
ICES REPORT 16-18

August 2016

Mixed methods for two-phase Darcy-Stokes mixtures of
partially melted materials with regions of zero porosity

by

Todd Arbogast, Marc A. Hesse, and Abraham L. Taicher

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Todd Arbogast, Marc A. Hesse, and Abraham L. Taicher, "Mixed methods for two-phase
Darcy-Stokes mixtures of partially melted materials with regions of zero porosity," ICES REPORT 16-18, The
Institute for Computational Engineering and Sciences, The University of Texas at Austin, August 2016.



MIXED METHODS FOR TWO-PHASE DARCY-STOKES
MIXTURES OF PARTIALLY MELTED MATERIALS

WITH REGIONS OF ZERO POROSITY∗

TODD ARBOGAST† , MARC A. HESSE‡ , AND ABRAHAM L. TAICHER§

Abstract. The Earth’s mantle (or, e.g., a glacier) involves a deformable solid matrix phase
within which a second phase, a fluid, may form due to melting processes. The system is modeled as
a dual-continuum mixture, with at each point of space the solid matrix being governed by a Stokes
flow and the fluid melt, if it exists, being governed by a Darcy law. This system is mathematically
degenerate when the porosity (volume fraction of fluid) vanishes. Assuming the porosity is given,
we develop a mixed variational framework for the mechanics of the system by carefully scaling the
Darcy variables by powers of the porosity. We prove that the variational problem is well-posed, even
when there are regions of one and two phases. We then develop an accurate mixed finite element
method for solving this Darcy-Stokes system and prove a convergence result. Numerical results are
presented that illustrate and verify the convergence of the method.

Key words. Degenerate Elliptic, Energy Bounds, Mixed Finite Element Method, Mantle Dy-
namics, Glaciers, Mid-Ocean Ridge

AMS subject classifications. 65N12, 65N30, 35J70, 76M10, 76S05, 76T99

1. Introduction. The goal of this work is to develop mixed finite element meth-
ods for the mechanics part of the equations of mantle dynamics introduced by McKen-
zie [29]. This multi-phase model is based on a mixture of fluid melt and solid matrix,
where both fluid and solid phases are assumed to exist at each point of the spatial
domain Ω. The fluid melt velocity obeys Darcy’s law while the deformable “solid” ma-
trix is governed by a highly viscous Stokes equation. The system is coupled through
mass conservation and compaction relations. Together these equations form a dual-
continuum of fluid melt and solid matrix mixed together over the domain Ω. A key
quantity is the porosity φ, which is the volume fraction of fluid melt. It is assumed
to be much smaller than one, but it may be zero in parts of the domain where there
is no fluid melt.

The equations of mantle dynamics have a wide range of applications in Earth
physics [2, 27, 26, 25], such as in modeling mid-ocean ridges, subduction zones, and
hot-spot volcanism, as well as to glacier dynamics [22, 8, 39] and other two-phase flows
in porous media [12, 28, 13, 18]. The physical problem that guides our work is the
modeling of a mid-ocean ridge. Melt is believed to migrate upward until it reaches the
lithospheric “tent” where it then moves toward the ridge within a high porosity band.
Simulation of this physical phenomenon requires confidence in numerical methods to
accurately handle highly heterogeneous porosity and the single-phase to two-phase
transition.
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When coupled with solute transport and thermal evolution, the model transitions
dynamically in time from a non-porous single phase Stokes solid to a two-phase porous
medium. The model is based on mixture theory, and it has the advantage that the free
boundary between the one and two-phase regions need not be determined explicitly
in the numerical approximation. Unfortunately, the disadvantage is that the Darcy
part of the equations is mathematically degenerate in regions where the porosity is
zero, since then there is only the one solid phase, even though the model equations
continue to describe both phases over the entire domain Ω.

A mixed finite element method (MFEM) is a good candidate for the computa-
tional model of this system. MFEMs have an extensive theory for both Darcy and
Stokes flow. Moreover, velocity fields computed using MFEM are continuous on each
element and have a continuous normal component across element boundaries. This
allows coupling with the transport equations of solute and thermal evolution, since
the velocities unambiguously determine particle trajectories.

At any instant the porosity field φ(x) is given and the coupled Darcy-Stokes
equations determine the unknown fluid flux or Darcy velocity (relative to the solid)
u, the solid matrix velocity vs, and fluid melt and solid matrix pressure potentials qf
and qs (see (2.8) below), which give rise to the mixture potential q = φqf + (1−φ)qs.
The equations can be written on all of Ω in the form

u +
k0φ

2+2Θ

µf
∇qf = 0, (1.1)

µs∇ · u +
φ

1− φ
(qf − q) = 0, (1.2)

∇q −∇ · σ̂σσ(vs) = −(1− φ) ρr g, (1.3)

µs∇ · vs −
φ

1− φ
(qf − q) = 0, (1.4)

where the deviatoric stress of the mixture σ̂σσ is

σ̂σσ = σ̂σσ(vs) = 2µs(1− φ)
(
Dvs − 1

3∇ · vsI
)
, (1.5)

wherein Dvs = 1
2 (∇vs +∇vTs ) is the symmetric gradient. The model parameters are

assumed to be constant and include the (relative) density difference between the fluid
and the solid matrix ρr = ρf − ρs and the fluid and solid viscosities µf and µs, as
well as the gravitational acceleration vector g pointing downwards. For completeness,
the system is derived in detail in the next section, where k0, Θ ∈ [0, 1/2], and other
quantities are defined. Equation (1.1) represents Darcy’s law for an incompressible
fluid, (1.3)–(1.5) is a Stokes system for a highly viscous, compressible material (matrix
plus fluid), and (1.2) plus (1.4) enforces mass conservation.

