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Isogeometric contact: a review

L. De Lorenzis, P. Wriggers, T.J.R. Hughes

Abstract

This paper reviews the currently available computational contact formulations within the framework of

isogeometric analysis (IGA). As opposed to conventional Lagrange discretizations, IGA basis functions

feature higher and tailorable inter-element continuity, which translates into evident advantages for the

description of interacting surfaces, especially in presence of large displacements and large sliding. This

has recently motivated the proposal of several isogeometric contact treatments, based on different ways to

incorporate the contact contribution into the variational form of a continuum mechanics problem and to

formulate its discretized version. After a brief overview of conventional and isogeometric basis functions

as well as conventional contact mechanics approaches, the available isogeometric contact formulations are

examined. Attention is paid to the favorable and unfavorable features they share with their finite element

counterparts, as well as to the consequences stemming from the use of IGA basis functions. The main

needs for future research emerging from the current state of the art are outlined.

Keywords: contact mechanics, interface modeling, isogeometric analysis, NURBS, smoothing, state of

the art review.

1 Introduction

Isogeometric analysis (IGA) was recently introduced by Hughes and coworkers (Hughes et al.,

2005, Cottrell et al. 2009) with the primary original purpose to enable a tighter connection be-
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tween computer aided geometric design (CAGD) and finite element analysis (FEA). By simplifying

the cost-intensive computational model generation process, involving geometry clean-up, feature

removal and mesh generation required for standard FEA, and leading to a seamless integration

of CAGD and FEA tools, IGA meant to reduce or eliminate the major bottleneck in engineering

analysis procedures. Within the IGA framework, the same smooth and higher order basis func-

tions, e.g., non-uniform rational B-splines (NURBS) or T-splines, are used for the representation

of the exact CAD geometry and for the approximation of the FEA solution fields.

Independently from the achievement of the original goal, IGA turned out to exhibit increased

accuracy and robustness on a per-degree-of-freedom basis in comparison to standard finite element

methods (FEM) (Evans et al. 2009, Großmann et al. 2012) and to deliver a number of additional

advantages in several areas of computational mechanics. Contact mechanics, which is the focus of

the present paper, is one of these areas. Here the higher order and higher and tailorable continuity

of IGA basis functions lead to evident potential advantages in the description of interacting surfaces

undergoing large displacements and large sliding, as recognized already in the first IGA paper

(Hughes et al. 2005). Thus, several computational contact formulations within the IGA framework

have been developed in the past few years. Clearly, the majority of these formulations directly

originate from the contact treatments currently available in the realm of FEM. As a result, they

share the favorable and unfavorable sides of their FEM counterparts, while taking advantage of

the specific properties of IGA basis functions.

The purpose of this paper is to summarize the main documented contributions in the field of isoge-

ometric contact and thus derive a systematic classification of the tested isogeometric formulations,

along with their FEM counterparts. Such a classification goes hand in hand with the exploration of

the desirable and undesirable features of the various formulations, which in turn naturally leads to

the definition of future research needs in the framework of isogeometric contact. Throughout the

paper, the focus is on large deformation contact in quasi-static conditions using implicit methods,

unless otherwise specified. The paper is organized as follows: Section 2 comparatively reviews the

main properties of the basis functions used in IGA and FEM, with special emphasis on the prop-
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erties relevant for contact computations. Section 3 reviews the main contact treatments within

the FEM framework, devoting special attention to the FEM counterparts of available IGA contact

formulations. The main drawbacks stemming from non-smooth discretizations are highlighted and

the remedies proposed before the advent of IGA are briefly reviewed. Section 4 presents the cur-

rently available isogeometric contact formulations and points out their similarities and differences

with respect to their FEM counterparts. The well-known Hertz example is revisited to exemplify

the influence of each single property of IGA basis functions on results. A rotating ironing example

is also briefly illustrated. In Section 5, isogeometric domain decomposition approaches as well as

extensions and applications of isogeometric contact formulations are reviewed. Finally, suggestions

for research needs emerging from the previous review are set forth in Section 6 which concludes

the paper.

2 Basis functions and parameterizations in FEM and IGA: main

properties and differences

In this section we overview the main properties of the most common basis functions used in

FEM and IGA and of the corresponding parameterizations applied for the discretization of the

continuum geometry. In both FEM and IGA, uni- and bi-variate parameterizations represent

contact curves/surfaces respectively in 2D and 3D settings, and these are inherited respectively

from the bi- and tri-variate parameterizations of the continuum in a straightforward fashion. In the

following, ds and dp denote the dimensions of the physical and of the parametric space, respectively.

Within an isoparametric approach, the same parameterizations are adopted for the field of the

unknowns. In the large deformation framework, this leads to a significant impact of the properties

of the basis on the quality of the results.

For FEM, classical and hierarchical Lagrange basis functions are touched upon. Further details

can be found e.g. in Szabó and Babuška 1991, Szabó et al. 2004. The IGA overview includes Bern-

stein, B-spline and NURBS basis functions with the corresponding Bézier, B-spline and NURBS
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parameterizations. Although IGA is based on NURBS, examination of their antecedents serves

to elucidate the role of single properties of the basis functions on the results of contact analyses

(see Section 4.5). Further details and extensive references can be found in Piegl and Tiller (1996)

and Rogers (2001). For the sake of completeness, isogeometric parameterizations enabling local

refinement are mentioned along with relevant references.

2.1 Lagrange, Bernstein/Bézier, B-spline and NURBS basis functions

and parameterizations

2.1.1 Lagrange basis functions and parameterizations

The classical univariate Lagrange basis functions on the parametric domain −1 ≤ ξ ≤ 1 are given

by

Li,p (ξ) =

p+1∏
j=1,j 6=i

ξ − ξj
ξi − ξj

(1)

with i = {1, 2, ..., p+ 1} and p as the polynomial degree. The points ξj where

Li,p (ξj) = δij (2)

with δij as the Kronecker’s delta, are called nodes. These are polynomial functions which constitute

a partition of unity, i.e.
∑p+1

i=1 Li,p (ξ) = 1 for all −1 ≤ ξ ≤ 1. They assume both positive and

negative values within the domain. Due to eq. (2), the basis is interpolatory at the nodes.

Every function that can be represented as a linear combination of the standard Lagrange basis

can also be represented by a set of hierarchical basis functions, whereby all lower-order functions

are contained in the higher order basis (Szabó and Babuška 1991). Hierarchic approximation

spaces are created by using the tensor product space of integrated Legendre polynomials. Thus,

different polynomial degrees can be used in each spatial direction to obtain anisotropic approxima-
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tion spaces. Compared to Lagrange polynomials, these hierarchic shape functions lead to better

conditioned system matrices.

Contrary to the classical h-version of the FEM, the p-version (Szabó and Babuška 1991, Szabó et

al. 2004) reduces the error of the approximation by increasing the polynomial degree of the shape

functions locally or globally, and not by refining the mesh. Enlarging the element dimensions

requires special attention to the representation of curved boundaries. These can be described

exactly using the blending function method (Gordon and Hall 1973, Szabó and Babuška 1991,

Düster et al. 2001), which introduces a non-isoparametric mapping.

Both classical and hierarchical Lagrange parameterizations achieve C0 continuity at the inter-

element boundary, which in an isoparametric context applies to both the geometry and the un-

known displacement field. With the blending function method, geometric continuity at the bound-

ary of the domain depends on that of the exact geometry, whereas the displacement approximation

is still C0 continuous.

2.1.2 Bernstein basis functions and Bézier parameterizations

A Bernstein polynomial basis of degree p is defined as

Bi,p (ξ) =
p!

(i− 1)! (p− i+ 1)!
ξi−1 (1− ξ)p−i+1 (3)

with i = {1, 2, ..., p+ 1}, on the parametric domain 0 ≤ ξ ≤ 1. These are polynomial functions

which constitute a partition of unity, i.e.
∑p+1

i=1 Bi,p (ξ) = 1 for all 0 ≤ ξ ≤ 1. They are point-wise

non-negative, i.e. Bi,p (ξ) ≥ 0 for all i, p and 0 ≤ ξ ≤ 1. It is B1,p (0) = Bp+1,p (1) = 1, i.e., the

basis is interpolatory at the ends of the domain.

Multivariate Bernstein basis functions are generated through the tensor product of the univariate

ones. Denoting the univariate basis functions in each parametric direction d = 1...dp as Bd
id,pd

, the

multivariate basis functions Bi,p (ξ) are obtained from
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Bi,p (ξ) =

dp∏
d=1

Bd
id,pd

(
ξd
)

(4)

where the multi-index i =
{
i1, ..., idp

}
denotes the position in the tensor product structure, p =

{p1, ..., pd} indicates the polynomial degree, and ξ =
{
ξ1, ..., ξdp

}
is the vector of the parametric

coordinates in each parametric direction d. Tensor product multivariate basis functions inherit all

the key features of their univariate progenitors. Once the Bernstein basis functions are available,

a Bézier curve can be constructed as their linear combination

C (ξ) =

p+1∑
i=1

PiBi,p (5)

where Pi ∈ Rds are the so-called control points. Bézier surfaces and solids are obtained for dp = 2

and dp = 3, respectively, from a linear combination of multivariate Bernstein basis functions and

control points as follows

S (ξ) =
∑
i

PiBi,p (ξ) (6)

where the summation is extended to all combinations of the multi-index i. Bézier curves (surfaces,

solids) are a special case of B-spline curves (surfaces, solids) described in the next sub-section.

The combination of some of the basis function properties leads to interesting additional properties,

namely:

• the convex hull property. A Bézier curve is completely contained within the convex hull

defined by its control points. For a curve of degree p, the convex hull is defined as the union

of all of the convex hulls formed by p + 1 successive control points. The same property is

also possessed by Bézier surfaces;

• the variation diminishing property. No plane has more intersections with a Bézier curve

than it has with its control polygon. Interestingly, there is no known variation diminishing
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property for surfaces.

