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Parareal methods for highly oscillatory ordinary differential

equations

Gil Ariel∗ Seong Jun Kim† Richard Tsai‡

Abstract

We introduce a new parallel in time (parareal) algorithm which couples multiscale
integrators with fully resolved fine scale integration and computes highly oscillatory solu-
tions for a class of ordinary differential equations in parallel. The algorithm computes a
low-cost approximation of all slow variables in the system. Then, fast phase-like variables
are obtained using the parareal iterative methodology and an alignment algorithm. The
method may be used either to enhance the accuracy and range of applicability of the
multiscale method in approximating only the slow variables, or to resolve all the state
variables. The numerical scheme does not require that the system is split into slow and
fast coordinates. Moreover, the dynamics may involve hidden slow variables, for example,
due to resonances. Convergence of the parareal iterations is proved and demonstrated in
numerical examples.

1 Introduction

The parallel in time, also known as the ”parareal” method, introduced by Lions, Maday and
Turinici [43] is a simple yet effective scheme for the parallelization of numerical solutions for
a large class of time dependent problems [44]. It consists of a fixed point iteration involving
a coarse-but-cheap and a fine-but-expensive integrators. Computational time is reduced by
parallelization of the fine integrations. For problems with separated multiple scales, it is
tempting to apply a multiscale solver as a coarse integrator. So far, such types of parallel
methods are limited to a few special multiscale cases such as chemical kinetics [14, 21, 29],
dissipative ordinary differential equations (ODEs) [41] and highly oscillatory (HiOsc) problems
in which the oscillatory behavior is relatively simple [18, 28]. One difficulty stems out from
a fundamental difference between the parareal and the multiscale philosophies — while the
former requires point-wise convergence of the numerical solvers (in the state variable), most
multiscale schemes gain efficiency by only approximating a reduced set of slowly varying
coarse/slow/macroscopic variables [10, 11, 20, 27, 35, 48].

In this paper, we develop a new parareal algorithm that couples multiscale integrators
and fully resolved fine scale integration for parallel in time computation of HiOsc solutions
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of a class of ODEs. There are several advantages in such coupling strategies. First, some
multiscale methods (such as the Poincaré-map technique [2]) only approximate the slow con-
stituents or slow variables of the dynamics. Proper coupling of multiscale and fine scale solvers
via a parareal-like framework can be efficient (by parallelization) in computing full detailed
solutions, including the fast phase in the HiOsc dynamics. Second, the parareal iterations
enhance the stability and accuracy of the multiscale scheme, in particular when the scale sep-
aration in the system is not significant and the corresponding sampling/averaging errors are
non-neligible. Finally, parareal multiscale coupling schemes can deal with more challenging
situations, for example, (a) the effective equation is valid almost everywhere macroscopically,
but is not an adequate description of the system at small but a priori ”unpredictable” locations
in the phase space (as these regions may depend on the solutions); and (b) the influence of
microscopic solutions in these regions on the macroscopic solution elsewhere is significant.

In [41], Legoll et at suggest a multiscale parareal scheme for singularly perturbed ODEs in
which the fast dynamics is dissipative, i.e., the dynamics relaxes rapidly to a low dimensional
manifold. One of the main contributions of [41] is the understanding that the slow and
fast parts of the dynamics need to be addressed separately. They suggest two approaches:
The first is a straight-forward application of parareal, which is shown to converge but loses
accuracy as the system becomes more singular. In Section 1.3 we demonstrate that naive
parareal does not converge when applied for HiOsc systems. The second approach assumes
that the system is split into slow and fast variables, or that a change of variables splitting
the system is given. This approach may be applied to HiOsc systems, but it is relatively
restrictive as in many examples and applications such a splitting is not known. Dai et al
[18] present a symmetric parareal method designed for efficient integration of Hamiltonian
system that involves symmetric coarse and fine integrators along with projections on the
constant energy manifold. This method may be advantageous for HiOsc systems which are
Hamiltonian. However, since it is not multiscale, its accuracy and efficiency are expected to
deteriorate when the frequencies of oscillations are large. Applications of parareal methods
to Hamiltonian dynamics is also analyzed in [25]. Additional approaches to use symplectic
integrators with applications to molecular dynamics include [12, 13, 34]. Finally, Haut and
Wingate [28] suggest a parareal method for PDEs with linear HiOsc forcing. As in [41],
their method applies exact knowledge of the fast variable (the phase in the HiOsc case) to
design a convergent parareal scheme. One of the main goal of the current paper is to design
a convergent parareal algorithm that does not require explicit knowledge of the fast and slow
variables.

We begin with a short overview of the parareal method within the context of ODEs and
test its performance on a simple example HiOsc system.

1.1 The parareal method for ODEs

Consider the following initial value problem

u̇ = f(t, u), u(0) = u0, (1.1)

where u ∈ Rd and t ∈ [0, T ]. We assume that f is sufficiently smooth. Let H denote an
intermediate time step, 0 < H < T and N = T/H an integer. Suppose that we are given two
approximate integrators for (1.1): a cheap coarse integrator with low accuracy denoted C, and
a fine, high accuracy integrator which is relatively expensive in terms of efficiency, denoted
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F . The approximate propagation operators to time H obtained using the the coarse and fine
integrators are denoted by CH and FH , respectively.

Furthermore, denote by ukn the approximation for u(nH) at the k’th iteration. For all
iterations, the initial values are the same ∀k, uk0 = u0. The objective is to have ukn → FnHu0

as k →∞, i.e., convergence to the approximation given by the high-accuracy fine integrator.
The parareal approximation to (1.1) is as follows.

Algorithm 1.1.

1. Initialization: Construct the zero’th iteration approximation using a chosen coarse in-
tegrator:

u0
0 = u0 and u0

n = CHu0
n−1, n = 1, . . . , N.

2. Iterations: k = 1 . . .K

uk0 = u0 and ukn = CHukn−1 + FHuk−1
n−1 − CHu

k−1
n−1, n = 1, . . . , N. (1.2)

Note that the calculation of the fine integrator FHuk−1
n−1 in (1.2) requires only the initial

condition uk−1
n−1, which depends on the previous iteration. Hence, for each k, Ftuk−1

n−1, 0 < t ≤
H, n = 1, 2, · · · , N can be computed in parallel. The solution computed by the accurate but
expensive integrator is a fixed point. Indeed, when the iteration is sufficiently large (k ≥ n),
the solution ukn become identical to it:

ukn = FnHu0, n ≤ k.

In fact, (1.2) can be regarded as a fixed-point iteration. In [44], it is proved that under some
sufficient conditions of f , which we shall recall in Section 1.2,

|ukn − u(nH)| ≤ C(Hk + Ef ), (1.3)

where Ef is the global error in solving the full ODE using the fine propagator, and C depends
on the derivatives of the solutions. Eq. (1.3) assumes a 1st order coarse integrator.

In order to identify the source of the difficulty in developing parareal algorithms for highly
oscillatory problems, we adapt the parareal proof of convergence given by Maday in [44] for
non-singular ODEs.

1.2 Convergence of parareal

We consider ODEs of the form (1.1) with initial conditions u(0) = u0 ∈ D ⊂ Rd. We are
interested in solving (1.1) in a fixed time segment [0, T ]. The solution is denoted u(t;u0), t ∈
[0, T ]. Let Φ denote the flow map (propagator) associated with (1.1),

Φtx = u(t;x), ∀t > 0.