As we will show later, the Stokes part of the system is well-behaved, but the
Darcy part has difficulties when φ vanishes. We will derive stability (also called
energy) estimates in (3.15) that show

‖φ−1−Θu‖+ ‖φ−1/2∇ · u‖+ ‖φ1/2qf‖ ≤ C (1.6)

for some constant C, where ‖ · ‖ is the L2(Ω)-norm. These estimates suggest that the
fluid pressure may be unbounded where porosity vanishes. Indeed, the fluid pressure
is no longer a physical variable when there is no fluid, and so it is not possible to
have stability control on qf . Moreover, any numerical method that does not take into
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account the degeneracy of φ, say by instead imposing a small nonzero porosity φ0

everywhere, is sure to have a condition number that grows as φ0 → 0. Our numerical
results will show both these issues.

Recently, two of the current authors [5, 4] developed a MFEM and cell-centered
finite difference method for a single Darcy system with a similar degeneracy as appears
in (1.1)–(1.2). The key is to follow the hint in the stability estimates and scale the
fluid pressure and velocity to avoid problems with vanishing porosity. In this paper
we apply this idea to the full set (1.1)–(1.5) of mantle dynamics equations.

In the rest of the paper, we first review McKenzie’s derivation of the equations
for partially molten materials in Section 2. In Section 3 we present several relatively
standard mixed variational formulations of the governing equations (1.1)–(1.5), which
require that the porosity not degenerate to zero. The first is a straightforward mixed
variational formulation of the equations assuming positive porosity everywhere, and it
allows us to derive stability/energy estimates for the pressure potentials and velocities.
We also present two common but inadequate approaches to resolving the problem of
a vanishing porosity. In Section 4, we finally present our scaled formulation which di-
rectly resolves the issue of degenerate porosity. We prove the existence and uniqueness
of a solution to this scaled variational formulation. In Section 5 we define our MFEM
for the numerical approximation of the scaled variational formulation and prove its
stability and convergence. In section 6, we present a modification of the MFEM that
is locally mass conservative. In section 7, we discuss implementation and give a mass
lumping modification that results in a relatively simple solution procedure on rectan-
gular meshes. Numerical results illustrating and evaluating the effects of degenerate
porosity are given in Sections 8–9. We include tests of a one-dimensional compacting
column with various porosity functions, and a two-dimensional test example akin to
a mid ocean ridge. We conclude the paper in Section 10.

2. Governing Equations. In this section, for completeness, we recall briefly
the derivation of the mechanical system (1.1)–(1.5) according to McKenzie [29]. It
is a dual-continuum mixture approach similar to other models of flow in the Earth’s
mantle, see, e.g., [2, 27, 26, 25], where the mixing parameter is the porosity φ.

For a quantity Ψ having both a part in the fluid and in the solid matrix, define
the mixture variable

Ψ = φΨf + (1− φ)Ψs = Ψs + φΨr, Ψr = Ψf −Ψs. (2.1)

As the two phases melt or solidify, total mass is conserved according to

∂ρ̄

∂t
+∇ · ρv = 0. (2.2)

If we apply the Boussinsq approximation [36] (constant and equal densities for non-
buoyancy terms), this becomes more simply

∇ · v̄ = 0. (2.3)

In the case of mantle convection, Table 2.1 lists representative values of parame-
ters for the fluid and solid phases. The fluid and solid matrix Reynolds numbers,

Ref =
ρf |vf |a
µf

� 1 and Res =
ρs|vs|L
µs

� 1,

are both very small, where a or L is a characteristic length, |v| is a characteristic
velocity, ρ is density, and µ is the dynamic viscosity. That is, both the rate of
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Table 2.1
Representative values of various parameters for the Earth’s mantle. Grain size represents the

average size of a matrix grain around which fluid flows. The ridge spreading rate is the rate at which
ocean floor is spreading at mid-ocean ridges.

Parameter Value or Range
a Grain size 10−3 m
L Matrix length scale 104 to 105 m

|vf | Characteristic fluid velocity 10−8 to 10−6 m/s
|vs| Ridge spreading rate 10−10 to 10−9 m/s
k0 Permeability constant 10−9–10−6 m2

µs Solid shear viscosity 1019 Pa·s
µf Fluid viscosity 1 Pa·s
ρs Solid matrix Density 3300 kg/m3

ρf Fluid Density 2800 kg/m3

g Gravity 9.8 m/s2

advection of momentum directly through flow and the rate of change of momentum
are negligible in comparison to momentum diffusion by viscous effects. This leads to
Darcy’s law for fluid flow around matrix “grains,” which is

u = φvr = φ(vf − vs) = −k0φ
2+2Θ

µf
(∇pf − ρfg), (2.4)

where vf and pf are the fluid velocity and pressure, vr = vf −vs is the relative veloc-
ity, and k(φ) = k0φ

2+2Θ is the porosity dependent permeability calculated according
to the standard Kozeny-Carmen relationship [12, 40], simplified for small porosity and
constant grain size, where Θ is a constant exponent between 0 and 1/2.

The fluid stress is σσσf = −pfI and the solid matrix stress is

σσσs = −psI + µs
(
2Dvs − 2

3∇ · vsI
)
,

where ps is the solid matrix pressure. Conservation of momentum for the mixture
obeys the Stokes equation

σ̄σσ = −p̄ I + µs(1− φ)
(
2Dvs − 2

3∇ · vsI
)
, (2.5)

∇ · σ̄σσ = −ρ̄g, (2.6)

where σ̄σσ is the mixture stress. The mixture pressure p̄ depends on the shear deforma-
tion of the solid matrix and the mixture buoyancy of the fluid and matrix.