2.1.3 B-spline basis functions and parameterizations

A B-spline basis of degree p is generated based on a sequence of real numbers called a knot vector

Ξ = {ξ1, ..., ξm+p+1} (7)

where ξ1 ≤ ξ2 ≤ ... ≤ ξm+p+1, each ξj ∈ R is a knot, and m is the number of basis functions.

Moreover m− p is the number of inner knot spans, some of which may possibly have zero length

if they are bounded by repeated inner knot vector entries. In the so-called open knot vectors, the

first p+ 1 knots are equal and the last p+ 1 terms are equal. Very often ξ1 = 0 and ξm+p+1 = 1.

Based on the knot vector Ξ and order p, the univariate B-spline basis functions Bi,p (ξ) with

i = {1, 2, ...,m} are obtained from the so-called Cox-de Boor recursion formula (Piegl and Tiller

1996). Starting from p = 0 where

Bi,0 (ξ) =


1 ξi ≤ ξ < ξi+1

0 otherwise

(8)

the basis functions for p > 0 are obtained from

Bi,p (ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1 (ξ) (9)

introducing the convention 0/0 = 0. These functions are piecewise polynomials and some of

their important properties are summarized below. They constitute a partition of unity, i.e.∑m
i=1 Bi,p (ξ) = 1 for all ξ1 ≤ ξ ≤ ξm+p+1. They are point-wise non-negative over the entire

domain, i.e. Bi,p (ξ) ≥ 0 for all i, p, and ξ1 ≤ ξ ≤ ξm+p+1. Their continuity depends on Ξ only. If

Ξ has no repeated interior knot, then the order-p basis functions Bi have continuity Cp−1 at the

knots. If a knot has multiplicity k, the smoothness of the B-spline basis is Cp−k at that knot.
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When the multiplicity of a knot is exactly p, the continuity of the basis function becomes C0 and

the basis becomes interpolatory at that knot. In particular, open knot vectors lead to a basis that

is interpolatory at the ends of the domain. Finally, they have local support, meaning that the

support of an order-p basis function is always p+ 1 knot spans.

Multivariate B-splines are generated through the tensor product of univariate B-splines. In a

dp-dimensional parametric space, dp univariate knot vectors are needed

Ξd =
{
ξd1 , ..., ξ

d
md+pd+1

}
(10)

where pd is the polynomial degree in the parametric direction d, and md is the associated number

of basis functions. Denoting the univariate basis functions in each parametric direction d as Bd
id,pd

,

the multivariate basis functions Bi,p (ξ) are obtained from

Bi,p (ξ) =

dp∏
d=1

Bd
id,pd

(
ξd
)

(11)

Once again tensor product multivariate basis functions inherit all the key features of their univariate

progenitors.

Note that, within IGA, in the univariate case one knot span plays the role of an element in standard

FEM. Therefore, unlike Lagrange and Bézier basis functions which have support on one element,

the B-spline basis is defined globally on a patch (i.e. the collection of a number of elements m− p

equal to the number of knot spans in the knot vector) and each function has support on p + 1

elements. Elements may have zero size if they are bounded by repeated knots. In the multivariate

case, the quantity
∏dp

d=1 (md − pd) is the number of elements defined by the parameterization, some

of which may possibly have zero area if they are bounded by repeated inner knot vector entries in

at least one parametric direction. These elements are referred to as Bézier elements. Each basis

function has support on
∏dp

d=1 (pd + 1) elements.

Once the B-spline basis functions are available, a B-spline curve can be constructed as their linear
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combination

C (ξ) =
m∑
i=1

PiBi,p (12)

B-spline surfaces and solids are obtained for dp = 2 and dp = 3, respectively, from a linear

combination of multivariate B-spline basis functions and control points

S (ξ) =
∑
i

PiBi,p (ξ) (13)

where the summation is extended to all combinations of the multi-index i. From the properties of

the B-spline basis functions follow analogous properties of B-spline curves and surfaces. In general,

in all these entities there will be at least as many continuous partial derivatives in parametric

direction d across an element boundary as the basis functions have across the corresponding knot

value in Ξd. Another property inherited from the basis is that of locality: due to the compact

support of the basis functions, moving a single control point will affect the geometry of no more

than
∏dp

d=1 (pd + 1) elements. Also, B-spline curves and surfaces possess the convex hull property

such as Bézier curves and surfaces, and B-spline curves possess the variation diminishing property

such as Bézier curves.

2.1.4 NURBS basis functions and parameterizations

The main reason why NURBS are introduced is that, unlike B-splines, they allow for an exact

construction of conic sections such as circles and ellipses. NURBS basis functions are obtained

from a projective transformation of their B-spline progenitors in Rds+1. Univariate NURBS basis

functions Ni,p (ξ) are given by

Ni,p (ξ) =
wiBi,p (ξ)∑m
j=1wjBj,p (ξ)

(14)
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where Bi,p are B-spline basis functions and wi > 0 are the corresponding weights. NURBS basis

functions inherit the key features of their B-splines progenitors, namely, partition of unity, point-

wise non-negativity, and local support over p + 1 knot spans. Also, their continuity in each

parametric direction follows from the knot vectors Ξi exactly as illustrated for univariate B-spline

basis functions. Multivariate NURBS basis functions are also obtained in tensor product form as

Ni,p (ξ) =
wiBi,p (ξ)∑
jwjBj,p (ξ)

(15)

Also in this case, tensor product multivariate basis functions inherit all the key features of their

univariate progenitors. The parameterization defines
∏dp

d=1 (md − pd) Bézier elements, with each

basis function having support on
∏dp

d=1 (pd + 1) elements.

Once the NURBS basis functions are available, a NURBS curve can be constructed as their linear

combination

C (ξ) =
m∑
i=1

PiNi,p (16)

NURBS surfaces and solids are obtained for dp = 2 and dp = 3, respectively, as follows

S (ξ) =
∑
i

PiNi,p (ξ) (17)

Finally, NURBS curves and surfaces possess the same continuity, locality, and convex hull prop-

erties illustrated earlier for Bézier and B-spline curves and surfaces. Also, NURBS curves possess

the variation diminishing property such as Bézier and B-spline curves.

2.1.5 Summary

Table 1 summarizes the main properties of the basis functions overviewed in this section, whereas

Figure 1 illustrates an example of basis functions with p = 2 corresponding to a parametric

domain [0, 1] subdivided into two equal elements. Using the Lagrange and Bernstein bases, p + 1
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functions are defined on each element, whereas in the B-spline and NURBS parameterizations the

two elements constitute a patch defined by the knot vector Ξ = {0 0 0 0.5 1 1 1}, on which m = 4

basis functions are defined. The properties of the basis functions indicated in Table 1 are clearly

observable in the figure, and the comparison between Figures 1b and 1c demonstrates the role of

the weights chosen for the NURBS basis functions.

2.2 Isogeometric parameterizations with local refinement capabilities

Due to their tensor product nature, NURBS parameterizations are not amenable to local refine-

ment. In order to overcome this limitation, several alternative technologies have been proposed.

While a detailed examination of the available options is outside the scope of this contribution, the

most developed techniques at the current state of research are analysis-suitable T-splines (Bazilevs

et al 2010, Scott et al. 2012), hierarchical B-splines (Vuong et al. 2011, Schillinger et al. 2012)

and the recently proposed isogeometric spline forests (Scott et al. 2014). T-splines have already

been tested for contact computations, as will be illustrated later.

Implementationally convenient NURBS and T-spline finite element data structures are derived

from the Bézier extraction concept (Borden et al. 2011, Scott et al. 2011). As in traditional finite

element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial

basis functions, the so-called Bernstein basis. The Bézier elements may be processed in the same

way as in a standard finite element computer program, utilizing exactly the same data processing

arrays. In fact, only the shape function subroutine needs to be modified, all other aspects of a

finite element program remaining the same. A byproduct of the extraction process is the element

extraction operator. This operator localizes the topological and global smoothness information

to the element level, and represents a canonical treatment of T-junctions, referred to as “hanging

nodes” in finite element analysis and a fundamental feature of T-splines.
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3 Before IGA: contact formulations for C0 discretizations and

smoothing techniques

Despite the progress made in the implementation of contact algorithms in commercial codes, the

efficient numerical solution of large deformation, large slip multi-body contact problems is still a

significant challenge and thus intense research is still going on in the area of computational contact

mechanics (Wriggers and Zavarise 2011). The main difficulties are related to high non-linearity and

non-smoothness, potential ill-conditioning, and heavy computational costs associated with contact

detection.

Treatment of contact constraints within either FEM or IGA entails two main aspects. The first

aspect is the choice of the method to be used for the enforcement of the contact constraints, the

most popular options being the Lagrange multiplier method, the penalty method and combina-

tions of these two such as augmented Lagrange methods. Well-known drawbacks of penalty-based

formulations are unphysical penetrations and bad conditioning of the system of equations. On

the other hand, the Lagrange multiplier method and the augmented Lagrange multiplier approach

in the form proposed by Alart and Curnier (1991) introduce additional unknowns, whereas the

augmented Lagrange multiplier method based on Uzawa’s algorithm requires an additional aug-

mentation loop. Many more details can be found in the classical textbooks by Laursen (2002) and

Wriggers (2006). Any of the aforementioned methods can be used in combination with any of the

formulations presented in the next sections, regardless of whether FEM or IGA discretizations are

used. Therefore this aspect will not be further explored in this paper.

