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Abstract

We explore the use of various element-based reduced quadrature strategies for bivariate
and trivariate quadratic and cubic spline elements used in isogeometric analysis. The rules
studied encompass tensor-product Gauss and Gauss-Lobatto rules, and certain so-called
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1. Introduction

Efficient quadrature rules are an important ingredient in any function-based discretiza-
tion method for partial differential equations. Much of the work so far in isogeometric
analysis has avoided this issue and used “full” Gaussian quadrature on Bézier elements, the
smooth subdomains of NURBS and T-splines demarcated by knot boundaries [1, 2]. Full
Gaussian quadrature is usually taken to mean the rule required to exactly integrate the
bilinear form generating the stiffness matrix when the geometry mapping from the parent
domain to the physical domain is affine. This concept has been carried over from standard
finite element analysis. However, it is known to entail more quadrature points for isogeo-
metric analysis than required for stability and accuracy. An important observation is that
smoothness across knot interfaces, a feature of isogeometric analysis, reduces the number of
quadrature points required. This was first demonstrated in Hughes et al. [3] through simple
examples and the development of quadrature rules for uniformly meshed NURBS patches.
This work was extended to more general NURBS patches in [4]. These contributions il-
lustrate that it is possible to develop more efficient quadrature for isogeometric analysis,
but so far rules are limited to structured NURBS patches. Recent trends have focused on
unstructured isogeometric discretizations in the form of hierarchically refined NURBS [5–12]
and T-splines [13–20], and for these no efficient quadrature schemes have been proposed.
Another indication that there exist much more efficient quadrature rules for isogeometric
analysis is the recent very promising investigations of collocation [12, 21–25], in which essen-
tially one quadrature point is used per control point (i.e., node), representing the ultimate
quadrature efficiency. However, isogeometric collocation is not based on the Galerkin weak
formulation and does not automatically possess all the analytical benefits offered by it (e.g.
best approximation, optimal rates of convergence, etc.). Consequently, there is still great
interest in more efficient quadrature rules for Galerkin weak forms, especially ones applicable
to hierarchically refined NURBS and T-splines. This is the objective of the present work.

The requirements of unstructured discretizations suggest that the approach should be
compatible with the concept of Bézier extraction and therefore focused on rules applied
to individual Bézier elements. At first glance, this seems to put us in exactly the same
situation as for standard finite elements, which inevitably leads to the same rules as used
for finite elements. But this is not quite the case for isogeometric analysis because of the
property of smoothness across knot interfaces. If quadrature points are located on the knot
boundaries of Bézier elements, derivatives at the quadrature points will be the same for
all elements sharing these points, unlike the case for C0-continuous finite elements. This
suggests consideration of element-based quadrature rules with points on the boundaries.
These offer no advantage for C0-continuous finite elements but can considerably improve
efficiency for isogeometric discretizations. A first and obvious opportunity is to replace
Gauss rules with Gauss-Lobatto rules, and indeed these will be capable of significantly
improving efficiency. Another opportunity is to employ so-called “monomial rules” that do
not possess a tensor-product format, but do have quadrature points on an element boundary.
The well-known 3D 6-point “face”, or “barbell”, rule [26, 27] falls into this category. We
shall explore this rule and other rules of this type herein. We also find that we can often use
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lower-order rules than those commonly thought to be necessary for stability and accuracy
based on C0-continuous finite elements, representing a further gain in efficiency. As we shall
see, the total efficiency gains in specific situations can be significant. We believe some of
the rules recommended herein will be of immediate value in engineering analysis because
these rules are element-based and can be easily implemented in standard finite-element code
architectures.

A point that needs to be understood is that due to open knot vectors, assumed through-
out, the outer layers of Bézier elements in NURBS patches may need more quadrature points
than the inner elements to achieve rank-sufficient matrices. This is not a serious compli-
cation because NURBS patches possess a simple rectangular topological structure and the
outer layers of elements are trivially identified. However, for application to T-splines there is
no simple underlying topology. For this case identifying the outer layers may be somewhat
more complicated to implement.

Our focus in this paper is on quadratic C1-continuous and cubic C2-continuous spline
bases. We believe these two classes of discretizations are the most practically important
within isogeometric analysis for the following reasons: Quadratic C1-continuous splines
comprise the lowest-order class that distinguishes itself from C0-continuous Lagrange fi-
nite elements. They have been shown to be very efficient and exhibit a significant jump in
accuracy compared with linear finite elements. Their asymptotic convergence rates are the
same as quadratic C0-continuous Lagrange finite elements, however, they are more accurate
per degree of freedom and their spectral properties are much superior [28, 29]. They also
offer the possibility of smooth geometric boundary approximations and exact representation
of conic sections, such as circles and ellipses [30, 31]. Quadratic C1-continuous splines are
available in some commercial CAGD systems, but cubic C2-continuous splines are ubiquitous
in widely-used commercial CAGD systems [32, 33]. This, obviously, makes them of central
interest in isogeometric analysis. We also note that cubic C2-continuous splines offer the
same accuracy advantages in comparison with cubic C0-continuous Lagrange finite elements
as quadratic C1-continuous splines do compared with quadratic C0-continuous Lagrange
finite elements. Anticipating thin shell analysis, for example, bending terms in stiffness in-
tegrals will involve second derivatives. These are by definition continuous across knot lines
for C2-continuous splines and so quadrature rules with points on element boundaries can be
taken advantage of.

Here is an outline of the remainder of the paper. In Section 2 we state the variational
form of the elliptic boundary-value problem under consideration. We present in tabular form
the quadrature rules that are utilized subsequently and a brief summary of their features
and performance. We also review the mathematical theory of approximate finite element
quadrature, which is known to provide sufficient conditions for full convergence rates to be
obtained. However, some of our numerical calculations later on suggest that the sufficient
conditions may not be necessary. In Section 3 we present numerical solutions to elliptic
boundary-value problems discretized with quadratic splines. Problems with smooth and
singular solutions are considered, in two and three dimensions, and comparisons are made
with quadratic C0-continuous finite elements on the basis of accuracy and efficiency. The
NURBS meshes are refined using the hierarchical concepts described in [8, 9]. With some
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of the quadrature rules advocated, quadratic splines are able to achieve the same levels of
accuracy as quadratic finite elements for considerably less computational cost. In Section 4
we explore problems discretized with cubic splines. We include examples of shell theory,
in particular, a pressurized cylindrical shell and the Scordelis-Lo roof [31, 34, 35] with the
Kirchhoff-Love formulation of thin shells [36, 37]. Again, substantial savings are noted for
some of the reduced quadrature rules, although not as significant as in the quadratic case.
In Section 5 we state the variational form and spectrum properties of eigenvalue problems
and use them to study the rank-sufficiency of the reduced quadrature rules and the existence
of spurious modes. In Section 6 we summarize our findings and make recommendations for
practical use.

Apologia

The subject of reduced quadrature is a controversial one in computational mechanics cir-
cles. There are individuals of a purest bent who abhor it. One of us (TJRH) once received
an anonymous review of one of his papers that insisted that figures with results using re-
duced quadrature be removed. The stated reason given by the reviewer was “I hate reduced
quadrature.” At a meeting that TJRH attended, at the conclusion of a presentation de-
scribing the reduced and selective integration techniques in a certain commercial structural
analysis program, a member of the audience stood up and emphatically proclaimed “Com-
putational structural analysis is in chaos!” We beg to disagree, and we think evidence to the
contrary is overwhelming. However, we do acknowledge and respect the different concerns
of different factions of the computational mechanics community. There are times when one
needs to be concerned with fundamentals and other times when one needs to be concerned
with practical exigencies. In engineering there are trade-offs that need to be evaluated and
often the method of choice may not be completely satisfactory to all constituencies. Effi-
ciency is of prime concern in engineering and reducing the number of quadrature points to a
minimum is an important consideration. We agree with the opinion expressed in Strang and
Fix [38] that “It is not required that every polynomial which appears be integrated exactly,

[. . .] and a formula which is exact to this degree may simply cost too much. It is important to

control properly the fraction of computer time which is spent on numerical integration.” This
is the view we have adopted in pursuing this investigation. We intend this work primarily
for an engineering audience and we think the results will be immediately practically useful.

2. Numerical integration in Galerkin based isogeometric analysis

We start with a brief problem statement that reviews the role of numerical integration
in the solution process of the standard Galerkin method. We describe our basic ideas of
reduced integration and the use of higher-order smoothness across element boundaries to
arrive at simple element-wise quadrature rules that are considerably less expensive than
standard full Gauss quadrature. In the context of isogeometric analysis, these rules lead to
a significant reduction of formation and assembly time.
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2.1. Problem statement

Let us adopt the following model problem over one patch domain Ω. The governing
equations are given by the boundary-value problem

−∆ u+ αu = f in Ω (1a)

u = 0 on ∂ΩD (1b)

∂u/∂n = 0 on ∂ΩN (1c)

where u is a scalar function, ∆ denotes the Laplace operator, α is a non-negative constant,
f is a source term, and n denotes the outward unit normal to the Neumann boundary ∂ΩN .
We assume homogeneous Dirichlet and Neumann boundary conditions.

Using the Galerkin method, we can transfer (1) into the Galerkin variational form [27,
38, 39], where we are faced with the evaluation of the following domain integrals

a(uh, vh)− b(f, vh) =

∫

Ω

(

∇uh · ∇vh + αuhvh
)

dΩ−

∫

Ω

fvhdΩ = 0 (2)

In the context of isogeometric analysis [30, 31], the trial and test functions u and v are
discretized by spline basis functions Ni in the following form

uh(ξ) =

ncp
∑

i=1

Ni(ξ) ci vh(ξ) =

ncp
∑

i=1

Ni(ξ) δci (3)

where ncp is the number of control points, ξ are the parametric coordinates of a d-dimensional
spline patch Ω, and ci denotes the unknown at the control point i. The evaluation of the
bilinear form a(uh, vh) will lead to the stiffness matrix, and the evaluation of b(f, vh) to the
right hand side vector.

For the time being let us assume that we are operating on a structured B-spline patch
with unit square Bézier elements, so that the parametric coordinates ξ and the physical
coordinates x are coincident. For numerical quadrature, we can then replace the domain
integrals in (2) by a weighted sum of point evaluations over nqp quadrature points as follows

a⋆(uh, vh)−b⋆(f, vh) =

nqp
∑

l=1

[

∇uh(ξl) · ∇vh(ξl) + αuh(ξl)v
h(ξl)

]

ωl−

nqp
∑

l=1

f vh(ξl) ωl = 0 (4)

where ωl denotes the weight associated with the lth quadrature point ξl [27, 38, 39]. In (4)
the challenge is the accurate evaluation of the bilinear form a(uh, vh) [38, 40]. In the general
case, the variational form (2) additionally contains boundary integrals that emanate from
non-homogeneous Neumann boundary conditions. However, their dimension is always one
order lower than that of the domain integrals. For large meshes the cost for their quadrature
evaluation will hence be negligible, irrespective of what rule we are using. In what follows
we will therefore only focus on the evaluation of a(uh, vh).
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2.2. Tensor-product and monomial quadrature rules

The numerical quadrature rules that are traditionally used in the context of the Galerkin
method can be classified into two groups. Tensor-product quadrature rules directly embrace
the tensor-product structure that is present in many important classes of basis functions,
such as nodal Lagrange basis functions of standard quadrilateral and hexahedral finite ele-
ments, or B-spline and NURBS basis functions in isogeometric analysis. The most popular
rule is the full Gauss quadrature (also referred to as Gauss-Legendre quadrature) [27, 41].
With nqp quadrature points in each of the d parametric directions it is fully accurate up
to degree 2nqp − 1 per parametric direction. Using (p + 1)d points it can thus exactly in-
tegrate all single and mixed variable monomials with exponents up to 2p + 1 per variable.
It can be proved that full Gauss quadrature is optimal in the sense that it requires the
smallest number of points to achieve the exact integration of any tensor-product polynomial
including all mixed variable monomials (see for example [42]). However, Gauss rules with
(p+ 1)d quadrature points are (prohibitively) expensive in isogeometric analysis [3, 12, 43].
Gauss-Lobatto quadrature rules [27, 41] constitute a family of tensor-product quadrature
schemes that has been used widely in Galerkin collocation and spectral elements [44–47].
In particular, they have been used effectively for developing C0 finite element schemes with
consistent diagonal (i.e., “lumped”) mass matrices [48–50]. Gauss-Lobatto quadrature rules
are fully accurate up to degree 2nqp−3 in the single variable case, and their accuracy is thus
lower than that of the standard Gauss rule. Using (p+ 1)d quadrature points in each of the
d parametric directions, Gauss-Lobatto rules exactly integrate all single and mixed variable
monomials with exponents up to 2p− 1 per variable, and can thus be considered a reduced
quadrature scheme. It is worthwhile to note that the Gauss-Lobatto rules with nqp = 2 and
3 quadrature points are the trapezoidal rule and Simpson’s rule, respectively [41, 42].

Monomial quadrature rules are designed to integrate a polynomial up to a given complete
degree p using a minimum of quadrature points [26, 51, 52]. In the context of monomial
quadrature for mixed variable polynomials the term “complete degree” refers to the sum of
the exponents of all variables of a monomial. In this sense, monomial rules do not embrace
the tensor-product structure of standard quadrilateral or hexahedral finite elements, or B-
spline and NURBS basis functions. However, they offer a significant reduction of quadrature
points. In our experience, monomial rules that are exact to 3rd degree for quadratics and to
5th degree for cubics, are sufficient in order to potentially achieve the same rate of convergence
in the approximation of the solution as with full Gauss quadrature. Some monomial rules
have already been successfully used in the context of standard C0 finite elements [27, 53–55].

2.3. Reduced integration

This work endeavors to explore quadrature schemes that reduce the cost for the formation
and assembly of stiffness forms in isogeometric analysis. For low order C0 finite elements, the
emphasis on speed in many engineering applications, in particular for fast explicit dynamics
calculations, motivated the development and use of reduced quadrature schemes that are
significantly less expensive than full Gauss quadrature and still provide enough quadrature
accuracy to guarantee fully accurate finite element results [27, 58–63]. In addition, selective
reduced quadrature has been found to be an effective way to counteract locking phenomena
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Biquadratic spline elements (2D)

Quadrature rule
# points per
Bézier element Exact up to

Same accuracy as
“full Gauss” in
numerical tests

5-point center-vertex
rule (quincunx) → 2 Deg. 3 (monomial) No⋆†

5-point center-edge rule → 3 Deg. 3 (monomial) Yes⋆

Hughes’s 4-point rule [27] = 4 Deg. 3 (monomial) Yes⋆⋆

2×2 Gauss quadrature = 4 Deg. 3 (ten.-prod.) Yes⋆⋆

3×3 Gauss-Lobatto qua-
drature (Simpson rule) → 4 Deg. 3 (ten.-prod.) Yes

Full 3×3 Gauss
quadrature = 9 Deg. 5 (ten.-prod.) Yes

⋆ Outer 1-layer of elements integrated with Gauss-Lobatto rule.
⋆⋆ Outer 1-layer of elements integrated with full Gauss rule.
† Rule leads to spurious modes.