The mechanical system is closed by relating the solid and fluid pressures through
a compaction relation [35]

ps − pf = −µs
φ
∇ · vs, (2.7)

where ζs = µs/φ is the solid matrix bulk viscosity. That is, the shear viscosity is
taken to be constant while the matrix bulk viscosity is proportional to the inverse of
porosity. This equation can be interpreted as the compressibility of the matrix. If
the solid matrix pressure is larger than the fluid pressure, the matrix volume should
contract (i.e., ∇ · vs < 0).
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Introduce the pressure potentials

qf = pf − ρfgz and qs = ps − ρfgz, (2.8)

where z is depth and indeed qs is defined using the fluid density ρf . Also let q = q̄
be the mixture potential

q = q̄ = φqf + (1− φ)qs = qs + φ(qf − qs), (2.9)

and note that

qf − qs =
1

1− φ
(qf − q). (2.10)

Then (2.4) becomes (1.1) and (2.7) becomes (1.4). Expanding the conservation equa-
tion (2.3) and adding compaction (1.4) leads us to (1.2). Finally, (2.5)–(2.6) can be
manipulated into (1.3) and (1.5).

3. Mixed Variational Formulations and Stability for Positive Porosity.
In this section, we explore variational formulations of the equations that do not deal
explicitly with the possibility that the porosity may vanish. Suppose that the domain
Ω is a bounded, simply connected, Lipschitz domain in Rd, d = 1, 2, or 3, with
outward pointing unit normal vector ν. We impose for simplicity of exposition in this
section homogeneous Neumann conditions on the fluid and solid velocity, i.e.,

u · ν = 0 and vs = 0 on ∂Ω. (3.1)

Before deriving our weak formulations for (1.1)–(1.5), we review our notation for
the Hilbert spaces wherein solutions can be found. The space L2(Ω) consists of all
square integrable, real-valued functions on Ω. It is equipped with the inner product

(u, v) = (u, v)Ω =

∫
Ω

uv dx

and associated norm ‖u‖ = (u, u)1/2. Denote by H1(Ω) all square integrable func-
tions with square integrable weak derivatives. This space has the corresponding

norm ‖u‖1 =
{
‖u‖2 + ‖∇u‖2

}1/2
. Let H(div; Ω) denote all square integrable vector-

valued functions with square integrable weak divergence, and equip it with the norm

‖u‖H(div) =
{
‖u‖2 + ‖∇ · u‖2

}1/2
. Note that (H1(Ω))d ⊂ H(div; Ω) ⊂ (L2(Ω))d.

For functions defined on a boundary ω, let 〈·, ·〉ω denote the L2(ω) inner product
or duality pairing. We can restrict functions in H1(Ω) to the boundary ∂Ω using the
trace lemma [1, 24]. The space of these restrictions is H1/2(∂Ω) ⊂ L2(∂Ω), and we
have the bound

‖u‖1/2,∂Ω ≤ CΩ‖u‖1. (3.2)

We leave out a definition of the norm ‖u‖1/2,∂Ω as we are only interested in its
existence. A similar lemma holds for functions in H(div; Ω) [17], and

‖u · ν‖−1/2,∂Ω ≤ CΩ‖u‖H(div), (3.3)

where ‖ · ‖−1/2,∂Ω is the norm of the dual space of H1/2(∂Ω).
We also use two Banach spaces. The space L∞(Ω) consists of all essentially

bounded functions on Ω equipped with the essential supremum norm ‖ · ‖L∞(Ω). The
space W 1,∞(Ω) consists of the functions in L∞(Ω) that have weak derivatives also in
L∞(Ω), and the norm is ‖ · ‖W 1,∞(Ω) = ‖ · ‖L∞(Ω) + ‖∇(·)‖(L∞(Ω))d .
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3.1. A standard weak formulation for positive porosity. Define the func-
tion spaces

Vr = H(div; Ω),

Vr,0 = H0(div; Ω) =
{
v ∈ Vr : v · ν = 0 on Γfess

}
,

Vs = (H1(Ω))d,

Vs,0 = (H1
0 (Ω))d =

{
v ∈ Vs : v = 0 on ∂Ω

}
,

W = Wf = L2(Ω),

W0 = L2(Ω)/R =
{
w ∈W :

∫
Ω

w dx = 0
}
,

each with its natural norm. Our first three weak formulations of equations (1.1)–(1.5)
will ignore the possibility of φ vanishing, so we can freely divide by φ. In practice, we
might approximate φ by adding a small positive constant to it.

Standard formulation. Find u ∈ Vr,0, qf ∈Wf , vs ∈ Vs,0, and q ∈W0 such that(µf
k0
φ−2−2Θu,ψψψr

)
− (qf ,∇ ·ψψψr) = 0 ∀ψψψr ∈ Vr,0, (3.4)

(∇ · u, wf ) +
( φ

µs(1− φ)
(qf − q), wf

)
= 0 ∀wf ∈Wf , (3.5)

−(q,∇ ·ψψψs) + (σ̂σσ(vs),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ Vs,0, (3.6)

(∇ · vs, w)−
( φ

µs(1− φ)
(qf − q), w

)
= 0 ∀w ∈W0. (3.7)

These equations are derived as follows. Multiply through by the coefficient in (1.1),
multiply by the vector test function ψψψr ∈ Vr,0, integrate over Ω, and use integration
by parts with the boundary condition (3.1) to derive the first equation (3.4). Multiply
(1.2) and (1.4) by wf ∈ Wf and w ∈ W0, respectively, and integrate to derive (3.5)
and (3.7). Finally, (3.6) comes from (1.3) multiplied by ψψψs ∈ Vs,0, integrated, and
integrated by parts (using (3.1)).