The second aspect is the choice of the way the contact surfaces are parameterized, incorporated

into the variational formulation of the problem and discretized. The importance of this topic

is driven by the need to cope with non-conforming discretizations across contacting boundaries

and/or large deformation and large sliding cases. This paper focuses on this second aspect. This

section outlines the main discretized formulations developed to date in the FEM framework, with

special attention to those for which isogeometric counterparts have been developed. The latter
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will then be the subject of Section 4.

3.1 A brief overview of FEM contact formulations

In the following, a brief overview of the main available FEM contact formulations is presented,

paying attention to two important features, namely, the contact patch test performance and the

stability. Fulfillement of the contact patch test, first introduced by Taylor and Papadopoulos

(1991), ensures the decrease of the discretization error at the contacting surfaces upon mesh re-

finement. Satisfaction of the so-called inf-sup or Ladyzenskaja-Babuska-Brezzi (LBB) stability

condition is an important requirement for mixed formulations, such as those stemming from the

contact constraint enforcement with the Lagrange multiplier method. Algorithms that do not fulfil

this condition can be solvable if a penalty formulation is used, however may suffer from lack of

robustness and significant numerical errors especially for large values of the penalty parameter.

One of the first discretization techniques for large deformation contact problems with non-matching

meshes is the node-to-surface (NTS) algorithm (also called node-to-segment in 2D), which is still of

pervasive use in commercial finite element codes. Here the contact constraints are enforced between

a node of one contact surface (denoted as “slave”) and the corresponding surface or edge on the

counterpart contact surface (the so-called “master”), which effectively corresponds to collocating

the contact integrals at the slave nodes. Early implementations are reported in Hughes et al. (1976,

1977) and Hallquist (1979), and have been extended to more general cases in Bathe and Chaudhary

(1985), Hallquist et al. (1985), Wriggers and Simo (1985), Benson and Hallquist (1990), Wriggers

et al. (1990), and Papadopoulos and Taylor (1992); see also the review in Zavarise and De Lorenzis

(2009a). Obviously, an active set strategy is needed so that only the contributions of slave nodes

with a closed gap (i.e. active contact) are included.

While simple and computationally inexpensive, the NTS formulation is unable to satisfy the contact

patch test. As shown by Zavarise and De Lorenzis (2009b), this stems from the fact that within

this collocated approach the contact pressures are transferred from the slave to the master surface
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in the form of concentrated forces at the slave nodes, which leads to violation of the balance of

moments at the element level. Attempts to restore local equilibrium (such as in El-Abbasi and

Bathe 2001 and Zavarise and De Lorenzis 2009b in a 2D setting) effectively go in the direction of

transforming the NTS into a segment-to-segment approach. Note that this local moment imbalance

is also one reason why the NTS approach is generally used in conjunction with linear elements

(Crisfield 2000). Because of the non-uniform distribution of nodal forces associated with higher

order shape functions in presence of a uniform stress field, fulfilment of the patch test is even more

difficult with higher order discretizations, which may lead to unnatural distortion of the mesh close

to the contacting surfaces.

The NTS algorithm can be proved to be LBB stable (El-Abbasi and Bathe 2001), regardless of

whether the finer or the coarser of the two contacting meshes is treated as slave. Its two-pass ver-

sion, whereby the contact contribution to the weak form is evaluated and incorporated twice while

switching the roles of slave and master surfaces, passes the contact patch test but is overconstrained

and therefore LBB-unstable. The two-pass version has been developed to alleviate a further draw-

back of the NTS formulation, i.e. the strong dependency of results on the discretization and on

the choice of the slave body due to the biased role of the slave and master surfaces.

Finally, it is worth noting that, in nodal constraint approaches, recovery of the contact traction is

not trivial, since this traction is not included explicitly in the formulation but reconstructed after

the analysis. This is done e.g. with the so-called tributary area approach, whereby a contact force

generated by a constraint is divided by a tributary area to provide a contact traction at that node.

The accuracy of the resulting contact pressures is however open to question.

Due to the drawbacks of NTS formulations, several other methods have been developed, where the

contact integral is no longer collocated at the slave nodes and the contact constraints are enforced

in an integral manner. Early methods of this type are often referred to as surface-to-surface (STS)

approaches (or segment-to-segment in 2D). A perturbed Lagrangian formulation first introducing

integration over contact segments in 2D was proposed by Simo et al. (1985). Here a piecewise

constant approximation of the contact pressure, discontinuous across contact segments, leads to
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the enforcement of the contact constraints in an average sense on each contact segment. Further

segment-to-segment approaches were proposed by Papadopoulos and Taylor (1992) using quadratic

elements in 2D, Papadopoulos and Taylor (1993) using bilinear elements in 3D, and Zavarise and

Wriggers (1998) and El Abbasi and Bathe (2001) using 2D linear elements. These approaches

typically employ the so-called intermediate contact surfaces, over which contact quantities can

be defined and discretized, and adopt mixed methods with the contact pressure as the second

field variable, so that a well-defined traction distribution is obtained with no need for ad-hoc

post-processing schemes.

STS formulations pass the contact patch test thanks to the appropriate definition of intermediate

surface segments. However, most of them do not fulfil the LBB stability condition (El-Abbasi and

Bathe 2001). Very similar characteristics are exhibited by more recently developed formulations

based on the enforcement of the contact constraints at an arbitrary number of contact quadrature

points located along the contact surface (Fischer and Wriggers 2005, 2006). In other words, the

contact contribution to the weak form is here integrated in a straightforward fashion by locating a

predetermined number of Gauss-Legendre quadrature points on each element of the slave contact

surface. Obviously, only the contributions of quadrature points with a closed gap (i.e. active

contact) are included. In the following, this approach will be denoted as Gauss-point-to-surface

(GPTS). Note that in this case the patch test is satisfied only up to within the integration error,

as no intermediate surface is introduced and therefore no segmentation for the evaluation of the

contact integral is performed. This makes the approach particularly simple to implement. Another

advantage of this formulation is that the contact surface is qualitatively well captured even with a

low number of elements, unlike in the alternative formulations. This formulation was first proposed

for 2D linear and quadratic elements. Later, Franke et al. (2010, 2011) adopted a similar approach

using higher order hierarchical shape functions (see Section 2.1.1) and describing the (undeformed)

circular geometry of the Hertz contact example exactly with the blending functions method. Their

focus was on the use of adaptive mesh refinement and node relocation so as to accurately capture

the boundary between contact and no-contact regions and thus avoid spurious oscillations of the
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contact pressures at this boundary. Further considerations on this aspect will be reported in

Section 4.5.

Papadopoulos et al. (1995) proposed an alternative GPTS formulation, whereby two loops are

performed treating each surface alternatively as slave and master. The same formulation was

recovered from a very general framework based on surface potentials by Sauer and De Lorenzis

(2013), who denoted the approach as “two half-pass formulation” (hereafter GPTS-2hp), as opposed

to the classical GPTS procedure termed “full-pass”. In each loop (“half-pass”), the contact tractions

are computed only on the surface currently treated as slave. Therefore, no transfer of tractions

to the master side is needed. Local equilibrium at the surfaces is not enforced a priori but was

shown to be recovered with high accuracy. The advantages of the two-half pass approach are the

unbiased treatment of both surfaces, as well as an increased degree of robustness observed in the

numerical computations (Sauer and De Lorenzis 2013). The GPTS-2hp passes the contact patch

test to machine precision but is clearly LBB-unstable.

A further improvement has been more recently introduced with the advent of the so-called mortar

methods, originally developed as an abstract approach for domain decomposition (Bernardi et

al. 1993, 1994). Contact discretizations falling within this framework are characterized by the

enforcement of the contact constraints in a weak sense. With this respect, they are similar to

STS approaches, however their strength lies in the rigorous mathematical background, which

allows a variationally consistent treatment of non-penetration and frictional sliding conditions,

and which guarantees optimal convergence rates. In a sense, mortar methods deliver a form

of intrinsic algorithmic smoothing through their non-local enforcement of the contact constraints.

Early applications of mortar finite element methods for contact mechanics can be found in Belgacem

et al. (1998), Belgacem (2000), Hild (2000), McDewitt and Laursen (2000), and Wohlmuth and

Krause (2003) among others. Extensions and further developments for large deformation problems

can be found e.g. in Yang et al. (2005), Puso and Laursen (2004), Hesch and Betsch (2009), and

Tur et al. (2012).

Within Lagrange multiplier formulations, the so-called dual shape functions (Wohlmuth 2000,
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2001) have been proposed to discretise the Lagrange multiplier space, which enables the con-

densation of the multipliers without compromising the optimality of the method. The resulting

algorithm, presented in Hüeber and Wohlmuth (2005) for small deformation contact, fulfills the

non-penetration condition exactly but, in contrast to standard Lagrange multiplier formulations,

does not increase the size of the global problem. In Hartmann et al. (2007) and Hartmann and

Ramm (2008) this approach was extended to the kinematically non-linear setting. The consistent

linearisation of the contact terms was first given in Popp et al. (2009), whereas a correction for

the consistent treatment of boundaries was presented in Cichosz and Bischoff (2011).

Mortar methods simultaneously satisfy patch test and LBB stability requirements (Puso et al.

2008, Hesch and Betsch 2009, Hüeber and Wohlmuth 2009). Their only drawback with respect to

the previously reviewed formulations is the higher computational cost, mainly stemming from the

computation of the so-called mortar integrals. Since some of these integrals contain the product

of shape functions defined on slave and master bodies, the need arises for the introduction of

an intermediate contact surface (such as in STS algorithms) and for segmentation techniques,

which however enable exact integration only for linear shape functions in 2D. Segmentation is

computationally expensive and leads to a very complicated consistent linearization within Newton-

Raphson iterative procedures (see e.g. Puso et al. 2008). The alternative of a simplified integration

with no segmentation has been pursued by e.g. Tur et al. (2012). For an extensive review of mortar

methods for contact problems in FEM see the paper by Popp and Wall in this special issue.