For sufficiently smooth f we have that |Φtx− Φty| ≤ eCt|x − y|. In the following C denotes
a generic positive constant which may depend on T . Since t ≤ T , the prefactor eCt can be
bounded by 1 + T−1eCT t. This yields a linear stability bound for Φt,

|Φtx− Φty| ≤ (1 + Ct)|x− y|.
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For simplicity, we assume that the coarse integrator Ct is a one-step method with step
size H while the fine integrator Ft has step size h � H. In addition, we make the following
accuracy and stability assumptions on the numerical integrators:

|Ftx− Φtx| ≤ CtEf (1 + |x|), |Ctx− Φtx| ≤ CtEc(1 + |x|) (1.4)

where Ef and Ec denote the global sup error in solving (1.1) in [0, T ] using respectively the
fine and coarse integrators in the entire domain of interest D. Note that both Ef and Ec
typically depend on T . In addition,

|Ftx−Fty| ≤ (1 + tC)|x− y|, |Ctx− Cty| ≤ (1 + tC)|x− y| (1.5)

Let δFt = Φt−Ft and δCt = Φt−Ct, denote the errors in the fine and coarse propagators,
respectively. Then, by a triangle inequality,

|δFtx− δFty| ≤ (1 + tCEf )|x− y|, |δCtx− δCty| ≤ (1 + tCEc)|x− y|. (1.6)

We recite the following theorem from [44].

Theorem 1.2. Let K ≤ N/2 = T/2H. Then, for all k ≤ K,

sup
n=0,...,N

|ukn −FnHu0| ≤ C(Ec)
k.

Consequently,

sup
n=0,...,N

|ukn − u(nH)| ≤ C
[
(Ec)

k + Ef

]
. (1.7)

Proof: Applying the parareal iterations (1.2),

ukn −FnHu0 =
[
CHukn−1 − CHuk−1

n−1

]
+
[
FHuk−1

n−1 −FHF(n−1)Hu0

]
=
[
CHukn−1 − CHF(n−1)Hu0

]
−
[
δCH

(
F(n−1)Hu0

)
− δCHuk−1

n−1

]
−
[
δFHuk−1

n−1 − δFH
(
F(n−1)Hu0

)]
,

(1.8)

Using assumption (1.6), and denoting θkn = C(1 +CH)k−n(Ef +Ec)
−kH−k

∣∣ukn −FnHu0

∣∣ , we

have θkn ≤ θkn−1 + θk−1
n−1. By induction, θkn ≤ C

(
n
k

)
. Assuming that Ef < Ec,

∣∣∣ukn −FnHu0

∣∣∣ ≤ CTKEkc = O(Ekc ). (1.9)

1.3 Parareal and HiOsc ODEs

We consider HiOsc ODEs given in the singular perturbation form

u̇ = ε−1f1(u) + f0(u), (1.10)

with initial condition u(0) = u0 ∈ D ⊂ Rd, where D is a domain uniformly bounded in ε.
The parameter 0 < ε ≤ ε0 � 1 characterizes the separation of time scales – the fast scale
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Coarse integrator ε= 0.2 0.1 0.05 0.02 0.01 0.001

Implicit Euler (H = ε/5) K 6 8 13 25 44 351
Implicit Euler (H = 1/10) K 18 49 93 100 100 100

Trapezoidal Rule (H = ε/5) K 1 1 2 3 5 29
Trapezoidal Rule (H = 1/10) K 4 18 71 100 100 100

The proposed method (H = 1/10) K 1 1 1 1 1 1

Table 1: The number of parareal iterations required to yield an absolute errors of 1/10 in
the expanding spiral example. Parameters are α = 1/10, T = 10. The maximal number of
iterations is T/H.

involves oscillations with frequencies of order ε−1 while the computational time domain is
[0, T ] with T independent of ε. Throughout the paper we assume that f1, f0 are sufficiently
smooth, and that for each u0 ∈ D, u(t) is uniformly bounded in ε in the time interval [0, T ].
Furthermore, we assume that the Jacobian of f1 has only purely imaginary eigenvalues in D,
which are bounded away from 0 and independent of ε. These settings typically imply that
the computational complexity of direct non-multiscale methods is at least O(ε−1).

To understand some of the challenges in applying the parareal framework to HiOsc sys-
tems, we consider the following simple example

u̇ = (α+ iε−1)u, u(0) = 1. (1.11)

With α > 0, the trajectory of u(t) = e(α+iε−1)t is an expanding spiral in the complex plane.
We further assume that the fine integrator is exact, Ftu = e(α+iε−1)tu. We first investigate
the performance of Algorithm 1.1 using two conventional methods as Ct: Implicit Euler and
Trapezoidal Rule. Table 1 compares the minimal number of parareal iterations, K, to reach
an absolute error below 1/10. We observe that when conventional methods are implemented
as a coarse integrator K becomes prohibitively large as ε gets small. The increase in K for
conventional coarse integrators can be explained by the error estimate (1.3). The difficulty
lies in the constant C, which grows rapidly with 1/ε. For an order p coarse integrator, the
error is proportional to the p + 1 time derivative of f , which is of order O(ε−(p+1)). As a
result, the parareal error for HiOsc systems (1.7) depends on ε,

|ukn − u(nH)| ≤ C
{
Ef +

[
ε−1

(
ε−1H

)p]k}
. (1.12)

An immediate consequence is that H has to be o(ε), even when applying A-stable or symplectic
methods. See for example the conclusion in [18].

This simple example reveals the reason why a naive implementation of the parareal ap-
proach may not be effective for integrating HiOsc problems: both stability and accuracy
restrictions require that the coarse integrator take steps of order ε. As a result, the number of
coarse steps is O(ε−1) and the method may take O(ε−1) iterations to converge. For compar-
ison, we also include in Table 1 the results obtained using the proposed multiscale parareal
method.
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2 Fast oscillations and parareal

In order to facilitate the presentation of the main algorithms, we shall first describe the setting
for the underlying multiscale methods.

The literature on efficient numerical integration of problems with separated time scale is
rapidly growing. For HiOsc ODEs, recent approaches include envelope methods [45], FLow
AVeraging integratORS [48], Young measure [10, 11] and equation free approaches [35], Mag-
nus methods [15, 30], Filon methods [32, 36], spectral methods [31, 42], asymptotic expansions
[17, 33] and the Heterogeneous Multiscale Methods [1, 19, 20]. For a recent review see [22].

Typically, multiscale methods tackle the computational difficulty in solving HiOsc ODEs
by taking advantage of scale separation, and aim at computing only the slowly varying prop-
erties of the oscillatory solutions. It requires that enough information about the influence of
fast scales on the slower scale dynamics can be obtained by performing localized simulations
over short times, and thereby better efficiency is achieved. The numerical complexity of these
methods is therefore much smaller than direct simulations of the given systems with HiOsc
solutions. For example, [5] presents multiscale algorithms that compute the effective behavior
of HiOsc dynamical systems by using slow variables that are predetermined either analytically
or numerically. More precisely, we define a slow variable for the system (1.10) with solution
u(t; ε) as follows.

Definition 2.1. A smooth function a(t, ε) is called slow to order ν ≥ 1 if |dνa/dtν | ≤ C in
t ∈ [0, T ] for some constants C and T independent of ε ∈ (0, ε0], ε0 > 0. A smooth function
ξ(u) : D → R is called a slow variable with respect to u(t) if ξ(t) = ξ(u(t; ε)) is slow to
order 1.

See [6, 10, 11, 24, 26, 38, 39, 40] for similar definitions and applications for HiOsc problems.
In this paper, we will work with the following main assumption.

Assumption 2.2. There exists a diffeomorphism Ψ : u → (ξ(u), φ(u)), independent of ε,
separating slow and fast variables such that (ξ, φ) along the trajectories of (1.10) satisfies an
ODE of the form {

ξ̇ = g0(ξ, φ), ξ(0) = ξ(u0),

φ̇ = ε−1g1(ξ) + g2(ξ, φ), φ(0) = φ(u0),
(2.1)

where ξ ∈ Rd−n, φ ∈ Rn, and 0 < ε ≤ ε0 � 1 is a small parameter. We assume that for fixed
slow coordinates ξ, the fast variable φ is ergodic with respect to an invariant manifold which
is typically diffeomorphic to a n-torus, Tn.