Table 1: Reduced quadrature rules for biquadratic Bézier elements. Since points on vertices and
edges are evaluated only once, some rules tend to a smaller number of points per element in large
meshes (denoted by →) compared to rules with a fixed number per element (denoted by =).

Triquadratic spline elements (3D)

Quadrature rule
# points per
Bézier element Exact up to

Same accuracy as
“full Gauss” in
numerical tests

Felippa’s 9-point
center-vertex rule [56] → 2 Deg. 3 (monomial) Yes⋆†

6-point face rule [26, 41] → 3 Deg. 3 (monomial) Yes⋆

2×2×2 Gauss quadrature = 8 Deg. 3 (ten.-prod.) Yes⋆⋆

3×3×3 Gauss-Lobatto
quadrature → 8 Deg. 3 (ten.-prod.) Yes

Full 3×3×3 Gauss
quadrature = 27 Deg. 5 (ten.-prod.) Yes

⋆ Outer 1-layer of elements integrated with Gauss-Lobatto rule.
⋆⋆ Outer 1-layer of elements integrated with full Gauss rule.
† Rule leads to spurious modes.

Table 2: Reduced quadrature rules for triquadratic Bézier elements. Since points on vertices and
edges are evaluated only once, some rules tend to a smaller number of points per element in large
meshes (denoted by →) compared to rules with a fixed number per element (denoted by =).
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Bicubic spline elements (2D)

Quadrature rule
# points per
Bézier element Exact up to

Same accuracy as
“full Gauss” in
numerical tests

Stroud’s 7-point rule [26] = 7 Deg. 5 (monomial) No⋆

3×3 Gauss quadrature = 9 Deg. 5 (ten.-prod.) Yes

4×4 Gauss-Lobatto
quadrature → 9 Deg. 5 (ten.-prod.) Yes

Full 4×4 Gauss
quadrature = 16 Deg. 7 (ten.-prod.) Yes

⋆ Outer 2-ring of elements integrated with full Gauss rule.

Table 3: Reduced quadrature rules for bicubic Bézier elements. Since points on edges are evaluated
only once, some rules tend to a smaller number of points per element in large meshes (denoted by →)
compared to rules with a fixed number per element (denoted by =).

Tricubic spline elements (3D)

Quadrature rule
# points per
Bézier element Exact up to

Same accuracy as
“full Gauss” in
numerical tests

Irons’s 15-point rule [57] → 12 Deg. 5 (monomial) No⋆

Stroud’s 13-point rule [26] = 13 Deg. 5 (monomial) Yes⋆

3×3×3 Gauss quadrature = 27 Deg. 5 (ten.-prod.) Yes⋆

4×4×4 Gauss-Lobatto
quadrature → 27 Deg. 5 (ten.-prod.) Yes

Full 4×4×4 Gauss
quadrature = 64 Deg. 7 (ten.-prod.) Yes

⋆ Outer 2-layer of elements integrated with full Gauss rule.

Table 4: Reduced quadrature rules for tricubic Bézier elements. Since points on edges are evaluated
only once, some rules tend to a smaller number of points per element in large meshes (denoted by →)
compared to rules with a fixed number per element (denoted by =).

in finite elements [58, 60, 64–67]. However, reduced quadrature schemes for standard C0

finite elements are in general not stable, leading to rank-deficient stiffness matrices that
require “hourglass” stabilization techniques for the resulting spurious modes [63, 68–73].

Efficient quadrature is of particular significance in isogeometric analysis, where higher-
order continuous spline discretizations lead to an increased number of elements (and hence
quadrature point evaluations) per degree of freedom with respect to standard finite elements
[12]. Based on the previous developments in finite elements, we want to exploit the cost
efficiency of reduced quadrature schemes for quadratic and cubic spline discretizations that
operate with (significantly) fewer quadrature points than full Gauss quadrature, but still
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lead to full accuracy and stability of the analysis. The success of this idea is based on the
observation that the higher-order mixed monomials in any tensor-product basis add nothing
to the degree of approximation of the solution field [38] (see for example also the construction
of trunk spaces in the p-version of the finite element method [74, 75]). In the present context,
we focus on quadratic and cubic spline discretizations. We are interested in simple element-
wise monomial and tensor-product rules that can be easily implemented in an element loop
of existing software packages. Tables 1 and 2 list the quadrature rules that we tested for 2D
and 3D quadratic Bézier elements, and Tables 3 and 4 the quadrature rules that we tested
for 2D and 3D cubic Bézier elements. All rules considered here are motivated by traditional
monomial rules [26, 51, 52, 57] and tensor-product quadrature rules [27, 41]. We emphasize
that in the scope of the present work we are interested in the reduction of computational
cost for formation and assembly, and do not make any statements concerning the mitigation
of locking in plates, shells and incompressibility, for which reduced quadrature rules have
been traditionally used in the context of standard finite elements. This topic is currently
under intense research in isogeometric analysis.

2.4. Exploiting higher-order continuity

Another important concept to further reduce the quadrature cost in isogeometric analysis
is to exploit the higher-order inter-element continuity of smooth spline discretizations. In
[3, 4] this idea was illustrated through simple examples, and the development of efficient rules
for uniform B-spline and NURBS patches was motivated. To further illustrate this idea let
us assume we have a two-dimensional quadrature rule that utilizes quadrature points on
element vertices, such as a Gauss-Lobatto rule. At interior element vertices that are not
part of the patch boundary, four Bézier elements meet, and as a consequence we have
four coincident quadrature points at the same location, each of which can be attributed
to one of the neighboring elements. Due to the higher-order continuity of the spline basis
functions, the stiffness matrix contributions from a(uh, vh) are exactly identical up to the
corresponding weights. Therefore, instead of separately evaluating four points, we can sum
up the weights of the four quadrature points and evaluate only once at that location. It
is important to note that this principle does not hold true for C0 finite elements. Due to
the strong discontinuity (i.e., jump) of the first derivatives at vertices, the stiffness matrix
contributions from these points are all different, and hence must be evaluated separately.
The same principle can be applied for coincident quadrature points on element edges and
element faces. It is worthwhile to note that for spline discretizations this is equivalent to
quadrature points per basis function, since each element adds one basis function in the limit
of very large meshes. Since points on element vertices, edges and faces need to be evaluated
only once, some rules tend to a smaller number of points per basis function in large meshes
compared to rules with a fixed number per element (see Tables 1, 2, 3 and 4).

2.5. Implications of reduced quadrature on accuracy

It is important to understand the accuracy implications of the reduced quadrature rules
given in Tables 1 through 4. From a numerical analysis point of view numerical quadra-
ture introduces a change of the bilinear form from the exact a(uh, vh) to an approximate
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Figure 1: Pascal’s triangle of monomials contained in a complete quadratic polynomial P2 and in its
first derivatives D1P2. The latter fills in the first slot of criterion (7).
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(b) First derivatives of vh.

Figure 2: Pascal’s triangle of monomials contained in a tensor-product biquadratic test function vh

and in its first derivatives D1vh. The latter fills in the second slot of criterion (7).

a⋆(uh, vh), so that
a(uh, vh)− a⋆(uh, vh) = r (5)

where the residual r is not zero, but need to be “sufficiently small”. In [38], Strang and Fix
presented a theory that provides sufficient conditions for quadrature rules to maintain the
full rate of convergence of the exactly integrated weak formulation. In mathematical terms
the main requirement can be expressed as

a(Pp, v
h)− a⋆(Pp, v

h) = 0 (6)

where Pp denotes all complete polynomials of degree p, and vh denotes all test functions as
defined in (3). The test (6) only needs to be satisfied for the terms involving the highest
derivatives, so we can assume the α-term in a(·, ·), that is, in (2), is absent. This is equivalent
to just considering the Laplace operator alone in (1a). Complete polynomials contain all
monomials whose exponents sum up to a number equal or smaller than p. The test functions
contain all mixed variable monomials that result from their tensor-product construction.
For the 2D quadratic case, monomials contained in all complete polynomials P2 and in all
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Quadratic B-splines (p=2, m=1):

Odd degree monomials (automatically integrated ex-

actly due to symmetry of quadrature points and 

corresponding weights in all rules here)

Even degree monomials not captured by mono-

mial rules of 3rd degree accuracy, but by at 

least 2nd degree tensor-product rules 

Figure 3: Pascal’s triangle of monomials contained in a⋆(P2, v
h) for the 2D Laplace operator, gen-

erated by multiplication of the monomials of Fig. 1b with those of Fig. 2b. These are the required
functions to be integrated exactly by a quadrature rule in order to satisfy criterion (7).

biquadratic polynomial test functions vh defined over a single Bézier element are shown
in the Pascal’s triangles of Figs. 1a and 2a, respectively. In the Galerkin bilinear form,
differential operators act on Pp and vh. This can be illustrated in terms of (6) as

(a− a⋆)(DmPp, D
mvh) = 0 (7)

where m denotes the order of differentiation. The differential operators reduce the degree
of the highest monomials of both Pp and vh. For the example of the 2D Laplace operator,
the effect of the differential operators on all complete quadratic polynomials P2 and all
biquadratic polynomial test functions vh is illustrated in Figs. 1b and 2b, respectively.

The monomials that need to be integrated exactly to satisfy condition (7) follow from
a⋆(Pp, v

h). For the example of the 2D Laplace operator discretized with biquadratic func-
tions, they are obtained by multiplying the monomials shown in Fig. 1b with those shown
in Fig. 2b. The Pascal’s triangle of Fig. 3 illustrates the result. We observe that we need to
integrate exactly complete cubics plus the three 4th degree mixed monomials ξ3η, ξ2η2 and
ξη3 to guarantee full accuracy in terms of (7). We can now assess the reduced quadrature
rules given in Table 1 for quadratic spline discretizations. All rules are accurate up to degree
3 and therefore able to integrate complete cubic polynomials exactly. The terms ξ3η and
ξη3 contain single variable monomials of odd degree. Since we integrate over the standard
parametric domain (−1, 1)d in each Bézier element, these monomials are automatically taken
into account exactly, if the quadrature points and corresponding weights are symmetric with
respect to each parametric variable. This is the case for all quadrature rules listed in Ta-
bles 1 and 2, and we can therefore assume exact integration of all monomials that contain at
least one single variable monomial with an odd exponent. Hence we are left with the even
degree mixed variable monomial ξ2η2. The tensor-product rules given in Table 1 decompose
mixed variable monomials into their single variable components, and therefore are able to
exactly integrate ξ2η2. The monomial rules of Table 1 are only fully accurate up to degree
3, and are therefore not able to exactly integrate the 4th degree monomial ξ2η2.

For bicubic discretizations of the 2D Laplace operator, we can go through the same
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1

x                   h

x                   xh                 h

x                  x h                xh                  h

2

3

2

22 3

Monomials above this line integrated exactly 

by monomial rules of 5th degree accuracy

Cubic B-splines (p=3, m=1):

Odd degree monomial integrated exactly 

due to symmetry of quadrature points 

and corresponding weights in all 

5th degree rules considered

Even degree monomials not 

captured by 5th degree 

monomial rules, but 

by 5th degree tensor-

product rules 

x                  x h                x h                xh                  h
4 23 2 3 4

x                  x h                x h                x h                xh                  h
5 24 3 3 42 5

x h                 x h                x h               x h                 xh
25 4 3 43 52

x h                x h                 x h               x h 
2 35 4 4 53 2

Figure 4: Pascal’s triangle of monomials contained in a⋆(P3, v
h) for the case of bicubic basis functions

and the 2D Laplace operator. These are the functions to be integrated exactly by a quadrature rule in
order to pass criterion (7) sufficient for full accuracy.

procedure deriving the monomials contained in all complete cubic polynomials D1P3 and
in all bicubic polynomial test functions D1vh. Their products resulting from a⋆(P3, v

h) are
illustrated in Fig. 4 and represents the monomials that are required to be integrated exactly
in each cubic Bézier element in order to satisfy criterion (7). We observe that we need to
integrate exactly complete quintics plus the two 6th degree mixed monomials ξ4η2 and ξ2η4.
We note again that we can neglect all monomials with odd degree single variable components
due to the symmetry of quadrature points and corresponding weights with respect to each
parametric coordinate, which holds for all 5th degree quadrature rules considered here. With
respect to the quadrature rules given in Table 3, all rules are accurate up to degree 5 and
are therefore able to integrate complete quintic polynomials exactly. The even degree mixed
variable monomials ξ4η2 and ξ2η4 are exactly integrated by the tensor-product rules given
in Table 3, since they are accurate up to 5th degree with respect to each single variable
component of each monomial. However, they cannot be integrated exactly by the monomial
rules of Table 3, since these are fully accurate only up to complete degree 5.

For trivariate discretizations of the 3D Laplace operator the number of even degree
mixed variable monomials that are missed by the monomial rules given in Tables 2 and
4 increases. For triquadratic Bézier elements for example, criterion (7) requires the exact
integration of the 4th degree monomials ξ2η2, ξ2ζ2 and η2ζ2, and the 6th degree monomial
ξ2η2ζ2, which is achieved by all tensor-product rules given in Table 2, but is not achieved by
the 3rd degree accurate monomial rules of Table 2. Following [27, 38], the complete degree of
quadrature accuracy required to satisfy criterion (7) for full tensor-product basis functions
can be determined by the relation (d+1)p− 2m. The full rate of convergence in the energy
norm of the exactly integrated procedure is attained if the quadrature rule is capable of
exactly integrating all monomials through this degree. Table 5 summarizes the required
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Dimension
Polynomial

degree
Order of

differentation
Required degree of
quadrature accuracy

d p m (d+ 1)p− 2m

2
2 1 4
3 1 7

3
2 1 6
3 1 10

Table 5: Complete degree of quadrature accuracy required to satisfy criterion (7) for tensor-product
quadratic and cubic basis functions and the Laplace operator (m=1). For isogeometric discretizations,
we have some numerical evidence that suggests the required degrees of quadrature accuracy given here
might not be necessary to achieve full rate of convergence.

degree of quadrature accuracy for tensor-product quadratic and cubic discretizations of the
2D and 3D Laplace operators. We note that this is by no means different from nodal
Lagrange basis functions of standard quadrilateral and hexahedral finite elements, where
exactly the same monomial structure occurs. However, for standard triangles and tetrahedra,
the required degree is only 2(p − m), since they typically employ complete polynomials
instead of tensor products as basis functions [27, 39]. In passing we wish to reiterate that
the required degrees of quadrature accuracy given in Table 5 are sufficient to guarantee full
rate of convergence. In isogeometric analysis it is not known if they are always necessary.
We have some numerical evidence that suggests in specific instances they may not be.