3.2. Stability/energy estimates. If porosity is allowed to vanish, the standard
theory for proving existence and uniqueness of a solution to (3.4)–(3.7) breaks down.
However, we can still obtain stability estimates when φ ≥ φ∗ > 0 and investigate the
behavior of the solution as φ∗ approaches zero. We will assume that φ ≤ φ∗ < 1 in
the analysis, since the model breaks down as φ approaches one.

Proceeding formally, assume a solution to (3.4)–(3.7) exists. We begin with an
estimate of (σ̂σσ(vs),∇vs). Using the definition (1.5), this term is

(σ̂σσ(vs),∇vs) =
(
2µs(1− φ)(Dvs − 1

3∇ · vsI),∇vs
)

= 2µs
{(

(1− φ)Dvs,Dvs
)
− 1

3 ((1− φ)∇ · vs,∇ · vs)
}
.

We conclude that

(σ̂σσ(vs),∇vs) ≥ C‖Dvs‖2,

for some positive constant C. An application on Korn’s inequality [23, 16] results in

(σ̂σσ(vs),∇vs) ≥ C‖Dvs‖2 ≥ C1‖vs‖21. (3.8)
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Testing (3.4)–(3.7) with ψψψr = u, wf = qf , ψψψs = vs, and w = q and adding the
equations leads to four terms canceling, leaving only(µf

k0
φ−2−2Θu,u

)
+
( φ

µs(1− φ)
(qf − q), qf − q

)
+ (σ̂σσ(vs),∇vs)

= −
(
(1− φ)ρrg,vs

)
.

The result (3.8) and the elementary inequality ab ≤ εa2 + b2/4ε give us

‖φ−1−Θu‖+ ‖φ1/2(qf − q)‖+ ‖vs‖1 ≤ ε‖vs‖+ C|ρr|, (3.9)

for any ε > 0 and some constant C depending on ε but not on porosity.
We will assume that −2φ1+Θ∇φ−1/2 = φΘ−1/2∇φ is bounded, so that

‖φ−1/2u‖H(div) ≤ C
{
‖φ−1/2u‖+ ‖∇ · (φ−1/2u)‖

}
≤ C

{
‖φ−1/2u‖+ ‖∇φ−1/2 · u‖+ ‖φ−1/2∇ · u‖

}
≤ C

{
‖φ−1/2u‖+ ‖φ−3/2∇φ · u‖+ ‖φ−1/2∇ · u‖

}
≤ C

{
‖φ−1−Θu‖+ ‖φ−1/2∇ · u‖

}
. (3.10)

Substituting the test function wf = φ−1∇ · u in (3.5) gives

(∇ · u, φ−1∇ · u) = −
( φ

µs(1− φ)
(qf − q), φ−1∇ · u

)
,

and therefore

‖φ−1/2∇ · u‖ ≤ C‖φ1/2(qf − q)‖. (3.11)

We recall the inf-sup condition [23, 17, 16, 15] for the Stokes problem. There
exists γS > 0 such that for any w ∈W0 = L2(Ω)/R,

sup
ψψψs∈Vs,0

(w,∇ ·ψψψs)
‖ψψψs‖1

≥ γS‖w‖. (3.12)

Substituting (3.6) into (3.12) shows

‖q‖ ≤ C sup
ψψψs∈Vs,0

1

‖ψψψs‖1
{
|(σ̂σσ,∇ψψψs)|+

∣∣((1− φ)ρrg,ψψψs
)∣∣} ≤ C(‖vs‖1 + |ρr|). (3.13)

For the fluid potential, by the triangle inequality,

‖φ1/2qf‖ ≤ ‖φ1/2q‖+ ‖φ1/2(qf − q)‖ ≤ ‖q‖+ ‖φ1/2(qf − q)‖. (3.14)

Combining (3.9)–(3.11) and (3.13)–(3.14), we have the stability estimates

‖φ−1−Θu‖+ ‖φ−1/2∇ · u‖+ ‖φ1/2qf‖+ ‖vs‖1 + ‖q‖ ≤ C|ρr|. (3.15)

The solid matrix potential is bounded by

‖qs‖ ≤ ‖q‖+ ‖φ(qf − qs)‖ ≤ ‖q‖+ ‖φ1/2qf‖+ φ∗‖qs‖,
which implies

‖qs‖ ≤ C
{
‖q‖+ ‖φ1/2qf‖

}
. (3.16)

We conclude that the two velocities and the solid matrix pressure remain stable, i.e.,
they are bounded, as the porosity approaches zero. However, in this case the fluid
potential may become unbounded. This potential loss of stability is a significant issue
for numerical modeling, since in many cases (such as the mid-ocean ridge application),
we expect a well-defined melted region bounded by regions containing no melt, i.e.,
regions where φ = 0.
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3.3. Two alternative weak formulations. One can envision alternatives to
the standard weak formulation (3.4)–(3.7) to avoid dividing by the porosity. A com-
monly used approach, the expanded mixed formulation [7], introduces an auxiliary
velocity variable

ṽex
r = − k0

µf
∇qf ⇐⇒ u = φ2+2Θṽex

r . (3.17)

In this approach, we use a weak form of this equation and modify (3.4).