We shall refer to φ as the phase of u. By the theory of averaging, e.g. [46], the dynamics
of the slow variables can be approximated (O(ε) in the sup norm for 0 ≤ t ≤ T , T = O(1))
by an averaged equation of the form

˙̄ξ = F (ξ̄), F (ξ̄) =

∫
g0(ξ, φ)dφξ,

ξ̄(0) = ξ(u0),

(2.2)

where dφξ denotes the invariant measure for φ at fixed ξ. For example, separable Hamiltonian
systems constitute a wide class of dynamical systems that satisfy this assumption.
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The main objective of many multiscale methods is efficient numerical approximations of
ξ(u(t)) only. The general strategy of our algorithm is based on such multiscale methods for
HiOsc ODEs that only resolve the macroscopic behavior of a system as specified by the slow
variables [3, 4, 5, 6, 7, 8, 23, 47]. In this respect, the algorithms listed above are different
from other multiscale methods that resolve all scales of the dynamics, for example, multi-level
methods or high-order asymptotic expansions [15, 16, 17, 38, 39].

It is possible to design a parareal algorithm for computing only the averaged slow variables
using multiscale integrators as both the coarse and fine integrators. Such an approach is
essentially a parareal scheme for the averaged equation. However, this is not the point of
this paper — here we are interested in the possibility of creating a parareal algorithm that
computes all state variables, including the fast phase information.

We consider the problem of using a multiscale integrator in the coarse integration, and
provide the stability of the corresponding coupling of multiscale-fine integrators under the
parareal framework. Since the error bound stated in (1.12) still formally applies in this case,
one cannot expect convergence of u(t) unless some additional improvement is made to the
chosen existing multiscale scheme.

Consider again the simple expanding spiral (1.11) with α = 1. It is easily verified
that |u(t)| = et is a slow variable. For convenience of the discussion, we assume that the
fine/microscopic solver is exact, i.e. Ftu = e(1+iε−1)tu, and that the coarse/macroscopic
solver is exact in the slow variables, i.e. any function of |u| is computed without error but
the phase of u may be wrong. We write the macroscopic solution as CtU = etei(tε

−1+θt)U ,
where θt ∈ [0, 2π) denotes the error in the phase that is produced by the macroscopic solver.
Applying Algorithm 1.1 we obtain

u
(1)
3 = u(3H)

(
1 +O(θ2

H)
)
, u

(2)
3 = u(3H)

(
1 +O(θ3

H)
)
. (2.3)

This simple exercise shows that the naive iterations improve the accuracy of the macro-
scopic solution if θH is small, and that the iterations diverge if θH is not sufficiently small.
However, in a typical HiOsc, θH is not neccesarily small. In general, it is bounded by
|θH | ≤ Const (H/ε mod 2π).

In the following sections, we show that by aligning the phase of the coarse and fine solvers,
it is possible to design parareal algorithms that use multiscale coarse integrators.

3 Multiscale parareal

In this section, we introduce the main contribution of this paper – accurate and convergent
parareal algorithms that use multiscale methods as coarse integrators. Two parareal schemes
are presented. The first focuses on approximating only the slow variable, while the second
achieves sup-norm convergence in the state variable, u ∈ Rd. Both methods are based on a
phase alignment strategy, which can be applied if, for fixed slow variables, the phase is ergodic
with respect to a circle. Accordingly, we assume that the slow coordinate ξ = (ξ1, · · · , ξd−1)
is a vector of d− 1 functionally independent slow variables.

3.1 Multiscale coarse integrator

For the remainder of this paper, we shall assume that the coarse propagator is a multiscale
method that only approximates the slow variables. In order to emphasize this point, the
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multiscale coarse integrator will be denoted Mt in place of Ct. Similar to assumption (1.6),
we shall assume that

|δMtx− δMty| ≤ (1 + tCH)|ξ(x)− ξ(y)|. (3.1)

The parareal proof of convergence as given in Section 1.2 hinges on the stability assumption
(1.6), which does not directly involve the exact solution. As a result, as long as (1.6) holds,
the parareal iterations will converge, although not necessarily to the exact solution. However,
with a multiscale coarse integrator, (3.1) implies that stability only in the slow variables is
guaranteed. Accordingly, we propose to modify the coarse multiscale integrator by fixing the
fast variable (a fast phase in the case of HiOsc problems). In terms of slow-fast coordinates,
the multiscale integrator will be stable in the slow coordinates due to (3.1) while stability in
the fast variable will be enforced by aligning trajectories with respect to a common reference
phase. In order to achieve this, we assume that one can devise the following local alignment
algorithm.

Local alignment:

Given u0 and v0 such that ξ(u0) = ξ(v0) + ∆ξ.
Let w0 = Ψ−1(ξ(u0), φ(v0)) be the point that has the same slow coordinates as u0 and the
same phase as v0.

Find a point w̃0 such that |w̃0 − w0| = O(∆ξ).

In other words, the local alignment procedure replaces u0 by a new point w̃0 that has the
same (to order ∆ξ) slow coordinates, i.e. ξ values, as u0, and approximately the same phase
as v0. A trivial solution to the local alignment problem is to set w̃0 := v0. However, this is
not an adequate strategy that can be used in the next steps of development of our multiscale
parareal algorithm.

Notation 3.1. We denote such a local alignment procedure as w̃0 = S0(u0; v0).

Given a local alignment algorithm S0, we propose the following modified parareal scheme.

Algorithm 3.2.

1. Initialization: (Construct the zero’th iteration approximation)

u0
0 =u0 and u0

n =MHu
0
n−1, n = 1, . . . , N.

2. Iterations: k = 1 . . .K

(a) Parallel fine integrations for n = k, . . . , N ,

ukF,n = FHuk−1
n−1.

(b) Parareal correction: For n = k, . . . , N ,

uk0 = u0 and ukn = S0(MHu
k
n−1;ukF,n) + ukF,n − S0(MHu

k−1
n−1;ukF,n). (3.2)

8



In each iteration we first calculate all fine scale integrations. Then, the results of the multi-
scale integrators are aligned with the fine scale ones. In the following, we prove that using
Algorithm 3.2, all slow variables converge to their limiting value given by the fine scale ap-
proximation. We consider a 1st order multiscale integrator with local phase alignment.

Theorem 3.3. Let K ≤ N/2 = T/2H. Then, for all k ≤ K,

sup
n=0,...,N

∣∣∣ξ(ukn)− ξ (FnHu0)
∣∣∣ ≤ CHk.

Proof: We recall the assumption that there exists a diffeomorphism Ψ : u → (ξ(u), φ(u))
such that ξ ◦ u(t) are slow while φ ◦ u(t) are fast. The variables (ξ, φ) are only used in the
analysis but not in the numerical algorithm.

The main difference with the general analysis described in Section 1.2 is that the bound
(1.6) is not valid if a multiscale coarse integrator is used. Instead, denoting by δS0(Mtu1;u∗) =
S0(Φtu1;u∗)− S0(Mtu1;u∗), we have

Ψ ◦ δS0(Mtu1;u∗)−Ψ ◦ δS0(Mtu2;u∗) = (δξ, δφ) , (3.3)

such that |δξ| ≤ (1+Ct)|ξ(u1)−ξ(u2)| but |δφ| = O(ε) which is the accuracy of local alignment.
Comparing with conventional methods as a coarse integrator and the related estimate (1.12),
the slow part is controlled by the local phase alignment in Algorithm 3.2 just like in the non-
singular case, while the rapidly changing phase is incorrect but does not affect the accuracy
of the slow variables.