3.2 Issues stemming from C0 continuity and contact smoothing

techniques

In this section we summarize the main issues raised by C0 continuity within the contact formula-

tions reviewed in the previous section. These are of interest for the purpose of the present review,

as they are naturally solved by the isogeometric parameterizations. We also review the main tech-

niques adopted in the conventional FEM setting to alleviate the issue of non-smoothness; see also
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Laursen (2002) and Wriggers (2006) for a more detailed overview.

3.2.1 Issues stemming from C0 continuity

Within the NTS approach, the identification of the master surface or edge associated to a given slave

node is performed through closest-point (i.e., normal) projection and thus requires the definition of

the normal to the master surface. Undefined or non-uniquely defined normals at the inter-element

boundaries as a result of the C0 continuity of the discretization lead to pathological cases which

require special treatments even in a 2D setting (Heegaard and Curnier 1993, Zavarise and De

Lorenzis 2009a). In the simplest case, averaging normals between adjacent elements is carried out

(Papadopoulos and Taylor 1992, Wang and Nakamachi 1999). More refined treatments introduce

a continuous change of the normal vector, or weighted projections of a slave node onto more than

one master segment (Liu et al. 1999, Zavarise and De Lorenzis 2009a). In 3D, the need arises

for special algorithmic treatments tackling the node-to-edge and the node-to-node subcases beside

the standard, well-defined NTS projection cases (Bandeira et al. 2004). Even with incorporation

of these special treatments, numerical instabilities may occur, especially for applications involving

large sliding, due the non-smooth variation of the contact kinematic and kinetic variables as a

slave node slides over subsequent master facets. The resulting abrupt change in the direction of

the contact forces may generate unphysical oscillations in the results as well as serious iterative

convergence problems and even failure of the analysis.

Pathological projection cases can obviously also occur within GPTS and GPTS-2hp algorithms,

where the slave contact quadrature points rather than the slave nodes are projected. The issues

are the same as for the NTS approach and can be addressed with the same techniques. Within

mortar methods, the “non-local” normal gap evaluated at each slave node is expressed in terms

of a nodal normal, whose definition is a crucial ingredient of the formulation as it also influences

the way the segmentation procedure is conducted. Here most authors (see e.g. Puso and Laursen

2004, Yang et al. 2005, Puso et al. 2008, Popp et al. 2009) introduce a continuous normal

field, which interpolates unique normals at each slave node computed from the average or the
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weighted average of the normals to the surfaces surrounding the node. Accordingly, also unique

unit tangential vectors are defined. Normal averaging obviously also enters the linearization of the

algorithm, and contributes significantly to its complication.

Finally, the C0 continuity of the parameterization also affects the way frictional evolution equations

should be integrated as a node (or a contact quadrature point) slides across element boundaries.

The general definition of the tangential slip increment based on the increments of the parametric

projections only holds for globally C1 continuous parameterizations, so that alternative choices

must be performed when only C0 continuity is available (Lengiewicz et al. 2010).

3.2.2 Contact smoothing techniques

In order to alleviate the issues stemming from the C0 continuity of the discretized contact surfaces,

various surface smoothing techniques for 2D and 3D deformable solids in contact have been pro-

posed. These techniques include Hermite (Pietrzak and Curnier 1999, Taylor and Wriggers 1999,

Padmanabhan and Laursen 2001), Bézier (Wriggers et al. 2001, Krstulovic-Opara et al. 2002,

Lengiewicz et al. 2010), and B-spline interpolations (Padmanabhan and Laursen 2001), Gregory

patches (Puso and Laursen 2002, Lengiewicz et al. 2010), subdivision surfaces (Stadler et al.

2003), and NURBS (Landon et al. 2009). For the special case of the contact of a body with a

rigid obstacle, various C1 continuous surfaces can be defined directly from CAGD models of the

rigid obstacle, such as in Hansson and Klarbring (1990) and Heege and Alart (1996).

Smoothing procedures generally improve the performance of the contact algorithms by enhancing

the continuity of the contact master surface, in order to enable a unique definition of the normal and

tangent vector fields, whereas they leave the geometrical smoothness of the slave surface unaltered.

This leads to a C1 or even C2 continuous representation of the master surface. C2 continuity is not

needed for a smooth normal field but is important in the dynamic setting, where accelerations are

discontinuous at the inter-element boundaries if the interpolation is only C1 continuous (Wriggers

2006).
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These procedures lead in general to a more robust behavior of the iterative solution algorithms for

contact, since the normal and tangent fields are continuous and thus the issues highlighted in Sec-

tion 3.2.1 are solved. However, the design of a smoothed master surface in addition to the existing

finite element mesh, especially in 3D cases, is far from trivial. Moreover the relationship between

real and smoothed geometry needs to be linearized for implicit calculations. Thus smoothing leads

to additional complications in the implementation and data management, and can in some cases

even compromise the banded structure of the stiffness matrix (Padmanabhan and Laursen 2001).

Obviously, smoothing procedures do not increase the order of spatial convergence since the higher

order approximations involve only the surface but not the bulk behavior of the solids. In addi-

tion, due to the interaction of the bulk and surface discretizations in determining the smoothness

of the traction history curves for large deformation and large sliding problems, the observed im-

provement in the quality of the contact response may be limited by the fact that the higher order

approximation does not involve the bulk behavior of the solid.

The approach by Konyukhov and Schweizerhof (2009) can be considered as a smoothing technique

as well. Therein, a single layer of higher order finite elements on the contact surface is combined

with a mesh with linear shape functions in the interior of the contacting bodies. In the contact

layer, the covariant contact description is used in combination with higher order finite elements

with a hierarchical enrichment of the shape functions space, which leads to the exact representation

of the contact boundaries by the blending function method (see also Section 2.1.1). Computation of

the classical Hertz contact problem showed that oscillations can occur if the contact zone is located

inside the master contact segment, as also obtained by Franke et al. (2010, 2011) (see Section 3.1).

In such cases, the reduction of the polynomial order together with under-integration was found

to improve the results, while not representing a general method. The oscillations stem from the

inability of the shape functions to approximate contact pressures featuring non-smoothness within

an element (a master segment), see also Section 4.5.

Also in Corbett and Sauer (accepted) contact smoothing is performed by a superficial layer of el-

ements with increased degree and smoothness combined with linear elements in the bulk domain.
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Unlike in previous surface enriching techniques by the same group using Hermite or Lagrange in-

terpolations (Sauer 2013), here the formulation of the surface enriched elements is based on IGA.

Compared with full IGA formulations, the approach has the advantage of a lower computational

cost. However, the low-degree interpolation of the bulk obviously prevents a higher order spatial

convergence rate. Due to the use of an isoparametric approach, this method can be considered

intermediate between geometry enrichment of the surface layer and fully isogeometric implemen-

tations.

Finally, an approach for time integration of frictional evolution equations capable of solving non-

smoothness issues without introducing a geometry smoothing was proposed by Agelet de Saracibar

(1995). Time integration of frictional tractions is performed by introducing a new assumed slip path

parameterization, which is defined independently of the local surface finite element parametriza-

tion. The assumed slip path can be viewed as an approximation to the geodesic passing through

the initial and final points of each incremental slip path. This eliminates the problems associated

with large slip motions, whereby a full incremental slip path does not lie within a single surface

element.

4 Isogeometric contact formulations

In this section, we first analyze the main aspects shared by all isogeometric contact formulations

that differentiate them from their finite element counterparts. Clearly, these aspects are linked to

the properties of the basis functions and to the specific features of the isogeometric setting. Subse-

quently, we review the isogeometric contact formulations available thus far. Here it is observed that

some aspects inherent to the contact formulations themselves, such as patch test performance, sta-

bility and computational efficiency, do not change when passing from the FEM to the IGA setting.

A summary of FEM and IGA contact formulations is reported in Table 2.
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4.1 Aspects common to all isogeometric contact formulations

Geometry and displacement smoothness. A natural way of retaining the advantages of surface

smoothing while avoiding the drawbacks mentioned in Section 3.2 is to adopt a parameterization of

both the geometry and the displacement field based on NURBS rather than on Lagrange polyno-

mials. Note that, within a large deformation contact setting, smoothness of the geometry alone is

not sufficient as the contact forces are computed in the deformed configuration. For this reason, p-

FEM approaches with blending functions representing the geometry exactly do not perform as well

as IGA (see also Section 4.5). With higher-order IGA basis functions (of at least second order),

controllable smoothness is naturally achieved. This straightfowardly eliminates all pathological

cases mentioned in Section 3.2 and thus also the need for the corresponding special treatments.

Obviously, only the pathologies induced by the discretization are eliminated, whereas C0 features

such as edges and corners embedded in the exact geometry still need to be dealt with. One

option to deal with such features is the use of ad-hoc techniques similar to those used in FEM. An

alternative option was proposed by Lu (2011). The premise is that NURBS admit sharp corners

through repeated knots, in particular, a degree-k NURBS will feature a cusp at one location if

the corresponding interior knot has a multiplicity of k. Thus, a sharp corner can be smoothened

by slightly perturbing the repeated knot. Since the control points are unchanged and due to the

convex hull property (Section 2), the perturbed curve remains inside the convex polygon defined by

the control points. The smoothened curve is at least C1 continuous, thus closest-point projection

algorithms can be used everywhere.

Another situation where C0 continuity is obtained within IGA is at junctions between different

patches. Cases where these junctions form edges and corners may be dealt with exactly as C0

features in the real geometry. On the other hand, in cases where the real geometry is smooth and

C0 continuity is an artifact of the discretization, C1 continuity can be explicitly enforced through

suitable relationships between the displacements of adjacent control points (Kiendl et al. 2009).