2.6. Synopsis of reduced quadrature rules considered hereafter

In the following Sections 3 and 4, we will report detailed numerical tests for the set of
Bézier element rules that we found to be most efficient for quadratic and cubic spline basis
functions. These include the center-edge and face rules with asymptotically three quadrature
points per 2D and 3D quadratic Bézier element, respectively, the Gauss-Lobatto rule with
asymptotically nine quadrature points per 2D cubic Bézier element, and Stroud’s rule with
13 quadrature points per 3D cubic Bézier element. In addition, we will employ reduced
Gauss quadrature with p quadrature points per parametric direction, which asymptotically
leads to four and eight quadrature points per 2D and 3D quadratic Bézier element, and
to nine and 27 quadrature points per 2D and 3D cubic Bézier element. To illustrate their
potential, we will compare their performance to full Gauss quadrature with p+1 quadrature
points per parametric direction, which requires nine and 27 points per element for 2D and 3D
quadratics, and 16 and 64 points per element for cubics in 2D and 3D, respectively. These
are currently the standard quadratures in isogeometric analysis, and are thus a suitable
reference gages for our reduced schemes in terms of accuracy and computing time. Tables 1
to 4 list further reduced quadrature rules, such as Hughes’s 4-point rule, Stroud’s 7-point
rule and Irons’s 15-point rule, that we also tested.

For quadratic spline discretizations, we will also examine the center-vertex rule and
Felippa’s rule, although both rules generally lead to spurious modes. Spurious modes due
to underintegration are very well investigated for standard finite elements. To counteract
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elei,j

elei+1,j+1

elei+1,j

elei,j+1

General 5-point
center-edge monomial rule:

ξi ηi ωi

0.0 0.0 4/3
0.0 -1.0 2/3
1.0 0.0 2/3
0.0 1.0 2/3
-1.0 0.0 2/3

Center-edge monomial rule
using C1 continuity (three points
per element asymptotically):

ξi ηi ωi

0.0 0.0 4/3
0.0 -1.0 4/3
1.0 0.0 4/3

Figure 5: 2D quadratic splines: Exploiting the C1 continuity between Bézier elements of one patch,
edge quadrature points need to be evaluated only once, so that the general 5-point center-edge monomial
rule turns into a rule employing only three points per Bézier element in the limit of large meshes. We
refer to this rule as simply the “center-edge” rule.

spurious modes, a range of “hourglass” stabilization techniques has been developed for C0

finite elements (see for example [69, 71–73, 76, 77]), which are widely used in commercial
packages. In fact, rank-deficient elements such as the four-node bilinear element with one-
point quadrature and “hourglass” control can be regarded as the engine of commercial crash
dynamics codes such as LS-DYNA [78].

3. Quadratic spline discretizations

In this section, we provide additional details on the reduced Bézier element quadrature
rules based on monomial quadrature for quadratic spline discretizations. We also present
a series of test problems that illustrate their computational efficiency, in particular with
respect to full Gauss quadrature.

3.1. The center-edge and face rules

The construction of the center-edge rule for two-dimensional quadratic Bézier elements
is illustrated in Fig. 5. We start from the general 5-point rule that involves the mid-points of
the four edges as well as the center point of each Bézier element. The 5-point center-edge rule
can be derived by the projection of a 6-point face rule defined over a 3D hexahedral element
[26, 52] onto a 2D quadrilateral element. Following the ideas outlined in Section 2.4, we
add the weights of the coincident quadrature points on each edge, so that the corresponding
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General 6-point face
monomial rule:

ξi ηi ζi ωi

0.0 0.0 -1.0 4/3
0.0 -1.0 0.0 4/3
1.0 0.0 0.0 4/3
0.0 1.0 0.0 4/3
-1.0 0.0 0.0 4/3
0.0 0.0 1.0 4/3

Face monomial rule using
C1 continuity (three points
per element asymptotically):

ξi ηi ζi ωi

0.0 0.0 -1.0 8/3
0.0 -1.0 0.0 8/3
-1.0 0.0 0.0 8/3

Figure 6: 3D quadratic splines: Exploiting the C1 continuity between Bézier elements of each patch,
shared face quadrature points need to be evaluated only once, so that the general 6-point face monomial
rule results in only three quadrature points per Bézier element in the limit of large meshes. We refer
to this rule as simply the “face rule”.

points need to be evaluated only once. We thus arrive at a reduced quadrature scheme that
is exact for complete monomials up to 3rd degree, but requires only three quadrature point
evaluations per Bézier element in the limit of large meshes.

The construction of the face rule for three-dimensional quadratic Bézier elements is
illustrated in Fig. 6. We start from the general 6-point face rule that involves the center
points of the six faces of each hexahedral Bézier element [26, 27, 41]. Following the ideas
outlined in Section 2.4, we add the weights of the coincident quadrature points on each face,
so that the corresponding shared points need to be evaluated only once. We thus arrive at a
reduced quadrature scheme that is exact for complete monomials up to 3rd degree [26, 41],
but asymptotically requires only three quadrature point evaluations per Bézier element.

Motivated by the discrete spectrum analysis presented in Section 5, we integrate all
basis functions that have support over only one Bézier element in one of the parametric
directions, namely, the outer 1-layer of elements, with a more accurate rule in order to
guarantee stability and accuracy. With the Gauss-Lobatto rule in the outer 1-layer, the
corresponding number of quadrature points is only slightly increased, since the quadrature
points of the Gauss-Lobatto and center-edge and face rules line up on the element edges
and faces between the first and the second ring of elements around the patch boundary.
Moreover, as we refine the mesh in 2D, the number of quadrilateral Bézier elements with
the center-edge rule increases quadratically, while the number of elements with the 3×3
Gauss-Lobatto rule in the outer ring increases only linearly. In the 3D case, the number
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elei,j

elei+1,j+1

elei+1,j

elei,j+1

General 5-point
center-vertex monomial rule:

ξi ηi ωi

0.0 0.0 8/3
-1.0 -1.0 1/3
1.0 -1.0 1/3
1.0 1.0 1/3
-1.0 1.0 1/3

Center-vertex monomial rule
using C1 continuity (two points
per element asymptotically):

ξi ηi ωi

0.0 0.0 8/3
-1.0 -1.0 4/3

Figure 7: 2D quadratic splines: Exploiting C1 continuity, quadrature points at Bézier element vertices
need to be evaluated only once, so that the general 5-point center-vertex monomial rule turns into a
rule employing only two points per Bézier element in the limit of large meshes. We refer to this rule
as simply the “center-vertex” rule.

of hexahedral Bézier elements with the face rule increases cubically, while the number of
elements with the 3×3×3 Gauss-Lobatto rule increases quadratically. As a consequence,
the number of points tends to three quadrature points per Bézier element for large meshes
in both cases. We emphasize that our numerical tests show that the center-edge and face
rules with Gauss-Lobatto stabilization in the outer 1-layer of elements lead to rank-sufficient
global stiffness and mass matrices. Therefore, the center-edge and face rules do not require
stabilization techniques.

3.2. The center-vertex rule and Felippa’s rule

The construction of the center-vertex rule for two-dimensional quadratic Bézier elements
is illustrated in Fig. 7. We start from the general center-vertex rule that involves the four
vertices as well as the center point of each Bézier element [54]. This 5-point rule can be
derived by the projection of the quadrature points of a 9-point center-vertex rule defined
over a 3D hexahedral element onto a 2D quadrilateral element [56]. Using the C1 continuity
within the spline patch, we add the weights of the coincident quadrature points at each vertex
in the interior of the patch, so that the corresponding points need to be evaluated only once.
We thus arrive at a reduced quadrature scheme that is exact for complete monomials up to
3rd degree [54], but requires only 2 quadrature point evaluations per Bézier element in the
limit of very large meshes.
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General 9-point center-vertex
monomial rule (Felippa [56]):

ξi ηi ζi ωi

0.0 0.0 0.0 16/3
-1.0 -1.0 -1.0 1/3
1.0 -1.0 -1.0 1/3
1.0 1.0 -1.0 1/3
-1.0 1.0 -1.0 1/3
-1.0 -1.0 1.0 1/3
1.0 -1.0 1.0 1/3
1.0 1.0 1.0 1/3
-1.0 1.0 1.0 1/3

Felippa’s monomial rule
using C1 continuity (two points
per element asymptotically):

ξi ηi ζi ωi

0.0 0.0 0.0 16/3
-1.0 -1.0 -1.0 8/3

Figure 8: 3D quadratic splines: Exploiting the C1 continuity between Bézier elements of each patch,
the general 9-point monomial rule results in only two quadrature points per Bézier element in the limit
of large meshes. We refer to this rule as simply “Felippa’s rule”.

The construction of Felippa’s rule for three-dimensional quadratic Bézier elements is il-
lustrated in Fig. 8. We start from the general 9-point rule that involves the eight vertices
and the center of each hexahedral Bézier element [56]. Following the ideas outlined in the
previous section, we add the weights of the coincident quadrature points at each vertex.
The corresponding quadrature rule requires only 2 quadrature point evaluations per ele-
ment in the limit of large meshes. Full Gauss quadrature that is currently the standard in
isogeometric analysis requires the evaluation of 27 quadrature points per Bézier element.
Hence Felippa’s rule achieves a substantial reduction of the formation and assembly cost
by approximately one order of magnitude. Analogous to the center-edge and face rules de-
scribed in Section 3.1, we utilize Gauss-Lobatto quadrature in the outer 1-layer of elements
surrounding the patch in order to guarantee stability and accuracy of the center-vertex rule
and Felippa’s rule. In this way we ensure that all basis functions with support over only
one Bézier element in one of the parametric directions are integrated with a more accurate
tensor-product rule. As discussed above, this does not affect the asymptotic computational
cost of the center-vertex rule and Felippa’s rule.

Both the center-vertex and Felippa’s rules lead to rank-sufficient global stiffness and
mass matrices. For the Neumann eigenvalue problem the corresponding discrete spectra
exhibit the correct number of zero eigenvalues corresponding to the expected number of
rigid body modes. For the Dirichlet eigenvalue problem discrete spectra do not contain any
zero eigenvalues that would indicate spurious zero-energy modes. Nonetheless, both rules
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(a) Geometry, boundary conditions. (b) Solution and coarsest mesh.

Figure 9: Source problem on a 2D annular section discretized with one patch of quadratic NURBS.

lead to spurious modes with finite energy that show up within the discrete spectrum and are
scattered between the correct non-zero eigenvalues. In Section 5.3 we provide further details
on spurious modes that occur as a result of the use of the center-edge rule and Felippa’s
rule.

3.3. Numerical examples

In the next step, we test the accuracy of the reduced quadrature rules, i.e. the center-
edge and center-vertex rules for 2D quadratic Bézier elements and the face rule and Felippa’s
rule for 3D quadratic Bézier elements. We also compare their computational efficiency with
respect to Gauss-Lobatto, reduced Gauss and full Gauss quadrature. All test computations
reported in the following were carried out in the same C++ code framework and run on
the same machine, where the only difference is the formation of the element stiffness matrix
at the quadrature point level. When we take into account complete solution times, the
system of equations is solved iteratively by a standard conjugate gradient (CG) solver with
a simple and inexpensive Jacobi preconditioner (1 block, 1 sweep). The CG solver and the
preconditioner are provided by Sandia’s Trilinos packages AztecOO and Ifpack, respectively
[79]. The timings1 include the formation and assembly of the stiffness matrix and load
vector, the preconditioning of the system of equations and its solution by the CG solver,
but exclude all pre- and post-processing steps such as the computation of error norms.

3.3.1. Quarter annulus with a smooth solution

To test the reduced rules for 2D Bézier elements, we use the model problem (1) with
α = 1 and its Galerkin variational formulation (2) defined over a quarter of an annular
section that is discretized by a single patch of quadratic NURBS. Geometry and boundary

1Using a single thread on an Intel(R) Core(TM)Duo P8800 @ 2.66GHz with 8 GB of RAM
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conditions as well as the initial 9×6 mesh and the corresponding solution are illustrated in
Fig. 9a and 9b, respectively. The quarter annulus is located within the positive quadrant of
the Cartesian coordinate system {x, y}. The source term

f = 16r2 sin(x)− 68 sin(x) + x(8r2 − 68) cos(x) (8)

is manufactured in such a way that the exact solution to (1) over the quarter annulus reads

u = (r2 − 1)(r2 − 16) sin(x) (9)

where r =
√

x2 + y2 denotes the radial coordinate with origin at the center of the annulus.
Figure 10 illustrates the five quadrature rules for the coarsest mesh: Figure 10a shows

the quadrature points of the full Gauss rule that requires nine points per element and will
serve as the reference. Figure 10b shows the quadrature points of the reduced Gauss rule
with asymptotically four points per Bézier element. For denser meshes such as the example
shown here we can employ reduced Gauss quadrature everywhere and do not see problems
with stability. However, we prefer to use full Gauss quadrature in the outer 1-layer, since it
precludes singularities that my occur, for example, with exceptionally coarse meshes, such
as the one element case. Figure 10c shows the quadrature points of the Gauss-Lobatto rule
that leads to four points per Bézier element in the limit of large meshes. Figures 10d and
10e show the quadrature points of the center-edge and center-vertex rules that tend to three
and two quadrature points per Bézier element in the limit of large meshes, respectively.

Figures 11 and 12 compare the five quadrature rules under uniform mesh refinement
with respect to accuracy versus the number of degrees of freedom and accuracy versus total
computing time. The accuracy is measured in terms of the relative error in the L2 norm
and the H1 semi-norm. Figures 11a and 11b confirm that all reduced quadrature rules
preserve optimal rates of convergence under the geometric mapping. The Gauss-Lobatto
rule, the reduced Gauss rule and the center-edge rule achieve exactly the same accuracy
level of full Gauss quadrature. The center-vertex rule exhibits a slightly greater error than
full Gauss quadrature, but still converges with optimal rates. Figures 12a and 12b show
the corresponding plots with respect to the total computing time. To ensure the reliability
of the timings, we do not consider overall computing times below one second. We observe
that computations with a given mesh using the reduced quadrature schemes are about twice
as fast as the computation that uses full Gauss quadrature. The center-edge rule is the
most efficient, with the reduced Gauss and Gauss-Lobatto rules slightly lagging behind.
Although it requires the fewest quadrature points per Bézier element, the computations
using the center-vertex rule are not faster than the computations with the center-edge rule
due to the slightly increased error constant in the results obtained with the center-vertex
rule. We note that the absolute computing times consumed by preconditioning and the CG
solver were the same in all computations.

3.3.2. Cylindrical section with a smooth solution

To test the reduced rules for 3D Bézier elements, we use the model problem (1) with
α = 0 and its Galerkin variational formulation (2) defined over a quarter of a cylindrical
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(a) Full Gauss quadrature (9
points per Bézier element).

(b) Reduced Gauss quadrature
(4 points per Bézier element).

(c) Gauss-Lobatto quadrature (4
points per Bézier element).

(d) Center-edge rule (3 points
per Bézier element).

(e) Center-vertex rule (2 points
per Bézier element).

Figure 10: Quadrature points for the 2D model problem discretized with quadratic NURBS.
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(b) H1 semi-norm.