The slow variables of ukn in (3.2) are

ξ(ukn) = ξ(S0(MHu
k
n−1;ukF,n)) + ξ(ukF,n)− ξ(S0(MHu

k−1
n−1;ukF,n)),

which is valid with the local alignment. We may thus think of the multiscale integrator
combined with the local alignment as a coarse integrator with first order accuracy for the
slow variables. For shorthand, we denote byMHu

k
n−1 the combined S0(MHu

k
n−1;ukF,n). The

error in the slow variables is evaluated similarly to (1.8),

ξ(ukn)− ξ(FnHu0)

=
[
ξ(MHu

k
n−1) + ξ(FHuk−1

n−1)− ξ(MHu
k−1
n−1)− ξ(FHF(n−1)Hu0)

]
=
[
ξ(MHu

k
n−1)− ξ(MHF(n−1)Hu0)

]
+
[
ξ(δMHF(n−1)Hu0)− ξ(δMHu

k−1
n−1)

]
+
[
ξ(δFHuk−1

n−1)− ξ(δFHF(n−1)Hu0)
]

Using (3.3), for every slow variable ξ, we have that∣∣∣ξ(ukn)− ξ(FnHu0)
∣∣∣ ≤

(1 + CH)
∣∣∣ξ(ukn−1)− ξ(F(n−1)Hu0)

∣∣∣+ C(ε−1Ef +H)H
∣∣∣ξ(uk−1

n−1)− ξ(F(n−1)Hu0)
∣∣∣

Denoting θkn = (1 + CH)k−n(Ef + CH)−kH−k
∣∣ξ(ukn)− ξ (FnHu0)

∣∣ and following the same
procedure as in (1.9), we have for the slow variable,

sup
n=0,...,N

∣∣∣ξ(ukn)− ξ (FnHu0)
∣∣∣ ≤ C(Ef + CH)k ≤ CHk.
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3.2 Phase continuity in the coarse and fine scale simulations

We next consider convergence of the parareal approximation to the exact solutions. The
main idea is to enforce consistency in the fine scale solutions between neighboring coarse time
intervals. We may rephrase this problem as the following.

Forward alignment of step size H:

Given u0, v0, and u1 = FHu0 such that ξ(u0)− ξ(v0) = O(ε).
Let w0 = Ψ−1(ξ(u0), φ(v0)) and w1 = FHw0.

Find a point w̃1 such that ξ(w̃1) = ξ(w1) +O(ε) and φ(w̃1) = φ(w1) +O(H2).

In the problem of forward alignment, if w0 is a point with the same slow variable as u0 and
phase as v0, then a forward alignment procedure constructs an order H2 approximation of
w1 = FHw0, the right end point of a coarse interval. See Figure 1A for a schematic sketch.

Notation 3.4. We denote such a forward alignment procedure as w̃1 = SλH(u1;u0, v0), where
λ are precomputed parameters to be used in the alignment.

The forward alignment procedure can be trivially accomplished simply by setting w̃1 to
v1FHv0 or w1. However, this would require the additional computation of v1 from v0, and so
this trivial ”fix” has a computational cost of sequentially solving the entire system with the
fine integrator. In practice, for the purpose of parallel in time computations, one needs to
do so with a computational cost that is lower than running the fine scale solver sequentially.
Hence, we need to estimate the solution to the given ODE with the given initial condition
v0 by certain simple operations performed on the fine scale solutions already computed in
parallel. In the following section, we shall describe a forward alignment algorithm for the
special case of HiOsc ODEs, in which, for fixed slow variables, the fast phase is periodic. The
method applies only a local exploration by means of minimal additional fine scale computation
of the solution around u0 and u1. In particular, its efficiency is independent of ε.

To summarize, we present the complete multiscale-parareal algorithm. Recall that MH

is a multiscale method that only approximates the slow variables. For the fast phase, using
local and forward alignments, we propagate the needed phase adjustments sequentially along
with the parareal correction.
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Algorithm 3.5. Full multiscale-pararel algorithm.

1. Initialization: Construct the zero’th iteration approximation:

u0
0 = u0 and u0

n =MHu
0
n−1, n = 1, . . . , N.

2. Iterations: k = 1...K

(a) Parallel fine integrations for n = k, . . . , N :

uk−1
F,n := FHuk−1

n−1.

(b) Header: For n = 0, . . . , k − 1, set ukn = uk−1
F,n .

(c) Parareal step: Set the initial reference point u∗ = uk−1
k−1 and for n = k, . . . , N ,

i. Locally align the previous uk−1
n−1 with the current reference point u∗:

ũk−1
n−1 = S0(uk−1

n−1;u∗).

ii. Align forward to the end of the coarse segment:

ũk−1
F,n = SλH(uk−1

F,n ;uk−1
n−1, u

∗).

iii. Corrector:

ukn = S0(MHu
k
n−1; ũk−1

F,n ) + ũk−1
F,n − S0(MH ũ

k−1
n−1; ũk−1

F,n ).

iv. Update the reference point u∗ = ukn and repeat.

Local and forward alignment steps (Step 2(c)i and ii, respectively) create a point ũk−1
F,n at the

end of each coarse segment according to which all points in the current corrector iteration can
be aligned. Since the error in each forward alignment is of order H2, we find that the overall
phase is continuous up to a global O(H) error. We conclude that following phase alignments,
the aligned coarse multiscale method provides an globally O(H) approximation of both slow
and fast variables, i.e., it approximates the solution in the sup norm.

Example 6.1 demonstrates the effectiveness of the method in a more complicated expand-
ing spiral with a slowly changing frequency. Before describing numerical methods for local
and forward alignments of HiOsc ODEs, we address the convergence of the algorithm.

3.3 Convergence of Algorithm 3.5

Convergence of Algorithm 3.5 in the state variable is obtained in two steps. First, following
Section 3.1 and Theorem 3.3, all slow variables converge to their values obtained by the fine
scale integrators,

sup
n=0,...,N

|ξ(ukn)− ξ(u(nH))| ≤ C(Hk + Ef ),

where C is a constant that is independent of ε. In particular, if Ef = O(ε), then, following
O(log(ε)) iterations, the error in the slow variables is of order ε. As a result, after a few
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(typically one or two) iterations, the assumptions underlying forward alignment, that the er-
ror in the slow variables is of order ε holds (more precisely, ξ(u0) − ξ(v0) = O(ε)). We may
thus think of the adopted multiscale combined with the local/forward alignment algorithm as
a coarse integrator with first order accuracy for all state variables. Hence, the conventional
parareal proof of convergence described in Section 1.2 holds. More precisely, suppose that, fol-
lowing the phase alignment, the set {w0, . . . , wN} is computed and updated in every iteration.
Denoting the exact solution v(t) of (1.10), the following estimates hold for j = 0, . . . , N ,

|ξ(wj)− ξ(v(jH))| = O(EM ),

|φ(wj)− φ(v(jH))| = O(H),

|wj − v(jH)| = O(H) +O(EM ),

where EM is the error of the aligned multiscale method in approximating the slow variables.
Assume further the stability properties for the fine and aligned-multiscale coarse propa-

gators (1.6). Therefore, after one parareal iteration,

sup
n=0,...,N

∣∣u1
n − u(nH)

∣∣ ≤ C(ε−1EM + EF ).

After k iterations, and assuming a first order multiscale coarse integrator, EM = O(H),

sup
n=0,...,N

∣∣∣ξ(ukn)− ξ(u(nH))
∣∣∣ ≤ C(Hk + EF ),

and
sup

n=0,...,N

∣∣∣ukn − u(nH)
∣∣∣ ≤ C(ε−1Hk + EF ).

The accuracy of slow variables is improved to by a factor of H per parallel iteration (compare
with the diverging factor of (ε−1H)k in (1.12)).