Expanded formulation. Find u ∈ Vr,0, ṽex
r ∈ Vr,0, qf ∈ Wf , vs ∈ Vs,0, and

q ∈W0 such that (3.5)–(3.7) hold as well as(
φ2+2Θṽex

r , ψ̃ψψr
)
− (u, ψ̃ψψr) = 0 ∀ ψ̃ψψr ∈ Vr,0, (3.18)(µf

k0
ṽex
r ,ψψψr

)
− (qf ,∇ ·ψψψr) = 0 ∀ψψψr ∈ Vr,0. (3.19)

Alternatively, we could balance the degeneracy by using a square-root scaling of
the coefficient φ2+2Θ in (1.1) and the corresponding square-root scaling modification
of (1.2), as was done in, e.g., [19]. However, we would still need to divide by φ in
a standard approach, so we use the idea in [5] to modify the test function to avoid
division by φ. To be precise, we replace the Darcy velocity u = φvr by the scaled
relative velocity

ṽr = φ−Θvr = − k0

µf
φ1+Θ∇qf ⇐⇒ u = φ1+Θṽr. (3.20)

When taking the weak form of this equation we do not divide by φ1+Θ. Rather, φ1+Θ

multiplies the test function before we integrate by parts, as in [5].

Symmetry preserving formulation. Find ṽr ∈ Vr,0, qf ∈ Wf , vs ∈ Vs,0, and
q ∈W0 such that (3.6)–(3.7) hold as well as(µf

k0
ṽr,ψψψr

)
−
(
qf ,∇ · (φ1+Θψψψr)

)
= 0 ∀ψψψr ∈ Vr,0, (3.21)(

∇ · (φ1+Θṽr), wf
)

+
( φ

µs(1− φ)
(qf − q), wf

)
= 0 ∀wf ∈Wf . (3.22)

We call this the symmetry preserving formulation, since the degeneracy in φ appears in
a symmetric way between (3.21) and (3.22). While it is perhaps somewhat unorthodox
to leave the porosity multiplying the test functions, this approach should be gentler
numerically, because it spreads out the porosity over two equations. Of course, we
have not really handled the degeneracy, since now (3.22) degenerates to 0 = 0 as
porosity approaches zero. In fact, none of the three methods address the degeneracy
in a direct way, nor, therefore, the issue of having no stability control of the fluid
potential.

4. A Scaled Mixed Variational Formulation. Following [5], the stability
estimates (3.15) suggest a new weak formulation that respects the possibility that
the porosity might vanish. We have that the scaled relative velocity ṽr = φ−1−Θu is
stable. If we define the scaled fluid potential

q̃f = φ1/2qf , (4.1)
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then this quantity is also stable. Therefore we reformulate the problem in terms of
these scaled quantities, which means that (1.1)–(1.4) become

ṽr +
k0φ

1+Θ

µf
∇(φ−1/2q̃f ) = 0, (4.2)

µsφ
−1/2∇ · (φ1+Θṽr) +

1

1− φ
(
q̃f − φ1/2q

)
= 0, (4.3)

∇q −∇ · σ̂σσ(vs) = −(1− φ) ρr g, (4.4)

µs∇ · vs −
φ1/2

1− φ
(
q̃f − φ1/2q

)
= 0, (4.5)

wherein we have scaled the entire second equation by φ−1/2 and (1.5) continues to
define σ̂σσ.

The scaled equations make sense provided that the gradient and divergence terms
are well-defined when φ = 0. The divergence term in (4.3) expands to

φ−1/2∇ · (φ1+Θṽr) = φ1/2+Θ∇ · ṽr + φΘ−1/2∇φ · ṽr, (4.6)

and it is well defined provided that, for example,

φΘ−1/2∇φ ∈ (L∞(Ω))d, (4.7)

i.e., |φΘ−1/2∇φ| is bounded almost everywhere in the sense of Lebesgue measure.
The gradient terms in (4.2) make sense under the same condition. The porosity φ
in the physical model satisfies the full set of equations, including solute and thermal
transport equations. It is not clear if we should expect that this porosity satisfies
our condition. Nevertheless, we will tacitly assume that this condition holds. Our
numerical results suggest that it is not strictly necessary, and perhaps can be weakened
(see also [5] for a discussion of the necessity of this condition).

4.1. Boundary conditions and the scaled formulation. We should not ex-
pect the scaled velocity to lie in Vr. Rather, ṽr should lie in the space

Ṽr = Hφ(div; Ω) =
{
v ∈ (L2(Ω))d : φ−1/2∇ · (φ1+Θv) ∈ L2(Ω)

}
.

As discussed in [5], this is a Hilbert space with the inner product

(ũ, ṽ)Ṽr
= (ũ, ṽ) +

(
φ−1/2∇ · (φ1+Θũ), φ−1/2∇ · (φ1+Θṽ)

)
and induced norm ‖ṽ‖Ṽr

= (ṽ, ṽ)
1/2

Ṽr
. Moreover, these vector functions have a well-

defined normal trace on ∂Ω, and, similar to (3.3),

‖φ1/2+Θṽ · ν‖−1/2,∂Ω ≤ CΩ‖ṽ‖Ṽr
. (4.8)

We also have the space H
−1/2
φ (∂Ω), which is the image of this normal trace operator

on Ṽr = Hφ(div).
The boundary conditions (3.1) will now be made more general (see [38] for even

more generality). In terms of the scaled quantities, we take nonhomogeneous bound-

ary conditions on the Darcy system that are natural (with Γfnat = ∂Ω and Γfess = ∅)
or essential (Γfess = ∂Ω and Γfnat = ∅) of the form

q̃f = φ1/2gf = g̃f on Γfnat, (4.9)

φ1/2+Θṽr · ν = gr on Γfess, (4.10)
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and we impose nonhomogeneous essential conditions on the Stokes system

vs = gs on ∂Ω. (4.11)

A compatibility condition may be needed:∫
∂Ω

(gr + gs · ν) ds = 0 if Γfess = ∂Ω. (4.12)

To impose the essential boundary conditions, we define the spaces

Ṽr,gr =
{
v ∈ Ṽr : φ1/2+Θv · ν = gr on Γfess

}
,

Vs,gs =
{
v ∈ (H1(Ω))d : v = gs on ∂Ω

}
,

and we let W∗ be W0 if Γess = ∂Ω or φ vanishes entirely (i.e., the pressure scale is not
set by the boundary conditions) and W otherwise. As with the other formulations, a
similar procedure leads us to the following scaled weak formulation.