Figure 11: Convergence in relative error norms vs. the number of degrees of freedom for the 2D
source problem.
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Figure 12: Convergence in relative error norms vs. total computing time (includes forma-
tion/assembly, preconditioning and iterative CG solver) for the 2D source problem.

section that is discretized by a single patch of quadratic NURBS. The quarter is located
within the positive octant of the Cartesian coordinate system {x, y, z}. The source term

f =
(πr(4L2 + 1) sin(π(2r − 1))− 2L2 cos(π(2r − 1))) · π sin(πz/L)

L2r
(10)

is manufactured in such a way that the exact solution to the model problem over the quarter
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Figure 13: Model problem defined on a 3D cylindrical section discretized with one patch of quadratic
NURBS basis functions.

cylindrical section reads

u = sin
(πz

L

)

sin (π(2r − 1)) (11)

where r =
√

x2 + y2 denotes the radial coordinate with origin at the center of the circular
section. Geometry, boundary conditions, the initial 3×6×5 mesh and the corresponding
solution are illustrated in Fig. 13.

Figure 14a illustrates full Gauss integration with 27 quadrature points per Bézier element
for the coarsest mesh. Figure 14b shows reduced Gauss integration with eight quadrature
points per element. Figure 14c shows the quadrature points of the Gauss-Lobatto rule
that leads to eights points per element in the limit of large meshes. Figure 14d shows the
quadrature points of the face rule that tends to three points per element in the limit of large
meshes. Figure 14e shows the quadrature points of Felippa’s rule that tends to two points per
element. The reduced Gauss, face and center-vertex rules use full Gauss or Gauss-Lobatto
quadrature in the outer 1-layer of elements to guarantee stability in all cases. We omit the
full Gauss rule in the outer 1-layer in Fig. 14b and the Gauss-Lobatto rule in the 1-layer
in Figs. 14d to 14e because they would have obscured the view on the reduced quadrature
rules in the interior part of the mesh that dominate the cost.

Figures 15 and 16 compare the five quadrature rules with respect to accuracy versus the
number of degrees of freedom and accuracy versus total computing time. The accuracy is
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(a) Full Gauss quadrature (27
points per Bézier element).

(b) Reduced Gauss quadrature (8
points perBézier element).

(c) Gauss-Lobatto quadrature (8
points per Bézier element).

(d) Face rule (3 points per Bézier
element).

(e) Felippa’s rule (2 points per
Bézier element).

Figure 14: Quadrature points for the 3D model problem. We omit the full Gauss rule in the outer
1-layer in (b) and the Gauss-Lobatto rule in the outer 1-layer in (d) and (e) for better visibility of the
reduced rules in the interior.
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Figure 15: Convergence in relative error norms vs. the number of degrees of freedom for the 3D
model problem.
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Figure 16: Convergence in relative error norms vs. total computing time (includes forma-
tion/assembly, preconditioning and iterative CG solver) for the 3D model problem.

measured in terms of the relative error in the L2 norm and the H1 semi-norm under uniform
mesh refinement. Figures 15a and 15b confirm that all reduced quadrature rules preserve
optimal rates of convergence for the mapped configuration, and achieve the same accuracy
level as full Gauss quadrature in the limit of large meshes. For the coarser discretizations,
only the Gauss-Lobatto rule and the face rule achieve the same error level as full Gauss
quadrature, while Felippa’s rule exhibits a preasymptotic behavior with somewhat larger
error. Figures 16a and 16b show the corresponding plots with respect to the total comput-
ing time. We observe that computations with a given mesh using the reduced quadrature
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schemes are considerably faster then the computation that uses full Gauss quadrature. Re-
duced Gauss and Gauss-Lobatto quadrature lead to computations that are approximately
two and a half times faster, and the face rule and Felippa’s rule enable computations that
are approximately four to five times faster. We note that the absolute computing times
consumed by preconditioning and the CG solver were the same in all computations.

3.3.3. Fichera corner: Rough solution, multiple patches, adaptive refinement

The second 3D test demonstrates the performance of the Gauss-Lobatto rule and the
face rule for three-dimensional quadratic spline discretizations in a more complex setting,
involving multiple patches, a non-smooth solution, and adaptive hierarchical spline refine-
ment. It is defined by the model problem (1) over a cube with α = 0 and one excised octant
(Fichera corner problem). The source term

f = −
3

4

(

x2 + y2 + z2
)−3/4

(12)

is manufactured in such a way that the exact solution to the model problem reads

u =
(

x2 + y2 + z2
)1/4

(13)

The origin of the coordinate system {x, y, z} is located at the reentrant corner. The exact
solution (14) is non-smooth, since it exhibits a singularity in the derivatives at the origin.
Figure 17 illustrates its geometry and boundary conditions. We assume non-homogeneous
Dirichlet boundary conditions compatible with (14) over the outer surfaces of the cube, and
homogeneous Neumann boundary conditions on the surfaces of the excised octant.

We discretize the domain by seven patches of quadratic B-splines, each of which covers
one octant of the cube. The original mesh in each patch consists of 5×5×5 Bézier elements.
We impose Dirichlet boundary conditions compatible with the exact solution (13) on all
outer boundaries weakly by means of Nitsche’s method [80–83]. For all quadrature vari-
ants, we examine the convergence behavior using uniform refinement of all patches as well
as adaptive refinement around the reentrant corner with hierarchical B-splines [5–8, 10–12].
The local refinement better accounts for the singularity in the gradient at the reentrant
corner. Figure 18 shows the finest mesh after four hierarchical refinement steps. The cor-
responding solution field u and one of its derivatives, ∂u/∂x, are plotted in Fig. 19a and
19b, respectively. In the computations with reduced Gauss quadrature and with the faces
rule, we use full Gauss quadrature and Gauss-Lobatto quadrature, respectively, in the outer
1-layer of elements in each patch. Note that in the seven elements with a vertex at the
reentrant corner we replace the Gauss-Lobatto rule with a full Gauss rule. This prevents
the evaluation of the source term (13) at the reentrant corner where it is singular. Figure 20a
plots the accuracy in terms of the relative error in the H1 semi-norm versus the number of
degrees of freedom for uniform mesh refinement. It confirms that with uniform refinement
all quadrature rules achieve the same accuracy for multiple patch discretizations and despite
the presence of the point singularity.

In the next step, we compute a series of solutions using adaptive hierarchical refinement
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Figure 17: Fichera corner problem: Ge-
ometry and boundary conditions. The so-
lution has a singularity in the gradient at
the reentrant corner.

Figure 18: Hierarchically refined mesh of
quadratic B-splines [12]. The original mesh
consists of seven patches, each of which cov-
ers one octant.

(a) Solution u. (b) Solution gradient ∂u/∂x.

Figure 19: Fichera corner problem: Solution of model problem and its gradient.
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Figure 20: Fichera corner problem: Convergence of the error in the H1 semi-norm vs. the number
of degrees of freedom.
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Figure 21: Fichera corner problem: Comparison of the computational efficiency of the forma-
tion/assembly procedure with different quadrature schemes for hierarchically refined meshes.

around the reentrant corner. We can apply the Gauss-Lobatto rule and the face rule exploit-
ing C1 continuity in a straightforward way to each hierarchical Bézier element, since the C1

continuity is preserved by the hierarchical mesh within each patch across hierarchical levels.
In Fig. 20b, the four quadrature variants are first assessed in terms of accuracy versus the
number of degrees of freedom, where the accuracy is measured in terms of the relative error
in the H1 semi-norm. We observe that both reduced Gauss and Gauss-Lobatto quadrature
maintain the same accuracy as full Gauss quadrature throughout all hierarchical meshes.

28



The face rule achieves a slightly reduced accuracy with increasing number of hierarchical re-
finement levels as compared to full Gauss quadrature. Nonetheless, the solutions computed
with the face rule show the same convergence behavior as the computations with full Gauss,
reduced Gauss and Gauss-Lobatto quadrature, but the corresponding rates of convergence
are slightly reduced from one hierarchical mesh to the next.

Figure 21a illustrates the potential of the reduced quadrature schemes to decrease the
formation/assembly time of the stiffness matrix with respect to full Gauss quadrature in the
series of hierarchically refined meshes. We compute the ratio by normalizing the formation
and assembly times of each method with respect to the time required by full Gauss quadra-
ture. We observe that the reduced Gauss rule, the Gauss-Lobatto rule and the face rule are
significantly less expensive, approaching the theoretical limit of eight points and three points
per Bézier element for the larger hierarchical meshes. Figure 21b illustrates the computa-
tional efficiency of the tested quadrature rules by plotting the accuracy in the H1 semi-norm
versus the computing time required for the formation and assembly of the stiffness matrix.
The most efficient rule is the face rule that forms/assembles the stiffness matrix approxi-
mately twice as fast as the reduced Gauss and Gauss-Lobatto rules and approximately six
times faster than full Gauss quadrature.

3.4. Comparison with quadratic hexahedral finite elements

To quantify the efficiency of isogeometric analysis with respect to standard finite el-
ements, we compare 3D quadratic spline discretizations evaluated with full and reduced
Gauss quadrature, the Gauss-Lobatto rule, the face rule and with Felippa’s rule to standard
C0 finite element discretizations. We compute the model problem (1) on a 3D cylindrical
section as defined in Fig. 13 with hexahedral elements based on quadratic nodal Lagrange
basis functions. We start from the 3×6×5 mesh shown in Fig. 13 and refine the mesh
uniformly. We evaluate the finite element integrals with full Gauss quadrature. We note
that the reduced quadrature schemes presented here cannot be applied directly to C0 finite
elements, since reduced Gauss quadrature, the face rule and Felippa’s rule are not stable for
C0 quadratic finite elements. On the other hand, Gauss-Lobatto quadrature applied to C0

finite elements is stable, but exhibits the same cost as full Gauss quadrature, since shared
points on element boundaries need to be evaluated separately in each element due to the
jump in the first derivatives of the nodal basis functions.

We note that Benson et al. [84–86] have pursued this topic and concluded that quadratic
NURBS solid elements can be reliably evaluated with reduced 2×2 Gauss quadrature and
achieve the same accuracy level as the fastest one-point production hexahedral element in
LS-DYNA at approximately 80% of the cost, although the performance of solid NURBS
elements in LS-DYNA had not been optimized yet [84].

Figures 22a and 22b plot the convergence in relative error norms versus the number of
degrees of freedom. We omit the results of reduced Gauss and Gauss-Lobatto quadrature,
since their convergence curves lie on top of the curve of full Gauss quadrature (see Fig. 15).
We observe that spline and finite element discretizations both converge with the optimal
rates of convergence in the L2 norm and the H1 semi-norm. However, the higher-order
continuity of splines leads to a superior per-degree-of-freedom accuracy with respect to C0
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Figure 22: Isogeometric analysis with quadratic splines vs. quadratic Lagrange finite elements: Con-
vergence in relative error norms vs. the number of degrees of freedom for the 3D model problem.
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Figure 23: Isogeometric analysis with quadratic splines vs. quadratic Lagrange finite elements: Con-
vergence in relative error norms vs. total computing time for the 3D model problem.

finite elements, an observation that has been made many times before [12, 43, 87, 88]. For
a specific number of degrees of freedom, the difference in the error level is approximately
one order of magnitude in the L2 norm and approximately a factor of five in the H1 semi-
norm. Figures 23a and 23b plot the convergence in relative error norms versus the total
computing time that includes the formation and assembly routines, the Jacobi preconditioner
and the CG solver. The finite element computations are performed in the same C++ code
framework, where the only difference with respect to the isogeometric analysis computations
is the evaluation of the nodal basis functions at quadrature point level. On the one hand, we
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observe that the accuracy advantage of isogeometric analysis with respect to standard finite
elements is almost neutralized by its larger formation and assembly cost if we apply full
Gauss quadrature. On the other hand, we can clearly see that using reduced quadrature is
the key that unlocks the potential of isogeometric analysis in terms of fast computing times.
For the same level of accuracy, isogeometric analysis with quadratic splines is approximately
seven to eight times faster than quadratic finite elements when integration is performed with
the face rule or Felippa’s rule, and approximately three times faster than quadratic finite
elements when integration is performed with reduced Gauss or Gauss-Lobatto quadrature.

4. Cubic spline discretizations

There exist several monomial quadrature rules that are potentially well suited for cubic
spline discretizations (see Tables 3 and 4, and [26, 51, 52]). They are able to exactly integrate
single and mixed variable monomials up to complete degree 5, and require fewer quadrature
point evaluations than full Gauss quadrature. Alternatively, we can again apply reduced
quadrature based on tensor-product Gauss-Lobatto rules that comprise many points on
element vertices, edges and faces, or we can employ reduced Gauss quadrature. In this
section, we illustrate with a series of test problems that for cubic splines we can again
increase the computational efficiency with reduced quadrature schemes, although the gains
with respect to full Gauss quadrature are somewhat less pronounced than in the quadratic
case. We note that we use the same computational setting and infrastructure as in Section 3.

4.1. Reduced Gauss and Gauss-Lobatto rules for isogeometric shell elements

In his classic book on cubature [26], Stroud proved that a two-dimensional monomial rule
requires at least seven quadrature points to exactly integrate complete monomials up to 5th

degree. There are no known monomial rules of this accuracy and with a similar efficiency
that have points on the element boundaries [26, 51, 52], so that the 7-point rule of Stroud
seems to be the optimum 5th degree accurate monomial rule for 2D cubic splines as well. The
tensor-product Gauss-Lobatto rule of 5th degree accuracy has 4×4 points in each element,
but four quadrature points are located on element vertices and eight points on element
edges. Exploiting the higher-order continuity of spline discretizations in the sense of Fig. 6,
this Gauss-Lobatto rule requires only nine points per element in the limit of large meshes,
and is thus only slightly more expensive than Stroud’s 7-point rule. The same holds true
for reduced 3×3 Gauss quadrature with full 4×4 Gauss quadrature in the outer 1-layer of
elements that asymptotically tends to nine quadrature point evaluations per Bézier element.
In addition, the latter two rules take into account many of the higher-order mixed variable
monomials exactly due to their tensor-product structure. Furthermore, based on numerical
tests, we have found that Stroud’s 7-point rule does not achieve the same level of accuracy
for cubic splines whereas the reduced Gauss and Gauss-Lobatto rule do. We therefore think
that they constitute the most convincing compromise between accuracy and reliability for
2D cubics, and we do not consider Stroud’s 7-point rule further.