Remark 3.6. In [41], Legoll et al propose a multiscale parareal algorithm for stiff ODEs in
which the fast dynamics is dissipative, i.e., trajectories quickly converge to lower dimensional
manifolds. A naive application of the parareal methodology to stiff dissipative systems suffers
from similar difficulties as we discussed earlier. To circumvent the difficulties, Legoll et al [41]
suggest a correction step that allows a consistent approximation of the fast-slow dynamics
with parareal using an idea that is similar to our alignment method. However, their method
requires identifying an explicit expression for the fast variables. For stiff dissipative systems,
the fast variables are exponentially attracted to zero, which is not the case for HiOsc dynamics.
As a result the methods of [41] cannot be directly applied to HiOsc problems. In contrast,
the method presented in the following section is seamless in the sense that it does not require
knowing the slow nor the fast variables.
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(A) (B) 

Figure 1: Local and forward alignments. (A) At t = 0, given two points u0 and v0, we wish
to approximate w0 = S0(u0; v0) – a point that has the same slow variables as u0 and the same
phase as v0. At t = H, we approximate the point w1 = FHw0 (B) At t = 0, a small O(ε) of
w̃0 yields at t = H a larger O(H2 + ε) error. The center of the circles represent w̃0 and w̃1.

4 Phase alignment strategies

In this section, we describe a numerical method for both local and forward alignments as
defined in the previous section for the special case of HiOsc ODEs in which, for fixed slow
variables ξ, the dynamics of the fast phase φ is periodic.

In the Algorithm 3.5, v0 and u0 will correspond to ukn and uk−1
n , the solutions computed

at the current and the previous iterations, respectively. The assumption is that v0 is the
more accurate approximation of the solution at the time t = nH, particularly in the phase
variable. The goal is that from the available information, u0, v0, and u1 := FHu0, we estimate
v1 := FHv0 at t = (n+1)H in order to make correction in the phase of u1. We also emphasize
that in the subsequent time steps, FHu0 is always available because of the prior parallel fine
integrations. Now w0, as defined in Section 3.2, is a point on the same slow coordinates as
u0 but has the same phase as v0. Consequently w1 := FHw0 is a good estimate of v1. In
this section, we propose a strategy that move u0 to w0, and u1 to a state that is within
O(ε) to w1, without computing FHw0 or FHv0. Our goal is to describe a method that finds
a point w̃0 such that |w0 − w̃0| = O(ε) (local alignment) and a second point w̃1 such that
|w1 − w̃1| = O(H2 + ε) (forward alignment).
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In addition to Assumption 2.2, we assume the following,

Assumption 4.1. The fast variable φ ∈ R and g0(ξ, φ) is 1-periodic in φ.

For fixed ξ, the time derivative of φ may depend on the slow variables, i.e., the periodicity
in time of g0(ξ, φ(t)) is of order ε and depends on ξ. Accordingly, it is denoted ετ(ξ), where τ
is a smooth, slow function. Note that this does not mean that the oscillation in the original
state variables are linear because the transformation Ψ is in general nonlinear.

4.1 At time t move u0 closer to w0

Assuming that ξ(u0)−ξ(v0) = O(ε), we may use v0 instead of w0, which is not known. Denote

J(t;u0, v0) = |Ftu0 − v0|2 .

We look for the local minima of J(t;u0, v0) closest to t = 0 (by the periodicity assumption,
such local minima exist)

0 = J ′(t;u0, v0)(t) = 2 (Ftu0 − v0) · d
dt

(Ftu0 − v0) = 2 (Ftu0 − v0) ·
(
∂Ψ−1

∂ξ
ξ̇ +

∂Ψ−1

∂φ
φ̇

)
.

To leading order in ε, we have

(Ftu0 − v0) · (∂Ψ−1/∂φ) = O(ε). (4.1)

In other words, the phase of Ftu0 is close to that of v0, φ(Ftu0) = ψ0 + O(ε) and therefore
also to the phase of w0. We denote the “first” two local minima

−ετ0 +O(ε2) < t−0 < 0 < t+0 < ετ0 +O(ε2),

where τ0 = τ(ξ0). Consider
w̃±0 = Ft±0 u0,

and the convex combination using these points,

w̃0 = Su0 = λ+w̃
+
0 + λ−w̃

−
0 ,

with weights λ = (λ+, λ−) independent of ε. Thus, equation (4.1) implies that, for any linear
combination such that λ+ + λ− = 1, |w̃0 − v0| = O(ε), i.e., w̃0 defined above is a valid choice
in the local alignment procedure. We define

Local alignment:
S0(u0; v0) = λ+Ft+0 u0 + λ−Ft−0 u0.

A numerical implementation of the local alignment S0 solves the l2 minimization of the func-
tionals J(t).
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4.2 At time t+H move u1 closer to w1

We would like to do the same at t = H, i.e., move u1 = FHu0 to w1 = FHw0. The main
difficulty is that we cannot expect that the solution has oscillations of constant periodicities.
We denote τ1 = τ(ξ1) = τ0 + (ξ1− ξ0)(∂τ/∂ξ) +O(H2). In analogy to the procedure at t = 0,
we find the “first” two minimizers of

J(t;u1, w1) = |Ftu1 − w1|2 ,

such that
−ετ1 +O(ε2) < t−1 < 0 < t+1 < ετ1 +O(ε2).

Let
w̃1 = λ+w̃

+
1 + λ−w̃

−
1 , with w̃±1 = Ft±1 u1 = w1 +O(ε).

Then, for any constants λ+, λ− we have that |w1− w̃1| = O(ε). The problem is that we do not
know w1 and therefore cannot find t±1 . One option is to use t±0 instead and choose weights λ±
that minimize the error. This requires us to relate the t0’s and t1’s.

Denote
Ψu0 = (ξ0, φ0) , Ψu1 = ΨFHu0 = (ξ1, φ1) ,

Ψv0 = (η0, ψ0) ,

Ψw0 = (ξ0, ψ0) , Ψw1 = ΨFHw0 = (ξ1, ψ1) .

Without loss of generality, we assume that ψ0 > φ0 and |ψ0 − φ0| < 1. Similarly, assume
ψ1 > φ1 and |ψ1 − φ1| < 1. Then, to leading order in ε,

t+0 = (ψ0 − φ0)ετ0, t+1 = (ψ1 − φ1)ετ1,

t−0 = −(1− ψ0 + φ0)ετ0, t−1 = −(1− ψ1 + φ1)ετ1.

Next, denote the solution of (ξ, φ) with initial condition (ξ0, φ0) as ξ(t; ξ0, φ0) and φ(t; ξ0, φ0),
i.e., (ξ(t; ξ0, φ0), φ(t; ξ0, φ0)) = ΨFtu0. Using the averaging principle (2.2), we can write

ξ(t; ξ0, φ0) = ξ̄(t) + εγ(t/ε, ξ) +O(ε2),

where ξ̄(t) is a slow function that does not depend on the phase and γ(s, ξ) is independent of

ε and is τ(ξ)-periodic in s with zero average,
∫ τ(ξ)

0 γ(s, ξ)ds = 0.

φ(H; ξ0, φ0) = φ0 +

∫ H

0

[
ε−1g1(ξ(t; ξ0, φ0)) + g2(ξ(t; ξ0, φ0))

]
dt

= φ0 +

∫ H

0

[
ε−1g1(ξ̄(t)) + g2(ξ̄(t))

]
dt+

∫ H

0
g′1(ξ̄(t))γ(t/ε, ξ̄(t))dt+O(ε)

= φ0 + F (ξ0; ε) +O(ε),

for some function F that depends only on ξ0 and ε, but not on the initial phase φ0. In
particular, we note that

φ(w1)− ψ0 = φ(FHw0)− ψ0 = φ(H; ξ0, ψ0)− ψ0 = F (ξ0; ε) +O(ε).

Similarly,
φ1 − φ0 = φ(FHu0)− φ0 = φ(H; ξ0, φ0)− φ0 = F (ξ0; ε) +O(ε).
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Hence, φ(w1)− ψ0 = φ1 − φ0 = O(ε). In other words, starting at w0 instead of u0 introduces
a phase shift that is practically constant. We have then

t+1 = (ψ1 − φ1)ετ1 = (ψ0 − φ0) ε

[
τ0 +

∂τ

∂ξ
· (ξ1 − ξ0)

]
+O(εH2 + ε2)

= (ψ0 − φ0)ετ0 + (ψ0 − φ0)ε
∂τ

∂ξ
· (ξ1 − ξ0) +O(εH2 + ε2)

= t+0 +Ht+0 ∆ +O(εH2 + ε2),

where ∆ = 1
Hτ0

∂τ
∂ξ · (ξ1 − ξ0) = O(1). Similarly,

t−1 = t−0 +Ht−0 ∆ +O(εH2 + ε2).