The conversion of the NURBS multi-patch model to a single T-spline model is perhaps a more
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compelling option (Sederberg et al. 2003).

In the frictional setting, the higher global continuity of the parameterization also permits a straight-

forward integration of the frictional evolution equations, eliminating the need to keep track of the

sliding of a point across element boundaries as well as the need for complicated assumed-path

procedures such as the one mentioned in Section 3.2.2.

Patch-wise contact search. In the FEM setting, the contact detection (or local contact search)

is conducted essentially element-wise. Each point (node or contact quadrature point) on the

slave surface is associated with nearby elements of the master surface with which the point is

likely to come into contact and the closest-point projection is limited to these elements. In the

large deformation setting, the relative positions of the two surfaces may change significantly and

thus the neighbour list needs to be updated as the solution proceeds. As described in Section 2,

in the IGA multi-patch framework the parameterization is global for each patch and thus contact

detection is carried out on the patch level. In most academic examples, but even for many practical

applications, a contact surface can be described by a single patch, hence the bookkeeping task is

greatly reduced or even eliminated. Typically, the closest point projection is solved using Newton’s

method. For a contact surface consisting of multiple patches, this iterative search may land on a

patch edge, in which case a patch-switching mechanism needs to be implemented.

Note that the performance of Newton’s method is quite sensitive to the initial guess of the projec-

tion point, especially for cases in which the second derivative is not continuous. If the initial guess

is far from the actual solution, indefinite oscillation between two results may spoil the projection.

In such cases, alternative methods such as the bisection method may be used successfully. A pos-

sible strategy to start from a sensible initial guess would be to find the closest physical location

among the maps of the knot vector entries, and use this as initial guess for the Newton-Raphson

iterative procedure. Within a patch, C2 continuity, which can be attained by cubic NURBS, may

prove beneficial.
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4.2 Point collocation approaches: the isogeometric NTS

In the isogeometric counterpart of the NTS approach, the contact contribution to the weak form

needs to be collocated at appropriate physical points. However, the question where to collocate

the contact integrals is not as trivial as in FEM, as the counterparts of the nodes, i.e. the control

points, are not necessarily part of the geometry due to the non-interpolatory nature of the basis

functions. The most natural option would be to collocate the contact integrals at the physical

points associated with the unique knot entries of the NURBS parameterization, i.e. at the vertices

of the Bézier elements on the slave surface. However, as unique knot entries are generally fewer

than the number of control points, this choice would lead to the number of contact constraints

being less than the number of degrees of freedom associated with the slave surface, hence the

contact formulation would be underconstrained. A better option, pursued by Matzen et al. (2013)

in the 2D frictionless setting, is collocation of the contact integrals at a set of physical points in

one-to-one correspondence with the control points associated to the surface. Such sets are e.g.

the Greville, Demko or Botella abscissae. Matzen et al. (2013) focused on Botella and Greville

abscissae whose locations are obtained straigthforwardly, whereas Demko abscissae have to be

computed by a complex iterative algorithm. A convergence study of the Hertzian problem showed

that for a contact area near the patch boundary Greville points yield slightly better results.

A different approach was adopted by Benson et al. (2010a,b) within the commercial code LS-

DYNA (Hallquist 2006). Here the geometry of the contacting NURBS surfaces is approximated

using bilinear quadrilateral interpolation elements so that the existing FEM contact formulations

in LS-DYNA are immediately accessible. Each Bézier element may be approximated by one or

more interpolation elements, depending on the desired accuracy in the solution of the contact

problem. While the slave surface is always approximated with interpolation elements, the master

surface may either be approximated or taken as the actual NURBS surface. In the latter case

a nonlinear closest-point projection procedure is needed, and a coarse search on the interpolated

elements is used to generate a reasonable initial guess. The contact formulation is based on the

single-surface algorithm by Benson and Hallquist (1990), which corresponds to a two-pass NTS
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formulation combined with an efficient contact search scheme.

The isogeometric NTS formulation preserves the simplicity, but also the main typical disadvantages

of an NTS algorithm. Perhaps the most notable of these is the inability to pass the contact

patch test. Moreover, the single-pass algorithm (such as in Matzen et al. 2013) suffers from a

strong dependency of results on the discretization and on the choice of slave and master surfaces,

whereas the double-pass version (such as in Benson et al. 2010a,b) is overconstrained. However,

all disadvantages emanating from the non-smooth discretization are naturally avoided, so that the

robustness and the overall performance appear far superior to those of NTS models in conventional

FEM.

As mentioned in Section 3.1, recovery of contact pressures from an NTS approach is not trivial, and

especially so when higher order basis functions are used, therefore Matzen et al. (2013) examined

two different methods for obtaining stress distributions from the discrete values of the Lagrange

multipliers. In the first approach the contact stress is computed by dividing the contact force at

each control point by a tributary length. The second approach is based on the inversion of the

standard concept to compute discrete (consistent) nodal forces from distributed loads. Both meth-

ods are based on the same input values, namely discrete contact forces at the control points of the

basis functions along the contact zone. Hence the Lagrange multipliers need to be first distributed

from the collocation points (where they are computed) to the control points. The contribution of

the Lagrange multiplier at one collocation point to the contact force at a given control point is

computed from its value multiplied by the value of the basis function corresponding to the control

point evaluated at the collocation point. The discrete force at the control point is thus the sum

of those contributions. Both methods converge with increasing number of degrees of freedom to

the analytical solution (for the Hertz example). However, the first method provides a piece-wise

constant stress approximation which is rather crude considering that a higher order displacement

solution is available. In the second method, independently of the mesh, the numerical solution

displays an oscillating behavior with non-physical tensile contact stresses. The oscillations be-

come more localized at the end of the active contact region as the mesh is refined. The authors
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attributed this behavior to the inability of high-continuity basis functions to capture the C0 con-

tinuity of the exact contact pressure distribution at the boundary between contact and no-contact

regions, similar to what observed by Konyukhov and Schweizerhof (2009) and Franke et al. (2010,

2011) (Section 3.1). They thus successfully evaluated a knot relocation and repetition procedure,

similar to the node-relocation strategy used by Franke et al. (2010, 2011) (see also Section 3.1),

to lower the continuity at the desired location and eliminate the oscillations. However, a different

recovery procedure for the contact pressures used in other IGA contact formulations (see Section

4.5) will be shown to eliminate oscillatory behavior completely in the same Hertz contact example.

Finally, the results of a classical ironing problem show that the NTS approach with NURBS basis

functions is able to produce nearly the same results, in terms of magnitude of the oscillations in

the traction histories, of a significantly more complex mortar approach with linear basis functions,

whereas for the same example with Lagrange basis functions no convergence is achieved. In other

words, the higher smoothness of the basis functions combined with the simplest contact algorithm is

able to attain the same quality of the global response obtained through the algorithmic smoothing

of the more sophisticated mortar method.

4.3 The isogeometric GPTS and GPTS-2hp

The isogeometric counterpart of the GPTS formulation, such as its parent version, is based on

the direct integration of the contact contribution to the weak form. Contact Gauss-Legendre

quadrature points are situated at predetermined locations along the slave contact surface and

the constraints are enforced at all these locations. This approach was termed the “knot-to-surface”

algorithm in Temizer et al. (2011), however the contact constraints enforcement does not take place

at the physical location of the knot vector entries, which is the reason for the alternate terminology

adopted herein. This formulation was demonstrated in combination with the penalty method in

Lu (2011) and Temizer et al. (2011) for 2D and 3D frictionless contact and was extended to the 2D

frictional setting in De Lorenzis et al. (2012), where the approach was denoted as “non-mortar.”
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Temizer et al. (2011) formulated and tested the extension to thermomechanical contact. Lu (2011)

also evaluated the GPTS-2hp formulation, as well as a two-pass version (denoted subsequently as

GPTS-2p), whereby the contact integral was computed twice, switching the role of slave and master

surfaces, but multiplied each time by 0.5. More recently, the GPTS algorithm was adopted in a 2D

and 3D frictionless setting by Dimitri et al. (2014) in combination with T-spline basis functions

to demonstrate the advantages of local refinement.

As its FEM counterpart, the GPTS formulation in the isogeometric setting is characterized by a

remarkable simplicity of formulation and implementation, as well as by the possibility to obtain

qualitatively good results for very coarse meshes. Compared to the more sophisticated mortar-

based approaches, the algorithm is also computationally inexpensive as no quantities such as

mortar integrals are involved. The patch test behavior was demonstrated by Lu (2011). As

already noted for the FEM case, the GPTS-2hp was able to pass the contact patch test to machine

precision, whereas the GPTS and GPTS-2p accuracy was limited by the integration error. Temizer

et al. (2011) and De Lorenzis et al. (2011) showed that the overconstrained nature of the GPTS

formulation, as for standard Lagrange discretizations, typically leads to oscillatory tractions for

the Hertz problem, with oscillations of increasing magnitude as the penalty parameter is increased.

These oscillations were particularly significant for the frictional Hertz example in De Lorenzis et

al. (2011), due to the independent computations of the slip increments and the associated contact

tangential tractions at each contact quadrature point. In Dimitri et al. (2014), the oscillations were

alleviated through a smoothing post-processing scheme (Sauer 2013). The issue of overconstraining

for the GPTS-2hp, although with NURBS-enriched contact elements rather than within a full IGA

setting, was analyzed more thoroughly by Sauer and De Lorenzis (submitted), where it was shown

that the formulation remained stable if the penalty parameter was increased along with the mesh

density, and once again smooth post-processed contact pressures in both the normal and the

tangential directions were obtained.