Scaled formulation. Find ṽr ∈ Ṽr,gr , q̃f ∈Wf , vs ∈ Vs,gs
, and q ∈W∗ such that(µf

k0
ṽr,ψψψr

)
−
(
q̃f , φ

−1/2∇ · (φ1+Θψψψr)
)

= −〈g̃f , φ1/2+Θψψψr · ν〉Γf
nat

∀ψψψr ∈ Ṽr,0, (4.13)(
φ−1/2∇ · (φ1+Θṽr), wf

)
+
( 1

µs(1− φ)
(q̃f − φ1/2q), wf

)
= 0 ∀wf ∈Wf , (4.14)

−(q,∇ ·ψψψs) + (σ̂σσ(vs),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ Vs,0, (4.15)

(∇ · vs, w)−
( φ1/2

µs(1− φ)
(q̃f − φ1/2q), w

)
= 0 ∀w ∈W∗. (4.16)

4.2. Existence and uniqueness of the solution. We can derive stability
estimates similar to (3.15) for the scaled formulation. Our proof combines four key
results: the Babuška-Lax-Milgram Theorem [9, 10, 31] (Theorem 2 stated below),
Korn’s inequality in the form (3.8), the Stokes inf-sup condition (3.12), and a special
inf-sup condition for the scaled Darcy system (Lemma (3) below). We also use some
of the concepts developed in [5], where the degenerate Darcy problem is analyzed.

To impose essential boundary conditions, we assume that gs ∈ (H1/2(∂Ω))d and
extend it continuously from the boundary into the domain, so that the extension
gs ∈ Vs = (H1(Ω))d and ‖gs‖1 ≤ C‖gs‖1/2,∂Ω. In a similar way, following [5], we

assume that gr ∈ H
−1/2
φ (Γfess), the image of the scaled normal trace operator on

Ṽr = Hφ(div; Ω) which appears in (4.8). Then gr has a bounded extension gr ∈ Ṽr
on Ω such that

φ1/2+Θgr · ν = gr on Γfess.

Theorem 1. Assume that (4.7) holds on the porosity, 0 ≤ φ ≤ φ∗ < 1, and the

extensions gr ∈ Ṽr and gs ∈ Vs satisfy (4.12). If Γfnat = ∅ or φ is identically zero, let

W∗ = W0; otherwise, let W∗ = W, g̃f ∈ H1/2(Γfnat), gr = 0, and assume the stronger
condition (4.21) on the porosity. Then there exists a unique solution to the scaled
formulation (4.13)–(4.16), (1.5), and it satisfies

‖ṽr‖+ ‖φ−1/2∇ · (φ1+Θṽr)‖+ ‖q̃f‖+ ‖vs‖1 + ‖q‖
≤ C

{
|ρr|+ ‖g̃f‖1/2,Γf

nat
+ ‖gr‖Ṽr

+ ‖gs‖1
}
. (4.17)
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Before proving this theorem, we state two key results. The first is well-known [9,
10, 31], and the second will be proven after we prove Theorem 1.

Theorem 2 (Babuška-Lax-Milgram). Let U and V be two real Hilbert spaces.
Suppose that a : U × V → R is a continuous bilinear functional such that for some
constant γ > 0 and all u ∈ U and v ∈ V , v 6= 0,

sup
‖v‖=1

|a(u, v)| ≥ γ‖u‖ and sup
‖u‖=1

|a(u, v)| > 0. (4.18)

Then, for all f ∈ V ∗, there exists a unique solution u ∈ U to

a(u, v) = f(v) ∀v ∈ V,

and

‖u‖ ≤ 1

γ
‖f‖. (4.19)

The divergence operator satisfies an inf-sup condition [32, 17, 34]: there is some
γD > 0 such that

sup
v∈H(div;Ω)

(w,∇ · v)

‖v‖H(div;Ω)
≥ γD‖w‖ ∀w ∈ L2(Ω). (4.20)

Lemma 3. If

‖(1 + Θ)φ−1∇φ‖(L∞(Ω))d < γD, (4.21)

then there is some γ̂D > 0 such that

sup
v∈H(div;Ω)

(
w, φ−1/2∇ · (φ1+Θv)

)
‖v‖H(div;Ω)

≥ γ̂D‖φ1/2+Θw‖ ∀w ∈ L2(Ω). (4.22)

Proof of Theorem 1. Let

X = Ṽr,0 ×Wf × Vs,0 ×W∗,

and take U = V = X, which is indeed a real Hilbert space. The bilinear form is
defined by the equations (4.13)–(4.16) for any U = (ṽr,0, q̃f ,vs,0, q) ∈ X and ΨΨΨ =
(ψψψr, wf ,ψψψs, w) ∈ X as

a(U,ΨΨΨ) =
(µf
k0

ṽr,0,ψψψr

)
−
(
q̃f , φ

−1/2∇ · (φ1+Θψψψr)
)

+
(
φ−1/2∇ · (φ1+Θṽr,0), wf

)
+
( 1

µs(1− φ)
(q̃f − φ1/2q), wf

)
−
( φ1/2

µs(1− φ)
(q̃f − φ1/2q), w

)
− (q,∇ ·ψψψs) + (σ̂σσ(vs,0),∇ψψψs) + (∇ · vs,0, w).