Consider

Ft±0 u1 = F−Ht±0 ∆Ft±1 u1 +O(εH2 + ε2) = F−Ht±0 ∆w̃
±
1 +O(εH2 + ε2).

Expanding around w̃±1

Ft±0 u1 = w̃±1 −
H

ε
δt±0 ∆ +O(H2 + ε2),

for some vector δ ∈ Rd independent of ε. Therefore, taking a linear combination λ+ +λ− = 1
and denoting λ = (λ+, λ−),

SλH(u1;u0, v0) = λ+Ft+0 u1 + λ−Ft−0 u1 (4.2)

=
(
λ+w̃

+
1 + λ−w̃

−
1

)
+
H

ε
δ
(
λ+t

+
0 + λ−t

−
0

)
∆ +O(H2 + ε2)

= w1 +
H

ε
δ
(
λ+t

+
0 + λ−t

−
0

)
∆ +O(H2 + ε).

Finally we see that with the choice

λ+ =
−t−0

t+0 − t
−
0

, λ− =
t+0

t+0 − t
−
0

,

the first order term cancels. Thus, we obtain a second order accurate forward alignment to
w1. See Figure 2 for the error of (4.2) in a numerical example.

Algorithm 3.5 applies the convex combination (4.2) in forward alignment. Indeed, con-
vergence in the state variable heavily relies on this step because the new point ũk−1

F,n after the
forward alignment is assigned as the reference for local alignment in the next coarse interval.
See Step 2(c)iii. We emphasize that taking SλH as (4.2) may shift the slow coordinates of the
resulting u1 from what was computed by the multiscale coarse integrator and assumed to be
accurate. In the next subsection, we propose a more elaborate method to further improve the
overall accuracy of the forward alignment step.

4.3 Improving accuracy in forward alignment

Here, the idea is that we identify the convex combination with the point which divides the
trajectory of (1.10) originating from Ft+0 u1 and ending close to Ft−0 u1 by a proportion of λ−
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Figure 2: The error in correcting the phase at the end of one coarse segment. Example
details are given in Section 6.1. (A) With a fixed frequency (a = 0), the phase at the end
of a coarse segment u0 is aligned with v0 with an O(ε) error. (B) With a slowly changing
frequency (a = 0.2) the error is of order H2. Blue: forward correction with s+, red: backward
correction with s− and black: a linear combination of shifts using the forward alignment
algorithm defined in Section 4.

to λ+. Since there are two orientations of Ft(Ft+0 u1) defined by forward and backward in time

integrations, the modified convex combination will provide us with two points depending on
the orientations, and we will choose the one closer to SλHu1.

First, we propose to find the first two local minimizers of

J(t;Ft+0 u1,Ft−0 u1) = |Ft(Ft+0 u1)−Ft−0 u1|2,

such that −ετ1 < Γ−p < 0 < Γ+
p < ετ1. Denoting

t++
0 = t+0 + λ−Γ+

p and t+−0 = t+0 + λ−Γ−p , (4.3)

we again find the first local minimizers of

J(t;Ft−0 u1,Ft++
0
u1) = |Ft(Ft−0 u1)−Ft++

0
u1|2,

J(t;Ft−0 u1,Ft+−0
u1) = |Ft(Ft−0 u1)−Ft+−0

u1|2,
(4.4)

such that −ετ1 < Γ−∗ < 0 and 0 < Γ+
∗ < ετ1, and denote them by

t−−0 = t−0 + Γ−∗ , t
−+
0 = t−0 + Γ+

∗ . (4.5)

With local minimizers of (4.4), the phases between Ft++
0

and Ft−−0
, and between Ft+−0

and

Ft−+
0

are the same. Now, we define the new weights using t0’s in (4.3) and (4.5) by

λ++ =
−t−−0

t++
0 − t−−0

, λ+− =
−t−+

0

t+−0 − t−+
0

, λ−− =
t++
0

t++
0 − t−−0

, λ−+ =
t+−0

t+−0 − t−+
0

.

The convex combination (4.2) is now modified as

Sλ1H (u1;u0, v0) = λ++Ft++
0
u1 + λ−−Ft−−0

u1, Sλ2H (u1;u0, v0) = λ+−Ft+−0
u1 + λ−+Ft−+

0
u1.
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Here, we note that

ξ(Sλ1H (u1;u0, v0)) = ξ(u1) +O(ε), ξ(Sλ2H (u1;u0, v0)) = ξ(u1) +O(ε).

In words, the modified convex combinations Sλ1H (u1;u0, v0) and Sλ2H (u1;u0, v0) guarantee the
accuracy of order ε in the slow variables of u1.

Now, we propose to implement the forward alignment SλH(u1;u0, v0) as follows.

Forward alignment:

1. Set the reference point using (4.2), û := λ+Ft+0 u1 + λ−Ft−0 u1.

2. Compute two modified convex combinations with opposite orientations,

Sλ1H (u1;u0, v0) = λ++Ft++
0
u1 +λ−−Ft−−0

u1, Sλ2H (u1;u0, v0) = λ+−Ft+−0
u1 +λ−+Ft−+

0
u1.

3. Denote by SλH(u1;u0, v0) the combination closer to û.

Remark 4.2. An unperturbed system of the HiOsc system (1.10), if exists, preserves the slow
variables but changes the fast variables. Indeed, by denoting F0 the fine integrator for the
unperturbed system, ξ(F0

t u0) = ξ(u0) for all t > 0 but φ(F0
t u0) 6= φ(u0) for some t > 0. If

the unperturbed system of (1.10) is explicitly known, one can achieve more accurate local and
forward alignments by using F0 in the minimization of J(t). Unfortunately, the unperturbed
system is not explicitly known for general systems.

5 A multiscale integrator based on Poincaré-map

Even though the goal of the multiscale system is a consistent description of only the slow
variables, in practice, obtaining an explicit expression for the slow variables is often difficult
or impossible, in particular for high-dimensional systems (see [9] for an example). In [2], a
new type of multiscale methods using a Poincaré map technique was introduced. This method
only assumes the existence of slow variables but does not use its explicit form. A novel on-
the-fly filtering technique achieves high order accuracy. Recall the general two-scale ODE
(1.10) with initial condition u0 ∈ D ⊂ Rd:

u̇ = ε−1f1(u) + f0(u), u(0) = u0. (5.1)

By ignoring the lower order perturbation part of the vector field, an unperturbed dynamical
system is defined. The essential part of the Poincaré-map technique is to generate a path whose
projection on the slow subspace has the correct slow dynamics. To this end, the scheme solves
both the perturbed and the unperturbed systems from the same initial conditions for short
time intervals, and compares the resulting trajectories.

The method relies on the following assumptions regarding the HiOsc dynamics

Assumption 5.1. The dynamics of the unperturbed equation

v̇ = ε−1f1(v), v(0) = v0. (5.2)

is ergodic with respect to an invariant manifold M(v0).
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We denote the solution of (5.2) by v(t; v0).

Assumption 5.2. The invariant manifolds M(z) is defined by the intersection of the level
sets of slow variables ξ1, ξ2, · · · , ξk, k < d. More precisely, we may identify the invariant
manifold of v by level sets of the slow variables for u, M(z) = ∩kj=1{ζ ∈ Rd : ξj(z) = ξj(ζ)}.

Hence, the solution u(t) defines a foliation of invariant manifolds M(t) := M(u(t)). Note
that our method only assumes the existence of such ξ’s but does not require obtaining them.