In the cited references, the direct comparisons between IGA and FEM results was quite limited,

as the focus was placed on mortar methods, but the comparisons always favored the IGA dis-
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cretizations. In Dimitri et al. (2014) a convergence study conducted for T-splines showed similar

orders of convergence to uniform and non-uniform equal degree NURBS discretizations. Despite

the absence of error estimation criteria to guide the local T-spline refinement, the T-spline error

curve was shown to lie below all the NURBS curves, thus demonstrating the superior accuracy of

T-splines for a given number of degrees of freedom. The authors also reported a 3D example with

a complex realistic geometry produced directly in a CAD environment, without intermediate mesh

generation, feature removal, or geometry clean-up steps.

4.4 The isogeometric mortar formulation

The isogeometric mortar contact formulation, such as its FEM counterpart, is not a collocation

approach such as the NTS approach because the weak form of the contact constraints is evaluated

by numerical integration. On the other hand, the contact constraints are not enforced at each

contact quadrature point on the slave surface such as in the GPTS approach, but rather “projected”

to the degrees of freedom of the slave surface, so that the right number of constraints is obtained.

For example in a frictionless setting, “mortar projected” normal gap and normal pressure are

computed at each control point of the slave surface and these have to satisfy the contact constraints.

Due to the non-interpolatory nature of the NURBS basis functions, the slave control points in

general do not lie on the physical slave surface, therefore the mortar contact constraints do not

have the immediate physical meaning that they possess in the FEM setting. This however does

not affect the consistency nor the performance of the algorithm.

Mortar isogeometric contact formulations have been presented by Temizer et al. (2011) and Kim

and Youn (2012) in the 2D frictionless setting, by De Lorenzis et al. (2011) for 2D friction, and

extended to 3D by De Lorenzis et al. (2012) and Temizer et al. (2012) in the frictionless and

frictional settings, respectively. In these approaches the contact constraints were enforced with the

penalty (Temizer et al. 2011, De Lorenzis et al. 2011), Lagrange multiplier (Kim and Youn 2012),

and augmented Lagrangian methods either with Uzawa augmentations (Temizer et al. 2012) or
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with the formulation proposed by Alart and Curnier (De Lorenzis et al. 2012).

As in FEM, isogeometric mortar contact formulations satisfy both the patch test and the LBB

stability requirements. The patch test performance has been demonstrated by Kim and Youn

(2012), whereas the implications of stability have been discussed by Temizer et al. (2011) and De

Lorenzis et al. (2011). They showed the absence of oscillatory behavior in the contact pressures

as the penalty parameter was increased, in contrast to the results of the GPTS formulation.

The mortar contact formulation was shown by Temizer et al. (2011, 2012) and De Lorenzis et al.

(2011, 2012) to deliver two categories of advantages over its FEM counterpart. First, the quality

of the local results, i.e. of the contact pressures (e.g. in the classical Hertz problem), was found

to be superior to that achieved with Lagrange discretization. The contact pressure distributions

stemming from the NURBS parameterizations were always non-negative, were practically insen-

sitive to changes in the interpolation order, and improved monotonically as the mesh resolution

increased. The respective distributions obtained from Lagrange parameterizations were highly

sensitive to the interpolation order, displayed significant spurious oscillations, and in some cases

attained large non-physical negative values. It is important to note that, in these contributions,

the pressure distributions along the contact surface were reconstructed by interpolation of the

control point values using NURBS (or Lagrange) basis functions. Results obtained with this same

reconstruction techniques will be presented in Section 4.5. Second, the quality of the global results,

i.e. of force-displacement or moment-rotation histories was also found to improve. In large fric-

tional sliding problems the time histories of the tractions obtained from the NURBS discretizations

were remarkably smooth and improved in quality with increasing order of the parameterization.

Conversely, the curves obtained from Lagrange parameterizations displayed irregular oscillations

whose magnitude increased with the interpolation order and which in some cases even prevented

convergence.

The only negative side of mortar approaches, such as for FEM, is the significant computational

cost connected to the computation and storage of the mortar integrals. In particular, a crucial

aspect is the integration of the “mixed” mortar integrals (i.e. those containing the products of basis
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functions related to the slave and master discretized surfaces). In the above cited contributions,

integration was performed with the simplified technique mentioned in Section 3.1 (used in the FEM

setting by Tur et al. 2012 among others). With this method, no segmentation of the contacting

surfaces is performed. Rather, quadrature points are projected from the slave to the master surface

and the mixed mortar integrals are computed taking the values at the slave quadrature points and

those at their projection points for the basis functions related to the slave and master surfaces,

respectively. The simplicity of this approach goes at the expenses of the robustness, especially

for large sliding cases or for cases where the slave surface is in intermittent or partial contact. A

partial improvement was proposed by Kim and Youn (2012) in the 2D setting. In their approach,

each slave surface element in partial contact is divided through knot insertion into its active and

inactive portions, and an iterative procedure based on the bisection method is used to identify the

boundary of the active region. The newly inserted knots are used only temporarily for integration

purposes and later eliminated. However, this method does not solve the aforementioned issue,

as even integration on slave segments in fully active contact would require segmentation due to

the non-matching discretizations of the two surfaces. To date, no isogeometric counterparts of

the mortar contact formulation including computation of the mortar integrals via segmentation is

available. As mentioned earlier, segmentation procedures for FEM lead to an exact evaluation of

the mortar integrals only in the 2D case with linear shape functions. Obviously, finding efficient

and accurate segmentation techniques for higher order and higher smoothness shape functions

would not be a trivial task. Also, linearization of the ensuing contact formulation would introduce

a remarkable degree of complication as well as computational cost. On the other hand, probably

an even more robust performance of the resulting algorithm would be achieved, especially for cases

with extreme deformations and very large sliding.

Finally, it is worth noting that an isogeometric counterpart of the dual mortar approach (Wohlmuth

2000, 2001) has not yet been developed. While being certainly not trivial to derive, such an ap-

proach has the potential to greatly enhance the computational efficiency of mortar-based isogeo-

metric methods for contact problems.
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4.5 The Hertz contact problem revisited

Hereafter, the classical Hertz frictionless contact problem between a cylinder (slave) and a rigid

plane (master) is revisited in order to highlight the role played by the properties of the basis

functions on the results, and to put forth some observations on the reconstruction of the contact

pressures. The cylinder has radius R = 1 and its material is linearly elastic with Young’s modulus

E = 1 and Poisson’s ratio ν = 0.3. Only a quarter of the geometry is considered, see Figure 2. The

cylinder is loaded with a vertical force P = 0.002 applied as distributed load on the upper surface.

The analytical solution for this problem is well known and yields p0 = 0.02645 and a = 0.048

for this value of applied force, p0 and a being, respectively, the maximum normal pressure and

the half-width of the contact area. Different meshes are considered to evaluate the effect of mesh

refinement. In all cases, the mesh is refined close to the contact region using non-uniform knot

vectors, and the chosen amount of redistribution of the knot vector entries is such that 80% of

the elements are located within 10% of the total length of the knot vector in both parametric

directions.

Computations are performed with the mortar method in the implementation of De Lorenzis et al.

(2011, 2012). Since the master body is rigid, the use of the simplified integration scheme with

no segmentation does not play any role on results. The penalty method is used with a penalty

parameter fixed at 103.

The same computations are repeated with four categories of shape functions (see also Section 2):

- conventional Lagrange shape functions (Lp), featuring C0 inter-element continuity and describing

the circular geometry approximately;

- hierarchical Lagrange shape functions using the blending function method (Lp
b), featuring C

0

interelement continuity for the unknown displacement field and describing the circular geometry

exactly;

- Bernstein shape functions (Bp), featuring C0 inter-element continuity and describing the cir-

cular geometry exactly, with the additional non-negativity and convex hull/variation diminishing
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properties;

- NURBS shape functions (Np), featuring Cp−1 inter-element continuity and describing the cir-

cular geometry exactly, with the additional non-negativity and convex hull/variation diminishing

properties.

The Bézier interpolation (based on Bernstein shape functions) was obtained from the NURBS

one by means of so-called Bézier extraction, which consists in repeatedly duplicating all interior

knots in the knot vectors until their multiplicity equals the order p. The resulting interpolation is

thus C0 continuous and interpolatory such as the Lagrange one, however possesses the additional

non-negativity and convex hull/variation diminishing properties. Note that, starting from the

same knot vectors, discretizations obtained throught Bézier extraction are obviously finer than

the parent NURBS ones. Herein, discretizations with the same final number of control points are

considered for a more meaningful comparison.

Results are reported in Figures 3 to 10, where the dimensionless contact pressure p/p0 is plotted

versus the dimensionless coordinate x/a. As in Temizer et al. (2011, 2012) and De Lorenzis et al.

(2011, 2012), the pressure distributions along the contact surface are reconstructed by interpolation

of the control point values using the same basis functions adopted for the displacement solution.

The comparison between results obtained with Lp and Lp
b functions isolates the role of an exact

description of the circular geometry. As the figures show, this factor plays virtually no role in

this case. It is perhaps worth recalling that the analytical solution by Hertz was found under

the assumption of a small contact area, so that the circular shape is in fact approximated by

a parabola. Under conditions where this assumption holds (such as in the present example),

the geometry is thus equivalently well approximated by second-order Lagrange and hierarchical

basis functions with the blending function method. For basis functions of different orders, the

hierarchical basis with blending functions maintains an exact description whereas the Lagrange

approximation introduces a geometry deviation from Hertz’s assumptions. Nevertheless, there is

virtually no difference between results from the two sets of basis functions, probably due to the

contact computations being carried out in the deformed configuration.
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In both cases, the best results are obtained with linear discretizations, whereas significant oscilla-

tions appear in the higher order curves. These stem from the Lagrange basis being interpolatory,

and thus oscillatory. Also, due to the possibility of these basis functions to take negative values,

the interpolation of the control point pressure values leads in some cases to negative (i.e. tensile)

pressures, which are obviously unphysical. This typically occurs at the edge of the contact region

whenever it happens to fall within an element. As mentioned earlier, this phenomenon was ad-

dressed by Franke et al. (2010, 2011) using adaptive relocation of nodes to let the edge of the

contact region coincide with an element boundary.

