,

and s is even iff d is even.

αp can be computed for all p in O(L3) steps. For fixed k, l, k′, l′,m, the T-Matrix
polynomial can be computed in O(LNt). The complexity for fixed k, l, k′, l′,m is
hence O(L3 + LNt), resulting in an overall complexity of O(L8 + L6Nt).

A polynomial can be evaluated at a set of equispaced arguments with O(L) mul-
tiplications. Applying Nuttall’s update rule for polynomials [23] reduces these mul-
tiplications to additions without altering the number of operations required. This
affords a small speedup.
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Speedup By Dynamic Programming. If A
ll′|m|
n is precomputed for all m,

the other terms in Equation 3.12 have to be calculated only once for fixed k, l, k′, l′.
In the first step, we compute

bn :=

k−l+k′−l′−2∑
j=0

Ckl,k
′l′

j M ! exp(−z2/4λ) (z2/4λ)n/2L
(n+1/2)
M (z2/4λ)

for all m and fixed n, l, n′, l′. The summation over j and the computation of L
n+1/2
M

each takes O(L) steps, implying a complexity of O(L2) for each bn, and a complexity
for all m of O(L3).

In the second step we compute the T-Matrix entries

T
|m|
k′l′,kl =

l+l′∑
n=|l−l′|

bn ·All
′|m|
n .

Since the above calculation has to be done for all k, l, k′, l′ and for Nt translations,

the overall complexity for T
|m|
k′l′,kl is now O(L7Nt), instead of O(L8).

Another speed-up can be obtained regarding the Ckl,k
′l′

j . Only these coefficients
and the boundary of the innermost sum depend on k and k′. If k and k′ are switched,
the boundary of the sum does not change, so for switched k and k′ only the value

Ckl,k
′l′

j changes. In the first step

l(z2/4λ) := L
(n+1/2)
M (z2/4λ)

is computed for all j, n, l, l′. In the second step

tkl,k′l′ :=

k−l+k′−l′−2∑
j=0

Ckl,k
′l′

j M ! exp(−z2/4λ) (z2/4λ)n/2l(z2/4λ)

and

tk′l,kl′ :=

k−l+k′−l′−2∑
j=0

Ck
′l,kl′

j M ! exp(−z2/4λ) (z2/4λ)n/2l(z2/4λ)

is computed. In the third step

T
|m|
k′l′,kl =

l+l′∑
n=|l−l′|

All
′|m|
n · tkl,k′l′

and

T
|m|
kl′,k′l =

l+l′∑
n=|l−l′|

All
′|m|
n · tk′l,kl′

are computed.
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Moreover, the symmetry property [30]

T
|m|
k′l′,kl = (−1)l−l

′
T
|m|
kl,k′l′

implies

T
|m|
kl′,k′l = (−1)l−l

′
T
|m|
k′l,kl′ .

The dynamic programming approach above allows us to calculate T
|m|
kl,k′l′ , T

|m|
kl′,k′l and

T
|m|
k′l,kl′ by calculating T

|m|
k′l′,kl.

Combining The Different Speed-Ups. The complexity of the approach of
representing the T -coefficients as a polynomial can be reduced by using the speed-
up by dynamic programming as explained above. To achieve the reduction in the
complexity we consider the calculation of αp. Instead of computing αp directly, first

bps :=
1

(−4λ)i · i!(1/2)n+i+1

k−l+k′−l′−2∑
j=max(i− l+l′−n2 ,0)

Ck,l,k
′l′

j M !
(1/2)M+n+1

(M − i)!

is precomputed. This computation has the complexity O(L3), because of the summa-
tion and the parameters s and p. Afterwards the αp

αp =

min(p,l+l′)−|l−l′|∑
s=0

All
′|m|
n · bps .

are computed. This has the complexity O(L2), implying a complexity of O(L3) for
the precomputation of αp for all m. The total computation of the αp for all m is
hence O(L3 + L3) = O(L3).

The subsequent computation of

T
|m|
kl′,k′l exp(z2/4λ) =

2k−l+2k′−l′−4∑
p=0

αp · zp

is for fixed k, l, k′, l′,m and all m is O(L2Nt). Therefore the overall complexity for
fixed k, l, k′, l′ and all m is O(L3 + L2Nt). Thus, for all k, l, k′, l′ the complexity is
O(L4)O(L3 + L2Nt) = O(L7 + L6Nt) �.
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