Suppose we solve the full equation (5.1) and the associated unperturbed version (5.2) with
the same initial condition. Then, it is possible to extract the flow of M(t) from comparison
of u(t) and v(t) without explicitly knowing the slow variables. The central idea is to locally
create a path γ in states space that is transversal to the fast flow. This cut will be defined
and approximated by a procedure that realizes a Poincaré return map along it. We shall look
for a slow γ(t), i.e., require that |γ̇| ≤ C such that for any slow variable ξ, ξ(γ(t)) = ξ(u(t)).
In other words, the effective slow path γ(t) goes through the same foliation of slow manifolds
as the exact solution, M(γ(t))) =M(u(t)). The time derivatives of such effective paths can
be obtained by extracting the influence of lower order perturbations in the given oscillatory
equation. Approximating the derivative will require solving the HiOsc system for reduced time
segments of order ε. Since γ is slow, it can be approximated using macroscopic integrators
with step size H independent of ε. As a result, the overall computational complexity of the
resulting algorithm is sublinear in ε−1.

To be consistent with previous notation, we denote by Ft the fine scale approximated
propagator for the full equation (1.10), and by F0

t the fine scale approximated propagator
for the unperturbed equation (5.2) in which the low order perturbation is turned off. In
particular, note that under the dynamics of (5.2) all slow variables are constants of motion.
Let ε < η < H. A basic Forward-Euler step, depicted in Figure 3A can be written as

un+1 = Fηun +
H

η

(
Fηun −F0

ηun
)
. (5.3)

The values of the effective path γ(t) at t = nH is then identified with un, n = 0, 1, · · · , N . High
order approximations of γ(t) may be obtained by combining several steps and using high-order
extrapolation. The name ”Poincaré technique” alludes to the fact that γ(t) is transversal to
the solution curves of the unperturbed equation. Thus, the full solution induces a Poincaré
return map, which is used to approximate γ(t). See [2] for details.

The bottleneck in the efficiency of the new algorithm is a consequence of small-amplitude,
high-frequency oscillations in ξ(u(t)). The accuracy can be improved by sampling the deriva-
tives of a locally smooth average of ξ, ξ̄ instead of the weakly oscillating ξ. Since we assume
no explicit knowledge about the slow variables, ξ̄ must be computed intrinsically. In [2], a
filtering technique is proposed for the simple case in which the invariant manifold of the un-
perturbed equation is diffeomorphic to a circle, i.e., the unperturbed dynamics is periodic.
More precisely, we propose to replace (1.10) by the filtered equation

˙̄u = ε−1f1(ū) +K(t/η)f0(ū, t, ε−1t), t∗ ≤ t ≤ t∗ + η, (5.4)

where the filter Kη is Cq([0, η]) and satisfies the moment condition of the form∫ η

0
Kη(η − s)sjds =

∫ η

0
sjds, j = 0, 1, 2, · · · , p.
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The accuracy of (5.4) was demonstrated and analyzed in [2].

(A) (B)

Figure 3: The Poincaré map-type technique approximated all slow variables but does not
require knowing their explicit formulas. (A) A forward-Euler type construction. (B) The
symmetric Poincaré method is first order, but symmetric with respect to the Poincaré return
points.

5.1 Symmetric Poincaré methods

The simple Forward-Euler step (5.3) can be applied in simple situations in which the frequency
of the fast oscillation is not a slow variable itself (i.e., g1 in (2.1) is not a function of ξ) [2].
This restriction can be lifted by generating interpolation points γ∗k symmetrically described
as follows. Our idea it to generate and choose interpolation points γ∗ so that in the state
space, (2η)−1

(
γ∗1 − γ∗−1

)
approximates implicitly the derivative of ξ̄(t) but results in small

derivative of φ(t), more precisely, of order η2. The method, originally proposed and analyzed
in [37], can be described as

un+1 = γ∗−1 +
H

2η

(
γ∗1 − γ∗−1

)
, (5.5)

where
γ∗−1 = F0

ηun, γ∗1 = F0
−ηF2ηun.

Convergence of the method is proved in [37]. The method (5.5) defines a propagator, denoted
MH ,

MH =

(
1− H

2η

)
F0
η +

H

2η
F0
−ηF2η.

6 Numerical examples

6.1 Expanding spiral with slowly varying fast oscillations

Consider the following HiOsc example

ẋ = −2πε−1[1 + (1− az1)z2]y + bx

ẏ = 2πε−1[1 + (1− az1)z2]x+ by

ż1 = 1

ż2 = −az2

(6.1)
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where a, b > 0 are constants. Initial conditions are (x, y, z1, z2)(0) = (1, 0, 0, 1). The solution
of (6.1) is x(t) = ebt cos

[
2πε−1(1 + e−at)t

]
, y(t) = ebt sin

[
2πε−1(1 + e−at)t

]
, z1(t) = t, and

z2(t) = e−at.
Hence I = x2 + y2, z1 and z2 are three slow variables while (x, y) is a linear oscillator

with expanding amplitude
√
I and a slowly changing period ε/(1 + e−at). The example falls

under the general category of HiOsc systems in which the dynamics of the fast phase slowly
evolves according to the slow variables. The local O(H2) error introduced by the 1st order
coarse multiscale integrator is realized.

The system (6.1) is integrated using the full multiscale Poincaré-parareal method, applying
the corrected phase shift described in Section 4 to ensure convergence in the state variable.
We stress that the numerical approximation is obtained without using our knowledge that
the system can be decomposed into the three slow variables I, z1 and z2 and a fast phase-like
variable φ = arctan(y/x). This decomposition and the exact solution are only used in order to
explain the fast-slow structure in the dynamics and for demonstrating the rate of convergence
of different variables.

Figure 4A shows the error in the slow variables as a function of iteration. After a single
iteration the error in the slow variables drops below ε, which is the theoretical limit possible
with multiscale methods on their own. Figure 4B shows the absolute error in the state variable
of the entire trajectory. Initially, the absolute error is large. This is because the inaccurate
slow variables create a jump in the phase between coarse time segments. However, after two
iterations, the phase shift becomes accurate and the method converges to the exact solution.
Parameters are detailed in Table 2.

Table 2: Parareal parameters in Example 6.1.

ε T H hfine ηPoincare hPoincare RelTol, AbsTol(ODE45 parameters)

10−3 2 0.1 ε/200 7ε ε/10 10−13, 10−11

Figure 4: Expanding spiral with a = 0.2, b = 0.1, Example 6.1. (A) The error in the slow
variables, max

i=1,2,3
||ξi(·)− ξi ◦ uk(·)||L∞([0,T ]), as a function of iteration. (B) The absolute error

in the state variables as a function of iteration.
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6.2 Non-linear oscillators

Consider the following example of a Voltera-Lotka oscillator with slowly varying frequency
and amplitude

ẋ = ε−1x(1− zy)

ẏ = ε−1zy(x− 1)

ż = 0.2x

Initial conditions are (x, y, z)(0) = (1, 2.9, 1). For fixed z, (x, y) is a Voltera-Lotka oscillator
whose period is of order ε. The period and amplitude of (x, y) depend on a parameter z,
which is given by the time integral of x. As a result, z is a slow variable. It is easily verified
that the first integral of the oscillator is also slow,

I = x− log(x) + y − log(y)/z

Again, we stress that the slow variables are only used in order to demonstrate the results of
the method. They are not used in the numerical approximation. In addition, Figure 5A shows
the level set of the slow variable,

{
u ∈ R3 : I(u) = I(x(tn), y(tn), z(tn))

}
, projected onto x-y

plane. In contrast to the previous examples, the level set of the slow variable I is not a circle.
As a result, J(t) may have several local minima and we need to find the first local minima
which is close to the global minimum of J within a few periods. Parameters are given in Table
3. The fine integrator is ODE45 method, and the coarse integrator is the Poincaré 2nd order
multiscale method. A C3 kernel with p = 1 is used for the filtered equation.

Table 3: Parareal parameters in Example 6.2.