The linear functional is

f(ΨΨΨ) = −〈g̃f , φ1/2+Θψψψr · ν〉Γf
nat
−
(
(1− φ)ρrg,ψψψs

)
−
(µf
k0

gr,ψψψr

)
−
(
φ−1/2∇ · (φ1+Θgr), wf

)
− (σ̂σσ(gs),∇ψψψs)− (∇ · gs, w).
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Clearly we have continuity (boundedness) of a on X×X and f on X, using the trace
result (4.8).

Our scaled formulation is written in the context of the Babuška-Lax-Milgram
Theorem as follows. We find U ∈ X such that

a(U,ΨΨΨ) = f(ΨΨΨ) ∀ΨΨΨ ∈ X, (4.23)

and then set ṽr = ṽr,0 + gr and vs = vs,0 + gs.

We turn attention to the inf-sup condition, the first condition in (4.18). For any
q ∈W∗, let

q̄ =
1

|Ω|

∫
Ω

q dx

be the average of q (note that q̄ = 0 if W∗ = W0). Using (3.12) for the Stokes problem,
there is vq ∈ Vs,0 normalized so that ‖vq‖1 = ‖q − q̄‖ and satisfying

−(q,∇ · vq) ≥ 1
2γS‖q − q̄‖2. (4.24)

In case q̄ 6= 0 (i.e, Γfnat = ∂Ω), we apply Lemma 3 to any q̃f ∈ Wf to find vq̃f ∈
H(div; Ω) such that ‖vq̃f ‖H(div;Ω) = ‖φ1/2+Θq̃f‖ and

−
(
q̃f , φ

−1/2∇ · (φ1+Θvq)
)
≥ 1

2 γ̂D‖φ1/2+Θq̃f‖2. (4.25)

Note that vq̃f ∈ H(div; Ω) ⊂ Ṽr = Ṽr,0 when Γfess = ∅.
For any U = (ṽr,0, q̃f ,vs,0, q) ∈ X, we take the test function in (4.23) as ΨΨΨ =

(ψψψr, wf ,ψψψs, w) ∈ X defined by

ψψψr = ṽr,0 + δ0vq̃f , wf = q̃f + δ1φ
−1/2∇ · (φ1+Θṽr,0),

ψψψs = vs,0 + δ2vq, and w = q,
(4.26)

where δj > 0, j = 0, 1, 2, will be determined below. After combining and canceling
some terms,

a(U,ΨΨΨ) =
µf
k0
‖ṽr,0‖2 + δ1

∥∥φ−1/2∇ · (φ1+Θṽr,0)
∥∥2

+
1

µs

∥∥∥ 1√
1− φ

(
q̃f − φ1/2q

)∥∥∥2

+ (σ̂σσ(vs,0),∇vs,0)− δ2(q,∇ · vq)− δ0
(
q̃f , φ

−1/2∇ · (φ1+Θvq̃f )
)

+ δ0

(µf
k0

ṽr,0,vq̃f

)
+ δ1

( 1

µs(1− φ)
(q̃f − φ1/2q), φ−1/2∇ · (φ1+Θṽr,0)

)
+ δ2(σ̂σσ(vs,0),∇vq).

There is some C2 > 0 such that

(σ̂σσ(vs,0),∇vq) ≤ C2‖vs,0‖1‖vq‖1 = C2‖vs,0‖1‖q − q̄‖,
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so using (3.8) with its constant C1 > 0, (4.24), and (4.25), we see that

a(U,ΨΨΨ) ≥ µf
k0
‖ṽr,0‖2 + δ1

∥∥φ−1/2∇ · (φ1+Θṽr,0)
∥∥2

+
1

µs
‖q̃f − φ1/2q‖2

+ C1‖vs,0‖21 + 1
2δ2γS‖q − q̄‖2 + 1

2δ0γ̂D‖φ1/2+Θq̃f‖2

+ δ0

(µf
k0

ṽr,0,vq̃f

)
+ δ1

( 1

µs(1− φ)
(q̃f − φ1/2q), φ−1/2∇ · (φ1+Θṽr,0)

)
+ δ2(σ̂σσ(vs,0),∇vq)

≥ µf
k0

(
1− δ0

µf
γ̂Dk0

)
‖ṽr,0‖2 + 1

2δ1
∥∥φ−1/2∇ · (φ1+Θṽr,0)

∥∥2

+
1

µs

(
1− δ1

2µs(1− φ∗)2

)
‖q̃f − φ1/2q‖2 +

(
C1 − δ2

C2
2

γS

)
‖vs,0‖21

+ 1
4δ2γS‖q − q̄‖2 + 1

4δ0γ̂D‖φ1/2+Θq̃f‖2.

Taking δ0, δ1, and δ2 positive but sufficiently small shows that for some c > 0,

a(U,ΨΨΨ) ≥ c
{
‖ṽr,0‖2 +

∥∥φ−1/2∇ · (φ1+Θṽr,0)
∥∥2

+ ‖vs,0‖21
+ ‖q̃f − φ1/2q‖2 + ‖q − q̄‖2 + ‖φ1/2+Θq̃f‖2

}
.

In case q̄ 6= 0 (and then φ 6≡ 0), we estimate

‖q‖ ≤ ‖q − q̄‖+ |Ω|1/2|q̄| ≤ ‖q − q̄‖+ |Ω|1/2 ‖φ
1+Θq̄‖
‖φ1+Θ‖

and

‖φ1+Θq̄‖ ≤ ‖φ1+Θ(q − q̄)‖+ ‖φ1+Θq‖
≤ ‖φ1+Θ(q − q̄)‖+ ‖φ1/2+Θq̃f‖+ ‖φ1/2+Θ(q̃f − φ1/2q)‖
≤ ‖q − q̄‖+ ‖φ1/2+Θq̃f‖+ ‖q̃f − φ1/2q‖,

so

‖q‖ ≤ C
{
‖q − q̄‖+ ‖φ1/2+Θq̃f‖+ ‖q̃f − φ1/2q‖

}
.