A subsequent comparison can be carried out between Lp and Bp results. The difference between

the two sets of functions consists in the fact that the Bernstein basis functions are non-negative

and exhibit the convex hull/variation diminishing property. As a result of the first property, no

negative contact pressure values are obtained. Due to the second property, the magnitude of the

oscillations is greatly reduced, as the functions are only interpolatory at the element boundaries

(where the C0 continuity is clearly visible) and their values are bounded by the polygon of the

control point values. The edge of the contact region is again the least accurate location when

the edge does not coincide with an element boundary, however the inability to capture the exact

solution does not lead to oscillatory behavior in contrast to what observed in the Lp case.

Further, Bp results can be compared with Np results. Here the difference between the basis

functions consists only in the higher continuity of the Np basis, which is immediately visible in

the curves. The functions are now interpolatory only at the patch boundaries. Obviously, the

C0 exact solution at the edge of the contact region cannot be captured. Note that this would be

the case even if this edge happened to coincide with an element boundary. An option to capture

the edge accurately would be an adaptive knot relocation procedure (the isogeometric counterpart

of the node relocation advocated by Franke et al. 2010, 2011) combined with knot repetition to

achieve a local lowering of continuity.

Note that the previous results differ significantly from those presented by Matzen et al. (2013),

where for the Hertz problem solved with NURBS basis functions an oscillatory behavior was
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obtained at the edge of the contact region, such as seen here for Lagrange basis functions. In

our opinion, this is to be attributed to the different procedure used for the reconstruction of the

contact pressures. Unlike those in Matzen et al. (2013), results presented in this section are

based on interpolation of control point values, and therefore take full advantage of the favorable

interpolation properties of Bernstein and NURBS basis functions. This aspect should be taken

into account while selecting appropriate pressure reconstruction procedures for general contact

algorithms.

The key message of this example is that the higher inter-element continuity is not the only ad-

vantage of isogeometric contact formulations. In frictionless cases with no or limited sliding, other

properties of the isogeometric basis functions, namely the non-negativity and convex hull/variation

diminishing properties, may be as important or even more important than continuity. On the other

hand, an exact description of the geometry may have a minor importance in the large-deformation

setting. For examples with large sliding and especially in frictional cases, continuity is certainly

the key to the better performance of isogeometric contact formulations, for the reasons highlighted

in earlier sections and as extensively demonstrated by the cited references.

4.6 A rotating ironing example

As a further demonstration of the capabilities of IGA discretizations in the context of contact, we

briefly illustrate a challenging example where large deformations and large sliding take place. The

initial discretized geometry is shown in Figure 11a: a deformable indentor (in-plane dimensions

1.0 x 1.0, total height approximately 1.0) is pressed onto a deformable slab (dimensions 3 x 1.5

x 0.75) applying a vertical displacement of -0.75 (including an initial gap between the bodies of

approximately 0.05) in 15 time steps. Subsequently, the indentor is simultaneously dragged 1.45

units across the slab and rotated 90 degrees along its centroidal vertical axis in 50 additional time

steps. Both materials feature a neo-Hooke elastic behavior based on the strain energy function
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Ψ =
µ

2
(trC− 3)− µlnJ +

λ

4

(
J2 − 1− 2lnJ

)
(18)

where the Lamé constants λ and µ correspond to E = 1 and ν = 0.2, C is the right Cauchy-Green

deformation tensor, and J = detF with F as the deformation gradient. For the discretization

second-order NURBS are used in all parametric directions. Frictionless contact is assumed between

the bodies and the contact constraints are enforced with the penalty method, using a normal

penalty parameter fixed at 102. The example is run with the isogeometric GPTS formulation with

8 x 8 Gauss surface quadrature points.

Figures 11b-h are snapshots of the analysis, including contour plots of the vertical Cauchy stress

component, σ33, on the centroidal longitudinal cross-section. The C1 continuity of the second-order

NURBS discretization is the key for the achievement of convergence in this challenging problem,

as well as for the remarkable smoothness of the vertical reaction history reported in Figure 12.

4.7 Contact formulation for isogeometric collocation

All the approaches discussed thus far, within both the FEM and the IGA frameworks, are based

on the Galerkin method, i.e. on the solution of the weak form of the governing equations including

a contact contribution. Recently, an alternative approach denoted as isogeometric collocation is

showing a significant potential to significantly enhance the efficiency of isogeometric methods.

As opposed to Galerkin formulations, isogeometric collocation is based on the discretization of

the strong form of the governing partial differential equations, which is only possible with basis

functions of sufficient smoothness such as those used in IGA (Auricchio et al. 2012, Schillinger

et al. 2013). As isogeometric collocation methods emerge, contact formulations suitable for this

framework are needed to tackle problems involving interactions between multiple bodies with

non-conforming discretizations. In De Lorenzis et al. (submitted), such a contact formulation is

developed and implemented.

In isogeometric collocation, the discretized governing equations of the elastostatic problem, as well
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as the Neumann boundary conditions, are enforced at the appropriate collocation points, whereas

the Dirichlet boundary conditions are built into the solution space. Note that the collocation points

are typically chosen as the Greville or Demko abscissae of the knot vectors, already mentioned in

Section 4.2. These are equal in number to the control points and some are always located on the

boundary of the domain. In this setting, the most natural approach to enforce the contact con-

straints is to treat them as deformation-dependent Neumann boundary conditions on the portion

of the boundary in active contact, which may be identified with classical active set strategies.

All the formulations reviewed in Section 3.1, as well as their isogeometric counterparts in Section 4,

enforce a priori the local pressure equilibrium between the contacting bodies, with the exception of

the GPTS-2hp. This is the main reason why these formulations do not fit well into the collocation

framework. Should one of the contacting surfaces be chosen as slave, the gap would need to

be evaluated and the contact constraints enforced at all collocation points located on the slave

surface. The contact traction t would thus be computed on the slave surface, and due to the a

priori enforcement of equilibrium the opposite traction −t would need to be applied to the master

surface. However, this transfer would not be obvious to realize for meshes with non-matching

location of the collocation points on the contacting surfaces, whereas the same transfer is achieved

naturally within a weak formulation in the Galerkin setting.

Conversely, in the GPTS-2hp approach, two loops are performed treating each surface alternatively

as slave and master. In each half-pass, the contact tractions are computed only on the surface

currently treated as slave. Therefore, no transfer of tractions to the master side is needed. For

this reason, the GPTS-2hp formulation is adopted in De Lorenzis et al. (submitted) to address the

enforcement of contact constraints within the collocation framework and the resulting formulation

is tested using a penalty regularization.

Interestingly, the contact collocation approach passes the contact patch test to machine precision

despite its local enforcement of the contact constraints at the collocation points. The reason is

that the contact-related equations, being obtained from the collocation of the Neumann boundary

conditions in strong form, directly involve contact pressures. Conversely, in the NTS approach
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where the contact constraints are also enforced locally at the slave nodes (in FEM, see Section

3.1) or at the same collocation points (see Section 4.2), the contact residual contributions are

computed in the form of concentrated forces, and recovery of the contact pressure distribution

from these forces does not lead to satisfaction of the patch test due to the local moment imbalance

pointed out in Zavarise and De Lorenzis (2009b).

The contact formulation in the isogeometric collocation setting yields results of very good quality

for regular solutions and uniform meshes. In situations with highly non-uniform meshes, the

original collocation approach leads to a loss of accuracy in the form of local oscillations near the

boundary, which is also observed for the enforcement of standard Neumann boundary conditions.

In the case of contact, the oscillations may even spoil the iterative convergence behavior leading to

failure of the analysis. The issue is solved by an enhanced collocation scheme, whereby Neumann

and contact conditions are written including not only a boundary but also a weighted interior

term. This remedy restores accuracy of the results and robustness of the iterative procedure.

4.8 Beam-to-beam contact formulation

Konyukhov and Schweizerhof (2012) presented a geometrically exact theory for contact interactions

of 1D manifolds in the 3D space, including edge-to-edge, beam-to-beam, cable-to-edge contact

cases. The geometrically exact curve-to-curve contact formulation was combined with various

types of approximations, including NURBS-based isogeometric beam elements, and demonstrated

through examples dealing with the simulation of knot tying. In the knot tying example, convergence

could only be achieved using isogeometric elements, whereas the C0 continuity of higher order

Lagrange elements led to divergence during the first crossing of element boundaries.
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5 Domain decomposition approaches, extensions and applications of

IGA contact formulations

In this section we briefly review investigations not directly focused on the development of new

isogeometric contact formulations, but nevertheless relevant to the topic of contact or to modeling

of interfaces with non-matching discretizations in a broader sense.

5.1 Domain decomposition approaches

Hesch and Betsch (2012) presented a mortar method for the coupling of non-conforming discretized

sub-domains in nonlinear elasticity, whereby mortar integrals were redefined for the IGA frame-

work. An important feature of the approach was the combined use of Lagrange and NURBS shape

functions. This makes it possible to apply IGA in a reasonable fashion and to use Lagrange shape

functions if necessary. The authors applied a specific coordinate augmentation technique to achieve

an energy–momentum consistent formulation of the constrained mechanical system.