Quadrature rules for two-dimensional cubic spline elements are particularly interesting
for efficient isogeometric shell computations, since cubic NURBS are currently the standard
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Figure 24: Scordelis-Lo shell: Problem statement and discretization with isogeometric Kirchhoff-Love
shell elements using cubic NURBS.

for surface representations in almost all CAGD tools [32, 33]. To illustrate the potential
savings of the reduced Gauss and Gauss-Lobatto rules for the formation and assembly cost
in shell isogeometric analysis, we consider two well-known linear elastic shell benchmarks,
the Scordelis-Lo shell [31, 89] and the cylindrical shell under internal pressure with fixed end
displacements [31, 34]. For the latter, we also show the applicability of the reduced Gauss
and Gauss-Lobatto rules for hierarchically refined spline meshes. For our test computations,
we use a rotation-free isogeometric Kirchhoff-Love shell element [36, 37]. We note that
shells involve second-order derivatives in the bending part of the Galerkin variational form.
Therefore we require at least C2 continuity across Bézier element boundaries for the Gauss-
Lobatto rule, which is also attained for hierarchically refined cubic splines [8, 9]. (For C1

quadratics shared points on element boundaries need to be evaluated separately in order to
consistently capture the jump in the second derivatives.) We also emphasize again that in the
following we only address the reduction of computational cost for formation and assembly,
and do not make any statement concerning the mitigation of locking, for which reduced
quadrature rules are traditionally used in the context of standard shell finite elements (see
e.g. [58, 60, 64, 66, 67, 69]). Again, this is an active area of spline research currently.

4.1.1. Scordelis-Lo shell

The Scordelis-Lo shell under gravity load was proposed as a benchmark for shell elements
as part of the shell obstacle course [35, 90]. Geometry, boundary conditions and material
parameters adopted from [89] are illustrated in Fig. 24a. We discretize the full structure
using an initial mesh of 6×9 shell elements as shown in Fig. 24b. We monitor the strain
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Figure 25: Cubic NURBS discretization of the Scordelis-Lo shell: Comparison of accuracy and
computational efficiency of the formation/assembly procedure with Gauss-Lobatto quadrature.

energy that can be computed from the stiffness matrix K and the solution vector u as

Ψ =
1

2

(

uTKu
)

(14)

We use a reference strain energy of Ψref = 0.003927942193257907 obtained from an overkill
shell computation.

Figure 25a shows the convergence of the relative error in strain energy

e =

√

|Ψ−Ψref|

Ψref

(15)

plotted versus the total number of degrees of freedom using full Gauss quadrature and the
reduced Gauss-Lobatto rule. We observe that as we refine the mesh the three quadrature
schemes yield exactly the same strain energy. Figure 25b shows the normalization of the
time required with the reduced Gauss and Gauss-Lobatto rules for formation and assembly
with respect to the time required by full Gauss quadrature. It illustrates the potential of the
reduced Gauss and Gauss-Lobatto rules to decrease the formation and assembly time of the
stiffness matrix with respect to isogeometric analysis based on full Gauss quadrature. We
observe that as we refine the mesh the time ratio of the reduced rules quickly approaches the
theoretical limit of nine quadrature point evaluations per Bézier element. We also observe
that reduced Gauss and Gauss-Lobatto quadrature have practically the same computational
efficiency. Although the savings are not as pronounced as for 2D and 3D quadratics (cf.
Section 3), we believe that they can make a difference in applications, where the efficiency
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Figure 26: Cylindrical shell with fixed end displacements under internal pressure: Problem statement,
adaptive mesh of cubic Kirchhoff-Love shell elements, and radial displacement solution.

of the analysis technology is directly related to the number of quadrature point evaluations.
An important example in the context of shell analysis is explicit structural dynamics with
costly nonlinear constitutive evaluations at each quadrature point. We note that Benson et
al. [85, 86] concluded that quadratic NURBS shell elements can be reliably evaluated with
reduced 2×2 Gauss quadrature and achieve the same accuracy level as the fastest four-node
production shell elements in LS-DYNA at approximately half the cost.

4.1.2. Cylindrical shell with fixed ends under internal pressure

As a second example we consider a cylindrical shell under internal pressure, for which
a problem definition is given in Fig. 26. The exact thin shell theory solution of radial
displacements is given by Timoshenko and Woinowsky-Krieger [31, 34] as

w(z) = −
pL4

64Dα4

(

1−
2 sinα sinhα

cos 2α + cosh 2α
sin βz sinh βz −

2 cosα coshα

cos 2α + cosh 2α
cos βz cosh βz

)

(16)
where z denotes the coordinate in the longitudinal direction of the cylinder. Its origin is in
the middle of the cylinder, so that the boundary conditions are at −L/2 and L/2, where L
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Figure 27: Cylindrical shell example: Comparison of accuracy and computational efficiency of the
formation/assembly procedure for 2D cubic spline discretizations.

denotes the cylinder length. The coefficients in the solution (16) are defined as

α =
βL

2
; β4 =

3(1− ν2)

R2h2
; D =

Eh3

12(1− ν2)
(17)

with Young’s modulus E, Poisson’s ratio ν, shell thickness h, and flexural rigidity D. Taking
into account symmetry, we discretize only a quarter of the cylinder with cubic isogeometric
Kirchhoff-Love shell elements. We note that if we model the full cylinder as an exact circle,
we require multiple patches that have C0 functions in the geometric map, and therefore
cannot use rotation free shell elements. A possible solution is to use “blended” isogeometric
shell elements [86], which introduce rotational degrees of freedom at C0 patch interfaces.
Due to the boundary layers at the fixed ends of the cylinder, we use a series of adaptive
meshes generated by hierarchical refinement of NURBS [8, 9, 12]. The finest mesh and the
corresponding solution, both complemented for the complete structure, are shown in Fig. 26.

We compute the series of solutions from the coarsest to the finest mesh with full Gauss
quadrature and the reduced Gauss and Gauss-Lobatto rules. The C2 continuity of cubic
splines is preserved across element boundaries and between the hierarchical levels of the
adaptive mesh. In Fig. 27a, we assess the results in terms of accuracy versus the number of
degrees of freedom, where the accuracy is measured in terms of the relative error in the L2

norm with respect to the exact solution given in (17). We observe that the reduced Gauss
and Gauss-Lobatto rules yield exactly the same accuracy as the full Gauss rule for each
hierarchical mesh. Figure 27b illustrates the potential of the reduced Gauss and Gauss-
Lobatto rules to decrease the formation/assembly time of the stiffness matrix with respect

35



to full Gauss quadrature. Analogous to Fig. 23b we normalize the time required with the
reduced Gauss and Gauss-Lobatto rules for the formation/assembly with respect to the time
required by full Gauss quadrature. Since the quadrature points at the boundary between
larger and smaller Bézier elements of the hierarchical mesh do not line up, the ratio increases
after the first refinement step in both rules. However, with increasing adaptive refinement
the ratio approaches the limit of nine quadrature point evaluations per element. Both rules
yield a comparable computational efficiency. For the coarser meshes the Gauss-Lobatto rule
is slightly better, because in the outer 1-layer of Bézier elements it can take advantage of
the smoothness of spline basis functions at the non-boundary edges, whereas the reduced
Gauss rule needs 4×4 quadrature points for all elements of the outer 1-layer.

4.2. Stroud’s 13-point rule for three-dimensional patches

In three dimensions, there exist monomial quadrature rules that are exact up to degree 5
and require significantly fewer quadrature points than full Gauss quadrature. Stroud showed
in [26] that a minimum of 13 quadrature points are required for 5th degree accuracy. The
monomial rule due to Irons [57] requires 15 points, but six of these points are located on the
element faces, so that his rule tends to 12 points per element in the limit of large meshes.
However, in our numerical tests, Irons’s 12-point rule did not achieve full accuracy, whereas
Stroud’s 13-point rule did. Consequently, the latter constitutes the best compromise between
accuracy and computational cost, and we adopt this rule in the following. Our numerical
tests also indicate that reduced quadrature of boundary spline functions with support over
only one or two Bézier elements in one of the parametric directions affects the accuracy of
the analysis results. Integration of the corresponding Bézier elements with a more accurate
tensor-product rule improves the analysis accuracy significantly. We therefore use full Gauss
quadrature in the outer 2-layer of elements surrounding the cubic spline patch. We note
that with uniform mesh refinement the number of quadrature points still tends to a limit of
13 points per Bézier element for large meshes, since the number of elements integrated with
Stroud’s 13-point rule increases cubically, while the number of boundary elements in the two-
element-thick envelope integrated with full Gauss quadrature increases only quadratically.
Since Stroud’s 13-point rule is not a standard rule in the finite element community, we
provide the quadrature points and the corresponding weights as well as a picture of the
points in local element coordinates in Appendix A.

We briefly illustrate the performance of the reduced quadrature schemes based on Stroud’s
13-point rule and the reduced Gauss and Gauss-Lobatto rules with respect to full Gauss
quadrature with 64 points per element. Considering only the number of point evaluations,
we anticipate a potential decrease of the formation/assembly cost by a factor of more than
two with reduced Gauss and Gauss-Lobatto and by a factor of almost five with Stroud’s
13-point rule plus full Gauss quadrature in the outer 2-layer of elements. We verify these
assumptions with the model problem (1) with α = 0 defined over a quarter of a cylindrical
section (see Section 3.2 and Fig. 13). The source term and the analytical solution are given
in (10) and (11), respectively. We discretize the cylindrical section by a single patch of
cubic NURBS. Figures 28 and 29 compare the four rules with respect to accuracy versus
the number of degrees of freedom and accuracy versus total computing time under uniform
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Figure 28: Convergence in relative error norms vs. the number of degrees of freedom for the 3D
cylindrical section discretized with cubic NURBS.
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Figure 29: Convergence in relative error norms vs. the total computing time (includes forma-
tion/assembly, preconditioning and iterative CG solver), for the 3D cylindrical section discretized
with cubic NURBS.

mesh refinement, where the accuracy is measured in terms of the relative error in the L2

norm and the H1 semi-norm. We observe that the reduced Gauss and Gauss-Lobatto rules
achieve exactly the same accuracy as full Gauss quadrature in terms of the error norms.
Stroud’s 13-point rule does not maintain exactly the same level of accuracy with respect
to full Gauss quadrature for high-fidelity error levels. The reason for this lies in the larger
number of higher-order mixed variable monomials that occur with cubic splines and are
not exactly integrated by Stroud’s monomial rule. Figures 29a and 29b show the accuracy

37



with respect to the total computing time that includes the formation and assembly of the
stiffness matrix and the load vector, preconditioning of the stiffness matrix, and solution
with a CG solver. We observe that computations with a given mesh using the reduced
quadrature schemes are considerably faster than the corresponding computation with full
Gauss quadrature. The reduced Gauss and Gauss-Lobatto rules achieve a specified level of
accuracy approximately twice as fast, while Stroud’s rule is three to four times faster. These
tests indicate that, despite the slight loss of accuracy with respect to full Gauss quadrature,
Stroud’s 13-point rule is still the most efficient quadrature for three-dimensional cubic spline
discretizations.

4.3. Comparison with cubic hexahedral finite elements

To quantify the efficiency of isogeometric analysis with respect to standard finite ele-
ments, we compare 3D cubic spline discretizations with full and reduced quadrature schemes
to cubic C0 finite element discretizations. To this end we compute the 3D model problem
on a cylindrical section as shown in Fig. 13 with hexahedral elements based on cubic nodal
Lagrange basis functions. Analogous to Section 3.3, we start from the 3×6×5 mesh shown
in Fig. 13 and refine the mesh uniformly. We evaluate the finite element integrals with full
Gauss quadrature. We emphasize again that for C0 cubic finite elements the reduced Gauss
rule and Stroud’s 13-point rule are in general not rank-sufficient and Gauss-Lobatto quadra-
ture exhibits the same cost as full Gauss quadrature, since coincident points on element
boundaries need to be evaluated separately due to the jump in the first derivatives.

Figures 30a and 30b plot the convergence in relative error norms versus the number of
degrees of freedom, where the isogeometric analysis results are the same as in Fig. 28. We
observe that spline and finite element discretizations both converge with optimal rates of
convergence in the L2 norm and the H1 semi-norm. We omit the results of reduced Gauss
and Gauss-Lobatto quadrature, since their convergence curves lie on top of the curve of full
Gauss quadrature (see Fig. 28). For cubics, the per-degree-of-freedom accuracy of splines
with respect to C0 finite elements increases with respect to the quadratic case shown in
Fig. 22. For a specific number of degrees of freedom, the error difference is approximately a
factor of 15 in the L2 norm and approximately a factor of 10 in the H1 semi-norm.

Figures 31a and 31b plot the convergence in relative error norms versus the total com-
puting time that involves the formation and assembly routines, the Jacobi preconditioner
and the CG solver. We emphasize again that the finite element computations are performed
in the same C++ code framework, where the only difference with respect to the isogeometric
analysis computations is the evaluation of the nodal basis functions and their derivatives
at quadrature point level. We observe that the accuracy advantage of isogeometric analysis
with respect to finite elements is completely neutralized by its larger formation and assembly
cost if we apply full Gauss quadrature. The situation is reversed by Stroud’s 13-point rule.
Isogeometric analysis with cubic splines and Stroud’s 13-point rule is approximately three
times faster than cubic finite elements for the same accuracy level. With reduced Gauss and
Gauss-Lobatto quadrature we obtain a computational advantage of isogeometric analysis
between a factor 1.5 and two for the error in the H1 semi-norm.
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Figure 30: Comparison of cubic NURBS with cubic hexahedral Lagrange finite elements for the 3D
model problem: Convergence in relative error norms vs. the number of degrees of freedom.
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Figure 31: Comparison of cubic NURBS with cubic hexahedral Lagrange finite elements for the 3D
model problem: Convergence in relative error norms vs. the total computing time.

5. Stability and accuracy of reduced quadrature in spline discretizations

Reduced quadrature schemes used in low-order C0 finite elements lead to rank-deficient
system matrices and spurious zero-energy modes. In the following, we present several ana-
lytical and numerical tests that shed light on the stability and accuracy of the reduced Bézier
element quadrature schemes discussed in Sections 2 to 4. Stability requires rank sufficiency
of discrete Galerkin forms under quadrature, that is, the numerically integrated stiffness and
mass matrices need to be full-rank. Reduced quadrature based on tensor-product Gauss-
Lobatto rules is well-known to lead to rank-sufficient and stable finite element stiffness and

39



Analytical solution [46]:

uj = sin j1
π
2
(x+ 1) sin j2

π
2
(y + 1)

λj =
π2

4
(j2

1
+ j2

2
)

j = (j1, j2) and j1, j2 ≥ 1

k=1 k=2 k=6

k=11 k=22 k=72

x

y

Figure 32: The generalized eigenvalue problem for the Laplace operator on the square domain Ω =
(−1, 1)2 with homogeneous Dirichlet boundary conditions: Structured B-spline discretization, exact
eigenvalues and eigenmodes, and some numerical mode shapes of mode number k.

mass matrices. This has been shown for example in the context of the C0-collocation-
Galerkin method [91–94], multidomain spectral or pseudospectral elements [44–46, 95, 96],
and hp finite elements with Gauss-Lobatto basis functions [97, 98]. However, quadrature
points at element interfaces require multiple quadrature point evaluations due to the jump
in C0 basis functions, and no efficiency gains are realized.