ε T H hfine ηPoincare hPoincare RelTol, AbsTol(ODE45 parameters)

10−3 10 1/2 ε/200 30ε ε/10 10−13, 10−10

Figure 5: A Lotka-Voltera oscillator with slowly varying frequency and amplitude, Exam-
ple 6.2. (A) The level sets of the slow variable I projected onto x-y plane. (B) The absolute
error in the state variables as a function of iteration.
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6.3 Passage through resonance

One of the fundamental assumptions underling multiscale approaches such as Poincaré and
other methods, is a spectral gap in the spectrum of the Jacobian of the equations of motion.
However, the multiscale parareal scheme described above goes further than conventional mul-
tiscale methods by resolving all scales of the dynamics - both the slow and the fast. The
following example shows that due to this advantage, multiscale parareal may converge even
when the assumption of a spectral gap fails due to a temporary passage through resonance.
Consider the following example

ẋ = −2πε−1f(z)y + 0.5 sin(z)x

ẏ = 2πε−1f(z)x

ż = 1

where
f(z) = tanh (50(z − 4.5)) .

Initial conditions are (1, 0, 0). In words, f(z) changes smoothly from -1 to 1, vanishing at
z = 4.5. Hence, the frequency of oscillation undergoes fast oscillations with varying frequency,
except close to t = 4.5. At this time, f(z) vanishes and the system is no longer highly
oscillatory. More precisely, trajectories go through a transition layer. Its width in this example
is of order ε. The two slow variables are I = x2 + y2 and z.

Figure 6A shows the values of the state variables with ε = 10−4. Due to the resonance,
the Poincaré method fails to capture the correct evolution of the slow variables when crossing
the singular point t = 4.5. However, combining with parareal, the fine solution of parareal
integrates the equation across the resonance and allows the multiscale method to proceed
beyond the singularity. In Figure 6B, the absolute error in the state variable does not decrease
with iterations because the accuracy of phase alignment relies on the scale separation which
does not exists near t = 4.5. We show, however, that the convergence in the state variable can
be achieved with a slight modification of Algorithm 3.5. Figure 6C is obtained by skipping
phase alignments, Step 2(c)i and ii, and replacing Step (c)iii with the naive correction (1.2)
in the interval near t = 4.5.

Table 4: Parareal parameters in Example 6.3.

ε T H hfine ηPoincare hPoincare RelTol, AbsTol(ODE45 parameters)

10−4 7 1/4 ε/200 15ε ε/10 10−13, 10−11
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Figure 6: Passage through resonance, Example 6.3. (A) The solution of x(t) and y(t) with
t ∈ [4, 5] and ε = 10−4. The frequency function vanishes at t = 4.5 and solutions lose their
highly oscillatory nature. (B) The absolute errors of both state (circles) and slow (crosses)
variables as a function of iterations with phase alignment at all the time. (C) The absolute
errors with phase alignment turned off near t = 4.5. Convergence in the state variable is
achieved.

7 Summary

The paper describes two approaches to incorporate multiscale integrators as coarse integrators
in parareal methods. The first, presented in Section 3.1, approximates all the slow variables.
However, the numerical approximation of the state variables ukn does not converge to the true
solution u(nH). This parareal-multiscale combination has several advantages compared to
other multiscale schemes.

• It offers increased stability and is less sensitive to the choice of parameters. Intuitively,
the parareal iterations can ”fix” errors incurred by the inexact multiscale scheme.

• It offers increased accuracy. In fact, the accuracy of slow variables may be smaller than
O(ε), which is a theoretical limit for Poincaré and other multiscale methods that are
based on averaging or homogenization principles.

• It may be applied for systems with moderate scale separation. Most multiscale methods
are more efficient than conventional, non-multiscale schemes if the separation in scale is
large enough, i.e., if ε is sufficiently small. However, they typically become less efficient
or unstable at intermediate values of ε.

• The method may be used in situations in which the dynamics looses its multiscale
structure in a short transition layer, for example, due to passage through resonance, see
Example 6.3.

The second approach, presented in Section 3.2, computes convergent approximation to
all state variables in the system. This algorithm requires the phase alignment procedure,
described in Section 4 in addition to the steps needed in our first algorithm. We prove that
the accuracy of the scheme in the sup norm after K iterations is of order ε−1HK +Ef , where
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H is the a coarse step size. In particular, the number of iterations to achieve a given error
tolerance is logarithmic in ε−1.

The computational cost of the method can be divided into two contributions. The first
is the cost of the fine integrator invoked at each parareal iteration. With K iterations its
contribution to the overall cost is proportional toKHε−1. The second contribution comes from
the overhead of coarse multiscale integrators and phase alignment. While this contribution is
independent of ε, it grows linearly with the number of coarse step sizes, H−1. Hence, there is a
trade off in choosing H. With a large scale separation ε� 1, the first contribution dominates
and, assuming maximal parallelization is available, it is advantageous to use a relatively small
H, even if the multiscale method allows larger steps. The two contributions balance if one
takes H =

√
ε, which implies a computational cost of order Kε−1/2. In contrast, parallel

methods using conventional integrators will require at least O(ε−1) steps.
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[34] H. Jiménez-Pérez and J. Laskar. A time-parallel algorithm for almost integrable hamil-
tonian systems.

[35] I. G. Kevrekidis and G. Samaey. Equation-free multiscale computation: Algorithms and
applications. Annu. Rev. Phys. Chem., 60:321–344, 2009.

[36] M. Khanamiryan. Quadrature methods for highly oscillatory linear and nonlinear systems
of ordinary differential equations: part i. BIT Numerical Mathematics, 48(4):743–761,
2008.

[37] S. J. Kim. Numerical methods for highly oscillatory dynamical systems using multiscale
structure. PhD thesis, University of Texas at Austin, 2013.

[38] H.-O. Kreiss. Problems with different time scales for ordinary differential equations.
SIAM J. Numer. Anal., 16(6):980–998, 1979.

[39] H.-O. Kreiss. Problems with different time scales. In Acta numerica, 1992, pages 101–139.
Cambridge Univ. Press, 1992.

[40] H.-O. Kreiss and J. Lorenz. Manifolds of slow solutions for highly oscillatory problems.
Indiana Univ. Math. J., 42(4):1169–1191, 1993.

27



[41] F. Legoll, T. Lelievre, and G. Samaey. A micro-macro parareal algorithm: application
to singularly perturbed ordinary differential equations. SIAM J. Sci. Comput., 2013.

[42] D. Levin. Fast integration of rapidly oscillatory functions. Journal of Computational and
Applied Mathematics, 67(1):95–101, 1996.

[43] J.-L. Lions, Y. Maday, and G. Turinici. A ”parareal” in time discretization of pde’s.
Comptes Rendus de l’Academie des Sciences, 332:661–668, 2001.

[44] Y. Maday. The parareal in time algorithm. In Substructuring Techniques and Domain
Decomposition Methods, volume 44, page 19. Saxe-Coburg Publications, Stirlingshire,
UK, 2010.

[45] R.L. Petzold, O.J. Laurent, and Y. Jeng. Numerical solution of highly oscillatory ordinary
differential equations. Acta Numerica, 6:437–483, 1997.

[46] J. A. Sanders, F. Verhulst, and J. Murdock. Averaging methods in nonlinear dynami-
cal systems, volume 59 of Applied Mathematical Sciences. Springer, New York, second
edition, 2007.

[47] R. Sharp, Y.-H. Tsai, and B. Engquist. Multiple time scale numerical methods for the
inverted pendulum problem. In Multiscale methods in science and engineering, volume 44
of Lect. Notes Comput. Sci. Eng., pages 241–261. Springer, Berlin, 2005.

[48] M. Tao, H. Owhadi, and J. Marsden. Nonintrusive and structure preserving multiscale
integration of stiff odes, sdes, and hamiltonian systems with hidden slow dynamics via
flow averaging. Multi. Mod. Simul., 8:1269–1324, 2010.

28