In Reuss et al. (2014), the weak enforcement of interface constraints with Nitsche’s method was

used as a coupling tool for non-matching trimmed NURBS patches, as well as for the connection

of spline discretizations with standard triangular finite element meshes. It was shown that the

combination of the Nitsche-based coupling methodology with the finite cell method paves the way

for a treatment of trimmed multi-patch NURBS geometries that completely eliminates the need

for reparameterization procedures. Also, Nitsche-based coupling was shown to lead to optimal

rates of convergence under h-refinement and exponential rates of convergence under p-refinement,

and did not introduce error concentrations along the coupling interfaces.

5.2 Extensions

The study of thermomechanical contact with IGA discretizations was initiated by Temizer et

al. (2011), where thermoelastic calculations of the contact of a Grosch wheel with a plane rigid
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surface were first presented. In Temizer (2013), an isogeometric thermomechanical mortar contact

formulation was applied within a computational homogenization framework for boundary layers

with microscopically rough surfaces. A two-phase homogenization approach combined with the

mortar contact algorithm within IGA was shown to deliver a computational framework of optimal

efficiency that can accurately represent the geometry of smooth surface textures.

Dimitri et al. (in press) presented a NURBS- and T-spline-based isogeometric formulation for 2D

and 3D interface problems with non-matching meshes encompassing contact and mode-I debonding,

based on a generalized version of the GPTS contact algorithm endowed with a cohesive zone model.

In the examples, the performance of Lagrange, NURBS and T-spline discretizations was evaluated.

In contrast to Lagrange discretizations, the use of NURBS led to very small oscillations whereas T-

spline models with the same number of degrees of freedom delivered macroscopically smooth results

due to their ability to be locally refined, which led to a better resolution of the fracture process

zone in the vicinity of the interface and ahead of the cohesive crack. The proposed formulation,

combined with T-spline isogeometric discretizations featuring high inter-element continuity and

local refinement ability, was thus shown to be a computationally accurate and efficient technology

for the solution of more general interface problems than the pure geometric enforcement of the

non-penetration constraints.

5.3 Applications

Due to the analyzed advantages, isogeometric contact formulations have been adopted in a number

of recent studies focusing on various applications. In De Lorenzis and Wriggers (2013) computa-

tional contact homogenization was conducted to derive a macroscopic effective friction coefficient

for rubber as a function of sliding velocity and applied pressure. A central ingredient of the mi-

croscale boundary value problem was contact between the rubber sample and a sinusoidally rough

surface. The numerical model was developed within the isogeometric framework with a mortar

formulation, which was demonstrated to lead to faster spatial convergence in comparison with the
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use of conventional linear elements.

Sauer (submitted) presented a liquid membrane formulation suitable to analyze liquid films with

special attention to their contact behavior. A comparison between Lagrange and NURBS dis-

cretizations demonstrated the better accuracy of IGA. Sauer et al. (submitted) presented a ge-

ometrically exact membrane formulation based on curvilinear coordinates and isogeometric finite

elements, suitable for both solid and liquid membranes including their contact constraints. The

new formulation was illustrated by several examples, considering linear and quadratic Lagrange

elements, as well as isogeometric elements based on quadratic NURBS and cubic T-splines. The ex-

amples showed large accuracy gains between linear and quadratic Lagrange, and between quadratic

Lagrange and isogeometric finite elements. The formulation was successfully applied to liquid

droplets, including contact angles and rough surface contact.

Lu and Zheng (2014) developed a NURBS-based continuum approach of cloth simulation, including

an explicit formulation for contact/impact. The adopted two step impulse-based algorithm, taken

from the available literature, was shown to deal robustly with complicated contact conditions and

to recover a constant quasi-static pressure field in a pressure patch test. The contact detection

scheme, based on the NTS approach, included self-contact. The Newton iterations for contact

detection were reported to suffer from numerical difficulties in the case of complicated geometries,

arising from the non-uniqueness of the solution. An accelerated local search was thus introduced

to improve the initial guess, based on an auxiliary tessellation mesh obtained by splitting each

NURBS element into two triangles. In the simulations, the slave surface was alway parameterized

with NURBS while the master surface could be either a NURBS surface (cloth-cloth contact) or a

polygon mesh (cloth-object contact where the object is represented by a polygon mesh). Despite the

limitations of the approach due to the accuracy and step size issue intrinsic to explicit formulations,

the proposed method proved promising as an analysis tool in textile/garment engineering and

possibly for computer graphics.

Morganti et al. (in preparation) presented the application of NURBS-based IGA to the model

construction and simulation of aortic valve closure. A key ingredient of the model is the description
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of contact between the three aortic leaflets during closure of the aortic valve. The mechanics of

contact also dictates important measures of the physiological behavior such as the coaptation

length. The authors used the contact formulation by Benson et al. (2010a,b) within LS-DYNA.

IGA facilitated the development of analysis-suitable patient-specific models and, in the simulations,

was capable of attaining the same accuracy as FEM with two orders of magnitude fewer degrees

of freedom.

6 Research needs and conclusions

We reviewed the currently available isogeometric contact formulations, placing them into the global

context of computational contact mechanics. The advantages of IGA for the solution of challenging

contact problems are quite evident, and stem from the favorable properties of isogeometric basis

functions, most notably, the higher and controllable continuity at the inter-element boundary

achieved for the geometry but also, within an isoparametric approach, for the unknown displace-

ment field, and the convex hull and variation diminishing properties.

These advantages have not yet been fully explored and exploited. A few open issues and possible

directions for further research, as directly emerging from the above review, are summarized as

follows:

• the efficiency and robustness of isogeometric mortar contact formulations is strongly influ-

enced by the strategy used for the computation and storage of the mortar integrals. The de-

velopment of accurate and yet efficient integration schemes would thus represent a significant

advancement, as would the development of dual mortar formulations for the condensation of

the additional degrees of freedom arising in a Lagrange multiplier approach;

• the local refinement capability of T-spline interpolations and the ability to represent a

complex geometry of arbitrary topology as a single watertight parameterization have re-

cently been proved to provide significant advantages for contact modeling when compared



7 Acknowledgments 42

to NURBS interpolations. To fully exploit these advantages, error-controlled adaptive re-

finement procedures are needed. For the same purpose, alternative basis functions such as

hierarchical B-splines or isogeometric spline forests could also prove interesting. Moreover,

mortar-based contact formulations have never been applied to isogeometric discretizations

capable of local refinement;

• the higher smoothness of isogeometric basis functions leads to inaccuracies at the boundaries

between contact and no-contact regions, i.e. where the exact solution features C0 continuity

possibly within an element. While not leading to oscillatory behavior (differently from what

is observed in FEM), these situations may compromise optimal convergence and could be

tackled using ad-hoc strategies such as local lowering of continuity, local knot relocation, and

local partition of unity approaches. This issue has not yet been addressed;

• as isogeometric collocation emerges as a competitive technology in computational mechanics,

further investigations should be conducted on contact within the collocation framework,

where the first steps have recently been taken and have shown very promising results.

Some of these directions are being currently pursued by the authors.
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Partition Sign Inter-element continuity Interpolatory Convex hull/
of unity Var. dim.

Lagrange yes any C0 at the nodes no
Bernstein yes ≥ 0 C0 at the inter-element boundary yes
B-splines yes ≥ 0 Cp−1 (∗) at the patch boundary yes
NURBS yes ≥ 0 Cp−1 (∗) at the patch boundary yes

Tab. 1: Main properties of the basis functions illustrated in Section 2. (∗) At unique knots.
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FEM IGA

NTS
Hughes et al. (1976, 1977), Hallquist (1979),

Matzen et al. (2013)Benson and Hallquist (1990), etc.
Reviewed in Zavarise and De Lorenzis (2009a)

GPTS Fischer and Wriggers (2005, 2006)
Temizer et al. (2011)

De Lorenzis et al. (2011)
Dimitri et al. (2014)

GPTS 2hp Papadopoulos et al. (1995) Lu (2011)Sauer and De Lorenzis (2013, submitted)

Mortar

Belgacem et al. (1998), Hild (2000), Temizer et al. (2011, 2012)
Wohlmuth and Krause (2003), De Lorenzis et al. (2011, 2012)
Puso and Laursen (2004), etc.

Reviewed in Popp and Wall (this special issue) Kim and Youn (2012)

Tab. 2: Summary of contact formulations in the discretized setting.
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Fig. 1: Basis functions of degree p = 2 on a two-element parametric space (ξ = 0.5 corresponds to
the element boundary). For B-splines and NURBS, the knot vector is Ξ = {0 0 0 0.5 1 1 1}.
The NURBS basis functions have been assigned weights w1 = 1, w2 = 0.3, w3 = 0.5, w4 = 1.
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Fig. 2: Example 1.
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Fig. 4: Mesh with 24x24 elements, higher order parameterizations.
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Fig. 5: Mesh with 48x24 elements, linear parameterizations.
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Fig. 6: Mesh with 48x24 elements, higher order parameterizations.
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Fig. 7: Mesh with 96x48 elements, linear parameterizations.



7 Acknowledgments 63

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - L2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(a) L2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - L3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(b) L3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - L4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(c) L4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - L2b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(d) L2
b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - L3b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(e) L3
b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - L4b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(f) L4
b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - B2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(g) B2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - B3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(h) B3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - B4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(i) B4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - N2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(j) N2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - N3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(k) N3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

numerical - N4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p
/p

0

x/a

(l) N4

Fig. 8: Mesh with 96x48 elements, higher order parameterizations.
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Fig. 9: Mesh with 144x48 elements, linear parameterizations.
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Fig. 10: Mesh with 144x48 elements, higher order parameterizations.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11: Rotating ironing problem: snapshots of the analysis. The orange dots represent the control
points and the white lines are the boundaries of the Bézier elements.



7 Acknowledgments 67

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

0# 10# 20# 30# 40# 50# 60# 70#

Re
ac
%o

n(
fo
rc
e(

Time(step(

Fig. 12: Rotating ironing problem: vertical reaction history.