5.1. The generalized eigenvalue problem

For reduced Gauss quadrature and all monomial rules presented previously, that is, the
center-edge rule, the center-vertex rule, the face rule, Felippa’s rule, and Stroud’s rule, the
situation regarding rank sufficiency is less clear. To establish a notion of their stability in
the context of spline discretizations, we consider the generalized Laplace eigenvalue problem

−∆ u = λu in Ω (18a)

u = 0 on ∂Ω (18b)

with the eigenvalue λ. The model (18) is called a Dirichlet eigenvalue problem, if the solution
u is constrained by homogeneous Dirichlet boundary conditions on ∂Ω, and a Neumann
eigenvalue problem, if the solution u is unconstrained. Using the Galerkin method and the
discretization of the trial and the test functions in (3), we can transfer (18) into the Galerkin
variational form [27, 38, 39]

∫

Ω

∇uh · ∇vhdΩ = λ

∫

Ω

uhvhdΩ (19)
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Analytical solution [46]:

uj = sin j1
π
2
(x+ 1) sin j2

π
2
(y + 1) sin j3

π
2
(z + 1)

λj =
π2

4
(j2

1
+ j2

2
+ j2

3
)

j = (j1, j2, j3) and j1, j2, j3 ≥ 1

k=1

k=2

k=5

k=74

Figure 33: The generalized eigenvalue problem for the Laplace operator on the cube Ω = (−1, 1)3 un-
der homogeneous Dirichlet boundary conditions: Structured B-spline discretization, exact eigenvalues
and eigenmodes, and some numerical mode shapes of mode number k plotted over a diagonal section.

Discrete generalized eigenvalue problems are usually represented in compact form as

Kφ = λMφ (20)

where K and M denote the stiffness and consistent mass matrix, respectively. The eigen-
vector φ defines the mode shape that corresponds to a specific eigenvalue λ. For the time
being let us assume that we are operating on a structured B-spline patch with unit square
Bézier elements, so that the parametric coordinates ξ and the physical coordinates x are
coincident. In the case of the generalized eigenvalue problem for the Laplace operator (18),
the non-zero entries of the stiffness and mass matrices can be evaluated using numerical
quadrature as

Kij =

∫

Ω

∇Ni∇NjdΩ =

nqp
∑

l=1

∇Ni(ξl)∇Nj(ξl)ωl (21)

Mij =

∫

Ω

Ni NjdΩ =

nqp
∑

l=1

Ni(ξl)Nj(ξl)ωl (22)

where nqp is the number of quadrature points and ωl denotes the weight associated with the
quadrature point ξl. We examine (20) for both the Laplace and elasticity operators defined
over rectangular domains Ω = (−1, 1)d, where d = {2, 3} denotes the spatial dimension of
the problem. Figures 32 and 33 give an idea of the generalized eigenvalue problem for the
2D and 3D Laplace operator under homogeneous Dirichlet boundary conditions, for which
analytical solutions exist.
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The eigenvalues λj can be sorted in ascending order, where repeated eigenvalues and
the corresponding eigenvectors can be ordered arbitrarily. According to its position k =
1, 2, . . . , neq in the list, the d-tuple index j can be replaced by the scalar mode number k,
where neq denotes the total number of equations in the system (20). Under the condition
that (20) is derived from a Neumann eigenvalue problem, that is, no boundary conditions
are specified, the neq × neq stiffness matrix is positive semi-definite and the neq × neq con-
sistent mass matrix is positive definite for both the Laplace and elasticity operators. As a
consequence all eigenvalues are nonnegative real numbers ordered as

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . . ≤ λneq
(23)

where the value of the highest eigenvalue λneq
is finite. Our notion of rank sufficiency can

then be based on the satisfaction of the following three requirements:

(a) The number of zero eigenvalues corresponds exactly to the number of rigid body modes.
We expect exactly one zero eigenvalue for the 2D and 3D Laplace operator, and exactly
three and six zero eigenvalues for the 2D and 3D elasticity operators, respectively. The
proper imposition of Dirichlet boundary conditions will remove all rigid body modes
and corresponding zero eigenvalues from the system (20). If there are additional zeros,
the stiffness matrix is rank-deficient and allows spurious zero-energy modes.

(b) The smallest non-zero eigenvalue is real and converges to a finite value larger than
zero. This ensures that no further zero eigenvalues occur, since the set of eigenvalues
is bounded from below due to (23).

(c) The set of eigenvalues is bounded from above, i.e. the largest eigenvalue is finite. If
there are infinitely large eigenvalues, the consistent mass matrix is rank-deficient.

5.2. Rank sufficiency of stiffness and mass matrices

We investigate the rank sufficiency of the reduced quadrature schemes by conducting a
series of numerical tests for the generalized eigenvalue problem of the Laplace and elasticity
operators. To this end, we discretize a two-dimensional square Ω = (−1, 1)2 and a three-
dimensional cube Ω = (−1, 1)3 with one-patch quadratic and cubic B-spline discretizations
on structured grids (see Figs. 32 and 33). We do not specify any boundary conditions. We
start with a mesh of boundary elements that is integrated by reduced Gauss-Lobatto or full
Gauss quadrature only (1-layer of elements for quadratics, 2-layer of elements for cubics). We
increase the mesh size by repeatedly adding one Bézier element in each parametric direction.
For all elements in the interior, we employ monomial quadrature based on the center-edge
rule and the center-vertex rule for 2D quadratics, the face rule and Felippa’s rule for 3D
quadratics, and Stroud’s 13-point rule for 3D cubics. We also test reduced Gauss quadrature
for quadratics and cubics in 2D and 3D. We use Matlab’s eig() and eigs() functions [99]
to compute the 20 smallest eigenvalues for each mesh. For all examined cases, the spectrum
shows the correct number of zero eigenvalues for both the Laplace and elasticity operators
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Mesh size Center-edge rule (2D)
Laplace Elasticity

2×2 2.4560 1.5958
3×3 2.4655 1.6026
4×4 2.4667 1.5963
5×5 2.4671 1.5940
6×6 2.4672 1.5930
7×7 2.4673 1.5926
8×8 2.4674 1.5924
9×9 2.4674 1.5923
10×10 2.4674 1.5922
20×20 2.4674 1.5921
40×40 2.4674 1.5921
80×80 2.4674 1.5921

Mesh size Face rule (3D)
Laplace Elasticity

2×2×2 2.4560 0.8750
3×3×3 2.4654 0.8588
4×4×4 2.4667 0.8533
5×5×5 2.4671 0.8523
6×6×6 2.4672 0.8512
7×7×7 2.4673 0.8505
8×8×8 2.4674 0.8497
9×9×9 2.4674 0.8496

10×10×10 2.4674 0.8495
20×20×20 2.4674 0.8494
30×30×30 2.4674 0.8494
40×40×40 2.4674 0.8494

Table 6: Rank sufficiency of system matrices of quadratic splines integrated with the center-edge and
face rules: Convergence of the smallest non-zero eigenvalue in the generalized Neumann eigenvalue
problem for the 2D and 3D Laplace and elasticity operators.

Mesh size Center-vertex rule (2D)
Laplace Elasticity

2×2 2.4560 1.5958
3×3 2.4654 1.6015
4×4 2.4664 1.5957
5×5 2.4670 1.5937
6×6 2.4672 1.5929
7×7 2.4673 1.5926
8×8 2.4673 1.5924
9×9 2.4674 1.5923
10×10 2.4674 1.5922
20×20 2.4674 1.5921
40×40 2.4674 1.5921
80×80 2.4674 1.5921

Mesh size Felippa’s rule (3D)
Laplace Elasticity

2×2×2 2.4560 0.8750
3×3×3 2.4652 0.8575
4×4×4 2.4664 0.8528
5×5×5 2.4669 0.8512
6×6×6 2.4671 0.8505
7×7×7 2.4673 0.8501
8×8×8 2.4673 0.8499
9×9×9 2.4673 0.8497

10×10×10 2.4674 0.8496
20×20×20 2.4674 0.8494
30×30×30 2.4674 0.8494
40×40×40 2.4674 0.8494

Table 7: Rank sufficiency of system matrices of quadratic splines integrated with the center-vertex
rule and Felippa’s rule: Convergence of the smallest non-zero eigenvalue in the generalized Neumann
eigenvalue problem for the 2D and 3D Laplace and elasticity operators.

throughout all meshes. In addition, the largest eigenvalue is finite, and the smallest non-zero
eigenvalue is uniformly bounded away from zero as we refine the mesh.

Table 6 shows the convergence of the smallest non-zero eigenvalue for the center-edge
rule and the face rule on 2D and 3D quadratic meshes. Table 7 shows the same study for
the center-vertex rule and Felippa’s rule. We observe that in all cases the smallest non-
zero eigenvalue converges to a finite value. Table 8 shows the convergence of the smallest
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Mesh size
Stroud’s 13-point rule (with

Gauss-Lobatto in the outer 2-layer)
Stroud’s 13-point rule (without

Gauss-Lobatto in the outer 2-layer)

Laplace Elasticity Laplace Elasticity
1×1×1 2.4223 0.8554 # zero EVs > 1 # zero EVs > 6
2×2×2 2.4681 0.8538 EVs → ∞ EVs → ∞
3×3×3 2.4674 0.8503 2.4575 0.8415
4×4×4 2.4674 0.8497 2.4645 0.8484
5×5×5 2.4674 0.8495 2.4667 0.8490
6×6×6 2.4674 0.8494 2.4671 0.8493
7×7×7 2.4674 0.8494 2.4673 0.8493
8×8×8 2.4674 0.8494 2.4674 0.8494
9×9×9 2.4674 0.8494 2.4674 0.8494

10×10×10 2.4674 0.8494 2.4674 0.8494
20×20×20 2.4674 0.8494 2.4674 0.8494
30×30×30 2.4674 0.8494 2.4674 0.8494
40×40×40 2.4674 0.8494 2.4674 0.8494

Table 8: Stroud’s 13-point monomial rule for cubic splines with and without Gauss-Lobatto stabiliza-
tion: Smallest non-zero eigenvalue of the generalized Neumann eigenvalue problem as we refine the
mesh.

non-zero eigenvalue for Stroud’s 13-point rule on 3D cubic meshes. We first examine the
convergence behavior when we use Stroud’s rule in all elements throughout the cubic patch
without stabilizing the patch boundary elements by full Gauss quadrature. We observe that
the one element case is unstable, leading to more zero eigenvalues than the number of rigid
body modes. The 2×2×2 element case is also unsatisfactory, since the largest eigenvalues
are infinitely large, which indicates that the mass matrix is rank-deficient. However, with
at least three elements in each parametric direction, Stroud’s 13-point rule leads to a well-
behaved spectrum whose lowest eigenvalue is stably bounded away from zero. We note
again that cubic nodal Lagrange finite elements are unstable with Stroud’s 13-point rule.
We then examine the convergence behavior when we stabilize the outer 2-layer of elements
with Gauss-Lobatto quadrature. A comparison between the eigenvalues in Table 8 confirms
that the stabilization prevents the failure of the one and two element cases (only full Gauss
quadrature is present) and improves the accuracy of the eigenvalues.

Tables 9 and 10 show the convergence of the smallest non-zero eigenvalue for the reduced
Gauss rules on 2D and 3D quadratic and cubic meshes. The results confirm that in all
examined cases the smallest non-zero eigenvalue converges to a finite value. Using reduced
Gauss quadrature without the stabilization of the boundary layers of elements we observed
additional zero eigenvalues and infinite eigenvalues in the 1×1 quadratic mesh integrated
with 2×2 Gaussian points, in the 1×1×1 quadratic mesh integrated with 2×2×2 Gaussian
points, in the 1×1 and 2×2 cubic meshes integrated with 3×3 Gaussian points, and in the
1×1×1 cubic mesh integrated with 3×3×3 Gaussian points. To absolutely preclude any
possibility of singularities in the mass and/or stiffness matrices for all cases, we recommend
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Mesh size
2D reduced Gauss

quadrature (2×2 points)

Laplace Elasticity
2×2 2.5046 1.6986
3×3 2.4762 1.6248
4×4 2.4702 1.6020
5×5 2.4685 1.5958
6×6 2.4679 1.5938
7×7 2.4677 1.5930
8×8 2.4676 1.5926
9×9 2.4675 1.5924
10×10 2.4674 1.5923
20×20 2.4674 1.5921
40×40 2.4674 1.5921
80×80 2.4674 1.5921

Mesh size
3D reduced Gauss

quadrature (2×2×2 points)

Laplace Elasticity
2×2×2 2.5046 0.8785
3×3×3 2.4762 0.8580
4×4×4 2.4702 0.8521
5×5×5 2.4685 0.8505
6×6×6 2.4680 0.8499
7×7×7 2.4677 0.8497
8×8×8 2.4676 0.8496
9×9×9 2.4675 0.8495

10×10×10 2.4675 0.8495
20×20×20 2.4674 0.8494
30×30×30 2.4674 0.8494
40×40×40 2.4674 0.8494

Table 9: Rank sufficiency of system matrices of quadratic splines integrated with reduced Gauss
quadrature (p=2 Gauss points in each parametric direction): Convergence of the smallest non-zero
eigenvalue in the generalized Neumann eigenvalue problem for the 2D and 3D Laplace and elasticity
operators.

to always integrate the outer 1-layer of quadratic Bézier elements and outer 2-layer of cubic
elements in each patch with full Gauss quadrature, although for larger meshes this is not
necessary for stability.

These empirical studies indicate that, with stabilization in the outer layers of elements,
all examined monomial quadrature rules and the reduced Gauss rule are rank-sufficient for
all quadratic and cubic Bézier element configurations. Spline discretizations integrated with
these rules do not have spurious zero-energy modes, and the corresponding stiffness matrices
are not singular.

5.3. Analysis of discrete spectra under reduced quadrature

Rank sufficiency excludes spurious zero-energy modes. To establish a final notion of sta-
bility, we need to show in addition to rank sufficiency that the reduced quadrature schemes
do not lead to spurious modes with finite energy, that is, there are no non-zero spurious
eigenvalues within the discrete spectrum. We therefore analyze the accuracy of the discrete
spectrum, that is, the set of eigenvalues resulting from the numerical solution of the dis-
cretized eigenvalue problem (20). In contrast to error analysis based on error norms, discrete
spectrum analysis also enables us to analyze the approximation properties of all the scales
of a discretization scheme [27–29, 100, 101]. In the context of this work, we are particularly
interested in the effect of the different quadrature schemes presented in Sections 3 and 4 on
the accuracy of the discrete spectrum.

For the approximation power of any discretization scheme, the accuracy of the lower part
of the discrete spectrum is crucial. To illustrate this statement for an elliptic boundary-value
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Mesh
size

2D reduced Gauss
quadrature (3×3 points)

Laplace Elasticity
2×2 2.4678 1.5961
3×3 2.4675 1.5942
4×4 2.4674 1.5925
5×5 2.4674 1.5922
6×6 2.4674 1.5921
7×7 2.4674 1.5921
8×8 2.4674 1.5921
9×9 2.4674 1.5921
10×10 2.4674 1.5921
20×20 2.4674 1.5921
40×40 2.4674 1.5921
80×80 2.4674 1.5921

Mesh size
3D reduced Gauss

quadrature (3×3×3 points)

Laplace Elasticity
2×2×2 2.4693 0.8537
3×3×3 2.4675 0.8501
4×4×4 2.4674 0.8496
5×5×5 2.4674 0.8495
6×6×6 2.4674 0.8494
7×7×7 2.4674 0.8494
8×8×8 2.4674 0.8494
9×9×9 2.4674 0.8494

10×10×10 2.4674 0.8494
20×20×20 2.4674 0.8494
30×30×30 2.4674 0.8494
40×40×40 2.4674 0.8494

Table 10: Rank sufficiency of system matrices of cubic splines integrated with reduced Gauss quadra-
ture (p=3 Gauss points in each parametric direction): Convergence of the smallest non-zero eigenvalue
in the generalized Neumann eigenvalue problem for the 2D and 3D Laplace and elasticity operators.

problem, we briefly review a few identities on the spectral decomposition of the stiffness
matrix. Let us consider the discrete Laplace problem Kx = f , where K and f denote the
stiffness matrix and the force vector, and x is the vector of unknowns. We can expand the
solution coefficient of the spline basis in terms of the eigenmodes as

x =
∑

k

φk ck (24)

Next we substitute (24) into the discrete Laplace problem and multiply the resulting ex-
pression from the left with φT

l , and find

φT
l K

∑

k

φk ck = φT
l f (25)

Using the orthogonality property of the eigenmodes, i.e. φT
l Kφk = 0 for k 6= l, we can

reduce (25) to
φT

k K φk ck = φT
k f (26)

Multiplying each side of the generalized eigenvalue problem (20) with φT
l from the left and

using the orthogonality property of the eigenmodes with respect to the stiffness and the
mass, i.e. φT

l Kφk = 0 and φT
l Mφk = 0 for k 6= l, we can establish the following identity

φT
kKφk = λkφ

T
kMφk (27)

Substituting (27) into (26), we can come up with an explicit expression for each unknown
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ck of the eigenmode expansion (24) that reads

ck =
1

λk

φT
k

φT
kMφk

f (28)

If we substitute (28) back into (24), we obtain the solution vector of the discrete Laplace
problem in terms of the basis function coefficients

x =

(

∑

k

1

λk

φk φ
T
k

φT
kMφk

)

f (29)

Based on the identity x = K−1f , it is straightforward to identify the term in brackets as the
inverse of the stiffness matrix. In the spectrally decomposed form, each component k of the
sum represents the contribution of the corresponding eigenmode to the inverse. We observe
that each component k is inversely proportional to the size of the corresponding eigenvalue
λk. We know from the ordering (23) that the size of the eigenvalues must be monotonically
increasing with mode number k. Therefore, the contribution of higher eigenmodes with
k ≫ 1 will typically be significantly smaller than the contribution of the lowest eigenmodes
k = 1, 2, 3, 4, ... For large enough meshes we can even discard the contribution of the high
modes completely, as this tendency becomes more pronounced, when the number of degrees
of freedom and hence the number of eigenvalues is increased. We remark that the analysis
of (24) to (29) holds for the case of elliptic boundary-value problems, but not for hyperbolic
boundary-value problems [27], for instance in elastodynamics.

In the following, we consider the generalized eigenvalue problem for the Laplace oper-
ator (18) defined over a 2D square Ω = (−1, 1)2 and over a 3D cube Ω = (−1, 1)3, for
which the solutions of the continuous eigenvalue problems are known [46]. Since we assume
homogeneous Dirichlet boundary conditions, the rigid body modes are eliminated and the
remaining deformation modes φk are zero over the complete boundary. Formulas for the
exact eigenvalues and eigenmodes of the continuous eigenvalue problem are given in Figs. 32
and 33 for the 2D and 3D cases, respectively.

5.3.1. Quadratic elements with center-edge and face rules

First we consider quadratic spline discretizations with reduced quadrature based on the
center-edge, face and reduced Gauss rules. We compare the corresponding spectrum results
with the spectra computed with Gauss-Lobatto and full Gauss quadrature. Assuming ho-
mogeneous Dirichlet boundary conditions, we compute the discrete spectrum of eigenvalues
using one-patch discretizations with 50×50 quadratic Bézier elements and neq = 2, 500 de-
grees of freedom for the two-dimensional Laplace operator, and with 15×15×15 quadratic
Bézier elements and approximately neq = 3, 375 degrees of freedom for the three-dimensional
Laplace operator. In the computations with the center-edge rule and the face rule, we ap-
ply a corresponding Gauss-Lobatto rule in the outer 1-layer of elements of the patch. We
compare the numerically computed eigenvalues λh

k of the discrete eigenvalue problem with
the analytically computed eigenvalues λk of the continuous eigenvalue problem (see Figs. 32
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(b) Stiffness matrix is integrated with quadra-
ture; mass matrix is exact.

Figure 34: Quadratic spline discretizations in 2D: Comparison of the normalized discrete spectrum
of the Laplace operator with Dirichlet boundary conditions, computed on a 50×50 mesh with different
quadrature rules.
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Figure 35: Quadratic spline discretizations in 3D: Comparison of the normalized discrete spectrum of
the Laplace operator with Dirichlet boundary conditions, computed on a 15×15×15 mesh with different
quadrature rules.

and 33). To this end, we plot the normalized eigenvalues λh
k/λk versus the mode number

k, normalized by the total number of degrees of freedom neq. The closer to 1.0 are the
normalized eigenvalues, the better is the accuracy of the discrete spectrum.

Figures 34a and 35a show the resulting normalized discrete spectra for the 2D and
3D quadratic spline discretizations, respectively, where both stiffness and mass matrices are
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integrated by the same quadrature rule. We observe that the center-edge rule in 2D, the face
rule in 3D and the Gauss-Lobatto rules in 2D and 3D capture the first half of the spectrum
very accurately. It is interesting to note that for this problem their accuracy in the important
low-mode regime is better than that of full Gauss quadrature, and significantly more accurate
than that of reduced Gauss quadrature. For the higher modes in the second half of the
spectra, the center-edge rule and the face rule quickly lose accuracy. However, based on
(29), this does not have a major effect on the approximation power of the underlying spline
discretization scheme for elliptic boundary-value problems, since the high modes do not
contribute significantly to the rate of convergence. However, see [29] for further discussion
on the effect of the spectrum on accuracy in elliptic, parabolic and hyperbolic problems. We
also observe that both reduced quadrature schemes lose the upper bound property, that is,
the normalized eigenvalues are not consistently larger than 1.0, which is a consequence of
the underintegration of the mass matrix. This is corroborated by Figs. 34b and 35b that
plot the discrete spectrum that is determined with stiffness matrices integrated numerically
by the reduced quadrature rules, but with an exact mass matrix. We observe that for
the spectrum results based on an exact mass matrix and numerically integrated stiffness
matrices, all exhibit the upper bound property. As a consequence the normalized spectra
are consistently larger than 1.0 (the only exception is the reduced Gauss rule that leads to
ratios smaller than 1.0 for some higher modes in the 2D problem). It is interesting to note
that in this case the reduced Gauss quadrature achieves a better accuracy in the important
low-mode regime than full Gauss quadrature.

The low modes of the discrete spectrum determine the asymptotic accuracy of the ap-
proximation. The low modes computed with the center-edge, face, reduced Gauss and
Gauss-Lobatto rules all exhibit the same accuracy as the low modes obtained with full
Gauss quadrature. The high modes in the second half of the spectrum obtained with the
reduced quadrature rules are less accurate than those obtained with full Gauss quadrature.
We note that in hyperbolic problems, such as in structural dynamics, inaccurate high modes
can impact the accuracy of the analysis, and they need to be damped by suitable time
integration algorithms [27, 102–104] in order to guarantee accurate results. It is interest-
ing and curious that the accuracy of the low-mode regime of the discrete spectrum based
on the center-edge, the face and the Gauss-Lobatto rules is significantly better when an
underintegrated mass matrix is used.

Furthermore, we observe that the center-edge rule for 2D quadratic Bézier elements and
the face rule for 3D quadratic Bézier elements lead to well-behaved eigenvalues throughout
the complete discrete spectrum in the sense that there are no spurious finite-energy modes
with non-zero eigenvalues in the discrete spectrum. In conjunction with rank sufficiency, that
has been shown in Section 5.2, this observation empirically establishes a notion of stability
for quadratic spline discretizations with reduced quadrature based on the center-edge and
face rules. We conclude that in addition to the Gauss-Lobatto rules whose stability has been
established elsewhere (see for instance [45, 46, 96]), the center-edge rule and the face rule
also lead to stable reduced Bézier element quadrature rules that need no further stabilizing
mechanisms.
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(b) 3D case on a 15×15×15 mesh.

Figure 36: Comparison of the normalized discrete spectrum of the Laplace operator with homogeneous
Dirichlet boundary conditions, computed with cubic splines and different quadrature rules.

5.3.2. Cubic elements with reduced Gauss and Gauss-Lobatto rules and Stroud’s rule

Figures 36a and 36b show the normalized discrete spectrum for 2D and 3D cubic spline
discretizations, respectively. We again compute the discrete spectrum of eigenvalues using
one-patch discretizations with 50×50 cubic Bézier elements and neq = 2, 601 degrees of
freedom for the two-dimensional Laplace operator, and with 15×15×15 cubic Bézier elements
and neq = 4, 096 degrees of freedom for the three-dimensional Laplace operator. We apply
reduced Bézier element quadrature based on the reduced Gauss rules, the Gauss-Lobatto
rules and Stroud’s 13-point rule. In the computations with the reduced Gauss rule and
Stroud’s 13-point rule, we apply full Gauss and Gauss-Lobatto quadrature, respectively, in
the outer 2-layer of elements around the patch boundary.

We observe that the reduced Gauss and Gauss-Lobatto rules lead to discrete spectra that
are very close to the spectra obtained with full Gauss quadrature throughout all lower-mode
and even higher-mode regimes. For the 3D eigenvalue problem the spectrum obtained with
Stroud’s 13-point rule is almost identical with the Gauss-Lobatto spectrum, and leads to
better behavior in the high modes than the face rule in the quadratic case. These results also
show that the complete spectrum obtained with Stroud’s 13-point rule is well-behaved and
does not contain any spurious modes. In addition to rank sufficiency shown in Section 5.2
we can therefore empirically establish a notion of stability for cubic spline discretizations
integrated with Stroud’s 13-point rule. In particular, provided we integrate the outer 2-layer
of elements with full Gauss quadrature, we do not require the use of additional stabilization
techniques for this rule.

5.3.3. Quadratic elements with center-vertex rule and Felippa’s rule

Finally we consider quadratic spline discretizations with reduced quadrature based on
the center-vertex rule in 2D and Felippa’s rule in 3D. We compute the discrete spectrum of
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2D case: Numerical eigenvalues λh
k with the center-vertex rule vs.

analytical eigenvalues λk (k - mode number; s - spurious mode)

k λh
k λk λh

k/λk k λh
k λk λh

k/λk

1 4.9348 4.9348 1.0000 28 101.1622 101.1634 1.0000

2 12.3370 12.3370 1.0000 29 111.0311 111.0330 1.0000

3 12.3370 12.3370 1.0000 30 111.0311 111.0330 1.0000

4 19.7392 19.7392 1.0000 31 123.3669 123.3701 1.0000

5 24.6740 24.6740 1.0000 32 123.3669 123.3701 1.0000

6 24.6740 24.6740 1.0000 33 123.3678 123.3701 1.0000

7 32.0762 32.0762 1.0000 34 128.3020 128.3049 1.0000

8 32.0762 32.0762 1.0000 35 128.3022 128.3049 1.0000

9 41.9457 41.9458 1.0000 36 130.7687 130.7723 1.0000

10 41.9457 41.9458 1.0000 37 130.7687 130.7723 1.0000

11 44.4131 44.4132 1.0000 s 135.7725

12 49.3478 49.3480 1.0000 s 135.7725

13 49.3479 49.3480 1.0000 38 143.1049 143.1093 1.0000

s 54.6537 39 143.1051 143.1093 1.0000

14 61.6847 61.6850 1.0000 40 150.5072 150.5115 1.0000

15 61.6847 61.6850 1.0000 41 150.5072 150.5115 1.0000

16 64.1520 64.1524 1.0000 42 160.3742 160.3811 1.0000

17 64.1520 64.1524 1.0000 43 160.3742 160.3811 1.0000

18 71.5541 71.5546 1.0000 44 160.3755 160.3811 1.0000

19 71.5541 71.5546 1.0000 45 160.3755 160.3811 1.0000

20 78.9562 78.9568 1.0000 46 167.7757 167.7833 1.0000

21 83.8908 83.8916 1.0000 47 167.7758 167.7833 1.0000

22 83.8909 83.8916 1.0000 48 177.6460 177.6529 1.0000

23 91.2926 91.2938 1.0000 49 180.1116 180.1203 1.0000

24 91.2926 91.2938 1.0000 50 180.1116 180.1203 1.0000

25 98.6945 98.6960 1.0000 51 182.5796 182.5877 1.0000

26 98.6946 98.6960 1.0000 52 182.5801 182.5877 1.0000

27 101.1622 101.1634 1.0000 53 197.3811 197.3921 0.9999

Table 11: List of lowest eigenvalues for the 2D Laplace eigenvalue problem with homogeneous Dirich-
let boundary conditions. λh

k are computed from 50×50 quadratic Bézier elements with the center-vertex
rule. λk are the exact eigenvalues of the continuous problem.

eigenvalues using one-patch discretizations with 50×50 quadratic Bézier elements in 2D and
with 15×15×15 quadratic Bézier elements in 3D. We apply corresponding 2D and 3D Gauss-
Lobatto rules in the outer 1-layer of elements around the patch boundary. Tables 11 and 12
show the lowest eigenvalues computed with the center-vertex rule and Felippa’s rule, respec-
tively. Comparing the numerical eigenvalues to the corresponding analytical eigenvalues of
the continuous problem we observe that both rules lead to spurious non-zero eigenvalues that
are scattered about the complete discrete spectrum. The corresponding eigenmodes exhibit
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3D case: Numerical eigenvalues λh
k with Felippa’s rule vs. analytical

eigenvalues λk (k - mode number; s - spurious mode)

k λh
k λk λh

k/λk k λh
k λk λh

k/λk

1 7.4021 7.4022 1.0000 s 47.7831

2 14.8033 14.8044 0.9999 s 47.7831

3 14.8033 14.8044 0.9999 27 51.7679 51.8154 0.9991

4 14.8033 14.8044 0.9999 28 51.7679 51.8154 0.9991

5 22.2026 22.2066 0.9998 29 51.7679 51.8154 0.9991

6 22.2026 22.2066 0.9998 30 51.7751 51.8154 0.9992

7 22.2026 22.2066 0.9998 31 51.7751 51.8154 0.9992

8 27.1346 27.1414 0.9997 32 51.7751 51.8154 0.9992

9 27.1356 27.1414 0.9998 33 54.2308 54.2828 0.9990

10 27.1356 27.1414 0.9998 34 54.2308 54.2828 0.9990

11 29.6001 29.6088 0.9997 35 54.2308 54.2828 0.9990

s 31.5683 s 56.3669

12 34.5289 34.5436 0.9996 s 56.3669

13 34.5289 34.5436 0.9996 s 56.3669

14 34.5289 34.5436 0.9996 36 59.1440 59.2176 0.9988

15 34.5297 34.5436 0.9996 37 59.1554 59.2176 0.9989

16 34.5297 34.5436 0.9996 38 59.1554 59.2176 0.9989

17 34.5297 34.5436 0.9996 s 60.2736

18 41.9214 41.9458 0.9994 s 60.2736

19 41.9214 41.9458 0.9994 s 60.2736

20 41.9214 41.9458 0.9994 39 64.0631 64.1524 0.9986

21 44.3898 44.4132 0.9995 40 64.0631 64.1524 0.9986

22 44.3898 44.4132 0.9995 41 64.0631 64.1524 0.9986

23 44.3898 44.4132 0.9995 42 64.0636 64.1524 0.9986

24 46.8427 46.8806 0.9992 43 64.0636 64.1524 0.9986

25 46.8438 46.8806 0.9992 44 64.0636 64.1524 0.9986

26 46.8438 46.8806 0.9992 45 66.5290 66.6198 0.9986

s 47.7817 46 66.5474 66.6198 0.9989

Table 12: List of lowest eigenvalues for the 3D Laplace eigenvalue problem with homogeneous Dirich-
let boundary conditions. λh

k are computed from 15×15×15 quadratic Bézier elements with Felippa’s
rule. λk are the exact eigenvalues of the continuous problem.

high-frequency oscillations typical for spurious modes. Figure 37 provides an example for
such a spurious mode obtained from a 2D mesh of 20×20 quadratic Bézier elements. We
note that apart from the spurious eigenvalues the numerical spectrum is accurate (see the
ratios between numerical and continuous eigenvalues in Tables 11 and 12).

The numerical studies on the number of zero eigenvalues and the convergence of the
lowest eigenvalue showed that both the center-vertex rule in 2D and Felippa’s rule in 3D
lead to rank-sufficient global stiffness and mass matrices (i.e., for the Neumann eigenvalue
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(a) Quadratic Bézier element mesh with
center-vertex rule and Gauss-Lobatto
stabilization in the outer 1-layer.

(b) Finite-energy spurious mode corre-
sponding to the lowest spurious eigenvalue.

Figure 37: The spurious mode mechanism for the center-vertex rule: The outer 1-layer of elements
is locally rank-sufficient and prevents zero-energy modes, but it cannot prevent the appearance of
finite-energy spurious modes in the interior of the mesh.

problem the correct number of zero eigenvalues corresponding to the expected number of
rigid body modes were obtained for both the Laplace and elasticity operators). In addition,
for the current Dirichlet eigenvalue problem, both the center-vertex rule and Felippa’s rule
do not lead to any additional zero eigenvalues that would indicate the presence of spurious
zero-energy modes (see Tables 11 and 12). However, both rules lead to spurious modes with
finite energy that show up within the spectrum between correct non-zero eigenvalues. The
spurious modes have finite energy because zero-energy modes need the cooperation of the
elements in the outer 1-layer around the patch boundary so that they can globally form.
However, these elements are integrated with a more accurate Gauss-Lobatto rule there. As
a consequence, they are locally rank-sufficient, and therefore do not cooperate. However,
as we refine the mesh, the effect of the rank-sufficient outer elements becomes weaker as
the elements increase their “distance,” in the connectivity sense, from the boundary and we
start to see an hourglass pattern away from the boundary. Due to the non-cooperative outer
elements, these spurious modes have a finite energy, and the corresponding eigenvalues are
non-zero. However, we would anticipate that for a fixed domain, as the mesh is uniformly
refined, in the limit of infinite refinement these spurious eigenvalues would approach 0.

The example shown in Fig. 37 illustrates the mechanism of this phenomenon. Figure 37a
depicts the 20×20 mesh along with the quadrature points. In the outer 1-layer, we use the
Gauss-Lobatto rule, while the quadrature points in the interior elements show the quincunx
pattern of the center-vertex rule. Figure 37b plots the first spurious mode that corresponds
to the lowest spurious eigenvalue. We observe that no oscillations occur in the outer 1-layer
of elements that are integrated with the stable Gauss-Lobatto rule. In the interior elements
the spurious oscillations are clearly visible. They are amplified in elements further away
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from the outer 1-layer, and are attenuated in elements that are close to the boundary el-
ements. We conclude that the outer 1-layer of elements prevents cooperative zero-energy
modes. Unfortunately, spurious modes still develop in the interior of the patch, and the cor-
responding eigenvalues are non-zero. The finite energy contribution is required to suppress
spurious oscillations in the outer 1-layer of elements.

We conclude that reduced integration based on the center-vertex rule and Felippa’s rule
requires the control of these spurious modes by means of stabilization techniques. We
emphasize again that rank-deficient elements such as the four-node bilinear element with
one-point quadrature and “hourglass” control can be regarded as the engine of commercial
explicit crash dynamics codes. In this context the center-vertex rule and Felippa’s rule, with
some efficient forms of stabilization, might be interesting options that could open the door
for a similar trend in isogeometric analysis.

6. Conclusions

We have investigated the use of various Bézier element-based reduced quadrature rules
for smooth quadratic and cubic spline discretizations in the analysis of two- and three-
dimensional linear elliptic boundary-value and eigenvalue problems. We have studied various
tensor-product and monomial rules, and have examined the rank-sufficiency of the matrix
operators produced and the accuracy and efficiency compared with finite elements of the
same order. The meshes studied consist of uniformly and adaptively hierarchically refined
NURBS patches. A conclusion is that there are rules for smooth spline elements that offer
significant gains in computational efficiency compared with conventionally formulated C0-
continuous finite elements.

Here is a summary and recommendations for the cases considered. A general statement
that can be made is that Gauss-Lobatto rules, consisting of the same number of quadrature
points as full Gauss rules (i.e., (p+ 1)d quadrature points per Bézier element), can be used
in place of full Gauss rules with no loss of stability or accuracy. The advantage is that
Gauss-Lobatto points on the boundaries of Bézier elements need only be processed once for
all elements sharing those points, and thus there is a significant gain in efficiency for smooth
quadratic and cubic splines. Likewise, uniform reduced Gauss rules (i.e., pd points per Bézier
element) can also be used in all cases with similar accuracy and efficiency as for Gauss-
Lobatto rules. However, there is one qualification. To absolutely preclude any possibility
of singularities in the mass and/or stiffness matrices, the outer 1-layer of quadratic Bézier
elements and outer 2-layer of cubic elements on a patch need to be integrated with full Gauss
quadrature. This precludes singularities that my occur, for example, with exceptionally
coarse meshes, such as one-element meshes.

Biquadratic spline elements in 2D. The most efficient reduced rule studied is the center-
vertex rule in the quincunx pattern that asymptotically involves only two points per Bézier
element. Unfortunately, this rule exhibited a loss of accuracy and spurious modes in eigen-
value computations and therefore cannot be recommended.

The next most efficient rule is the center-edge rule, which results in three points per
Bézier element asymptotically. This rule achieves full accuracy, but requires use of the 3×3
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Gauss-Lobatto (i.e., Simpson) rule in the outer 1-layer of elements in each NURBS patch.
The Gauss-Lobatto rule can be used in all Bézier elements, which results in implementational
simplifications, with only a small loss of computational efficiency compared with the center-
edge rule, that is, asymptotically four points per Bézier element compared with three. The
4-point rule from Hughes [27]∗ achieves the same efficiency but requires the outer 1-layer
to be stabilized by either Gauss-Lobatto or full Gauss quadrature. We think the choice
of which one of these rules to use is a judgment call, but we would opt for simplicity and
recommend Gauss-Lobatto everywhere. We note, however, that Benson et al. [84–86] have
utilized the 2×2 reduced Gauss rule for quadratic NURBS shells and attained a competitive
performance with respect to the fastest four-node production shell element in LS-DYNA.

Triquadratic spline elements in 3D. The most efficient rule is Felippa’s center-vertex rule,
which results in two points per Bézier element asymptotically. Unfortunately, it gives rise to
spurious modes and therefore cannot be recommended, unless some form of stabilization is
introduced to remove the spurious modes. This may be a worthwhile pursuit in that it does
achieve full accuracy in the solution of the elliptic boundary-value problems considered.

The next most efficient rule is the face rule, which results in three points per Bézier
element asymptotically. It attains full accuracy for elliptic boundary-value problems, but
requires use of the Gauss-Lobatto rule in the outer 1-layer of elements on each NURBS patch
to guarantee rank-sufficiency. It seems that this slight complication is well worth it because
there is a significant gain in efficiency compared with the Gauss-Lobatto rule and reduced
Gauss rule, which require eight points per Bézier element asymptotically. For this reason
we recommend the face rule in this case. We note that Benson et al. [84] have utilized the
2×2×2 reduced Gauss rule for quadratic NURBS solid elements and attained a competitive
performance with respect to the fastest production hexahedral element in LS-DYNA.

Bicubic spline elements in 2D. The most efficient rule studied is Stroud’s 7-point rule [26].
However, it does not attain the same accuracy as the full Gauss rule in elliptic boundary-
value problem calculations and therefore is not recommended.

The only other rules studied for this case with fewer quadrature points than the full
Gauss rule were the Gauss-Lobatto and reduced Gauss rules. Both require nine points per
Bézier element and attain full accuracy in boundary-value problem calculations. However,
we recommend the Gauss-Lobatto rule because it does not require special treatment of the
outer 2-layers of Bézier elements per NURBS patch as described previously. The efficiency
advantage in this case with respect to full Gauss quadrature is less than a factor of two and
so we feel that there might be more efficient rules for this case yet to be discovered.

Tricubic spline elements in 3D. Irons’s rule [57] is very slightly more efficient than Stroud’s
13-point rule [26] for large meshes but did not achieve the accuracy of full Gauss quadrature
and so we do not recommend it. Stroud’s 13-point rule does attain full accuracy, but re-
quires use of the Gauss-Lobatto or full Gauss rule in the outer 2-layer of elements to achieve

∗ This rule is actually just the subject of an exercise in Hughes [27], namely Chapter 3, Exercise 3, page
146. The corresponding quadrature points and weights are given in Appendix A.
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rank-sufficiency. Nevertheless the gains with respect to the Gauss-Lobatto rule everywhere,
or the reduced Gauss rule everywhere, are significant, approximately a factor of two. Like-
wise Stroud’s 13-point rule gives almost a factor of five advantage compared with full Gauss
quadrature. Consequently, we recommend Stroud’s 13-point rule. (The quadrature points
and weights are given in Appendix B.)
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Figure A.38: Spatial positions of the quadrature points of Hughes’s 4-point rule in a parametric
quadrilateral Bézier element.

Appendix A. Hughes’s 4-point rule

The 4-point rule due to Hughes [27] (see Chapter 3, Exercise 3, p. 146) is accurate up
to 3rd degree. The quadrature point coordinates {ξi, ηi} in the element domain (−1, 1)2 and
the corresponding quadrature weights ωi are

Point 1: ξ1 = 0.0 η1 = −
√

2/3 ω1 = 1

Point 2: ξ2 =
√

2/3 η2 = 0.0 ω2 = 1

Point 3: ξ3 = 0.0 η3 =
√

2/3 ω3 = 1

Point 4: ξ4 = −
√

2/3 η4 = 0.0 ω4 = 1

The spatial positions of the quadrature points of Hughes’s 4-point rule in a parametric
quadrilateral Bézier element are shown in Fig. A.38.
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Figure B.39: Spatial positions of the quadrature points of Stroud’s 13-point rule in a parametric
hexahedral Bézier element.

Appendix B. Stroud’s 13-point rule

The 13-point rule due to Stroud [26, 105] is optimal in the sense that there is no rule that
achieves exactness up to 5th degree monomials with fewer quadrature points. We follow the
high-precision specification of Peterson [106] realized in the open-source code libmesh [55].
The locations of the quadrature points are given in terms of the local element coordinates
ξ, η, ζ, each of which goes from -1.0 to 1.0. The rule can be composed of the following values

α = 0.0

β = −4.95848171425711152814212423642879E-1

γ = 2.52937117448425813473892559293236E-2

λ = 8.80304406699309780477378182098603E-1

µ = 7.95621422164095415429824825675787E-1

A = 1.68421052631578947368421052631579

B = 5.44987351277576716846907821808944E-1

C = 5.07644227669791704205723757138424E-1

The quadrature point coordinates {ξi, ηi, ζi} in the element domain (−1, 1)3 and the corre-
sponding quadrature weights ωi are
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Point 1: ξ1 = α η1 = α ζ1 = α ω1 = A
Point 2: ξ2 = λ η2 = β ζ2 = β ω2 = B
Point 3: ξ3 = −λ η3 = −β ζ3 = −β ω3 = B
Point 4: ξ4 = β η4 = λ ζ4 = β ω4 = B
Point 5: ξ5 = −β η5 = −λ ζ5 = −β ω5 = B
Point 6: ξ6 = β η6 = β ζ6 = λ ω6 = B
Point 7: ξ7 = −β η7 = −β ζ7 = −λ ω7 = B
Point 8: ξ8 = µ η8 = µ ζ8 = γ ω8 = C
Point 9: ξ9 = −µ η9 = −µ ζ9 = −γ ω9 = C
Point 10: ξ10 = µ η10 = γ ζ10 = µ ω10 = C
Point 11: ξ11 = −µ η11 = −γ ζ11 = −µ ω11 = C
Point 12: ξ12 = γ η12 = µ ζ12 = µ ω12 = C
Point 13: ξ13 = −γ η13 = −µ ζ13 = −µ ω13 = C

We note that points 2 to 13 can be grouped in pairs. Since for each pair the parametric
coordinates of the second point are the negative parametric coordinates of the first point, it
is immediately clear that the quadrature points of Stroud’s 13-point rule are symmetric with
respect to each parametric coordinate. This property does not easily reveal itself when we
just consider the spatial positions of the quadrature points as in the plot of Fig. B.39. Due
to this property, Stroud’s 13-point rule is able to exactly integrate mixed variable monomials
of degree higher than 5, if they contain at least one single variable component with an odd
exponent (see Fig. 4).
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Love elements. Computer Methods in Applied Mechanics and Engineering, 198(49-52):3902–3914,
2009.

[37] R. Echter, B. Oesterle, and M. Bischoff. A hierarchic family of isogeometric shell finite elements.
Computer Methods in Applied Mechanics and Engineering, 254:170–180, 2013.

[38] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973.
[39] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method – The Basis, volume 1. Butterworth-

Heinemann, 6th edition, 2005.
[40] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. Society for Industrial and Applied

Mathematics, 2002.
[41] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs, and

Mathematical Tables, volume 55. Dover Publications, 1964.
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