Moreover,

‖q̃f‖ ≤ ‖q̃f − φ1/2q‖+ ‖q‖,

and we have shown the first condition in (4.18). The second condition in (4.18)
follows by symmetry. We have thus met the conditions of the Babuška-Lax-Milgram
Theorem, and we conclude that the problem (4.13)–(4.16), (1.5) has a unique solution.
Moreover, the bound (4.19) is what is written in Theorem 1. �

Proof of Lemma 3. Given w ∈ L2(Ω), let (ψψψ, χ) ∈ H(div; Ω)× L2(Ω) solve

∇ ·ψψψ + (1 + Θ)φ−1∇φ ·ψψψ = φ1/2+Θw in Ω, (4.27)

ψψψ = −∇χ in Ω, (4.28)

χ = 0 on ∂Ω. (4.29)

This is possible provided (4.21) holds (by (4.20) and the Lax-Milgram Theorem).
Moreover,

‖ψψψ‖H(div;Ω) ≤ Ĉ‖φ1/2+Θw‖.
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Finally,

sup
v∈Vr,0

(
w, φ−1/2∇ · (φ1+Θv)

)
‖v‖H(div;Ω)

≥
(
w, φ−1/2∇ · (φ1+Θψψψ)

)
‖ψψψ‖H(div;Ω)

=

(
φ1/2+Θw,∇ ·ψψψ + (1 + Θ)φ−1∇φ ·ψψψ

)
‖ψψψ‖H(div;Ω)

≥ 1

Ĉ

‖φ1/2+Θw‖2

‖φ1/2+Θw‖
=

1

Ĉ
‖φ1/2+Θw‖. �

5. Mixed Finite Element Methods. Assume Ω is a polygonal domain in one,
two, or three dimensions. Let Th be a conforming finite element mesh of simplices or
rectangular parallelepipeds covering Ω with maximal spacing h, and let Eh denote the
set of element endpoints, edges, or faces.

To continue the exposition, we will restrict to two dimensions. Extension to one
and three dimensions should be clear. Let Pn denote the space of polynomials of
degree n and Pn1,n2 denote the polynomials of degree n1 in x and n2 in z (taking the
second coordinate to be the depth z).

5.1. Finite element spaces. To formulate the discrete versions of our weak
formulations, we introduce two finite element spaces specially designed for mixed
methods. The first space will be used for the Darcy part of the system. We choose
the lowest order Raviart-Thomas (RT0) finite element space VRT ×WRT [32, 17, 34].
On an element E ∈ Th,

VRT(E) =

(P0 × P0)⊕
(x
z

)
P0, if E is a triangle,

P1,0 × P0,1, if E is a rectangle,

(5.1)

WRT(E) = P0 (5.2)

(so WRT is the space of piecewise constant functions). The degrees of freedom for
VRT are the normal fluxes on the edges, and the degrees of freedom for WRT are the
average values over the elements, i.e.,

VRT = span
{

ve :

∫
f

ve · νf ds = δe,f ∀e, f ∈ Eh
}
, (5.3)

WRT = span{wE : wE |F = δE,F ∀E,F ∈ Th}, (5.4)

where δi,j is the Kronecker delta function for indices i and j. Raviart-Thomas spaces
are commonly used to solve Darcy’s equation and RT0 is first order accurate in
H(div; Ω) for VRT and in L2(Ω) for WRT. We remark that we could use quadri-
lateral elements as well, as long as we substitute the Arbogast-Correa (AC0) spaces
[3] for the Raviart-Thomas spaces.

For the Stokes part of the system, we could choose any reasonable finite element
space VS ×WS. A good choice on rectangular meshes is the Bernardi-Raugel (BR)
space [14, 6] VBR ×WBR. On a rectangular element E ∈ Th,

VBR(E) = P1,2 × P2,1, (5.5)

and WBR(E) = WRT(E). The degrees of freedom for VBR are the normal fluxes on
the edges and the nodal values on the vertices of each component. The space BR is
first order accurate in (H1(Ω))2 for VBR and in L2(Ω) for WBR. The space was first
introduced to solve Stokes equation, and has also been used to solve Darcy’s equation



Mixed Methods for Two-Phase Darcy-Stokes Mixtures 15

with continuous velocities [6]. It is a natural choice for our coupled Darcy-Stokes
system, since the convergence rates of the two spaces match.

We could use more standard Stokes elements such as the lowest order Taylor-Hood
elements [23, 17, 21]. On an element E ∈ Th, if E is triangular, VTH(E) = P2×P2 and
WTH(E) = P1 and, if E is rectangular, VTH(E) = P2,2 × P2,2 and WTH(E) = P1,1.
On rectangular meshes, these elements are more accurate than the BR elements, but
they also have more degrees of freedom. However, we would not gain any additional
overall convergence within the coupled system because of the Darcy part.

5.2. Finite element methods. Finite element methods for the standard, ex-
panded, symmetric, and scaled formulations of Sections 3.1, 3.3, and 4 are given by
restricting the solution and test functions to the chosen finite element spaces.

For completeness, we describe the scaled finite element method with the boundary
conditions (4.9)–(4.11). In the case of essential boundary conditions, the extensions
gr and gs are projected into the finite element spaces as ĝr ∈ VRT and ĝs ∈ VS (VBR

or VTH) in such a way that the two compatibility conditions hold:∫
∂Ω

(ĝs − gs) · ν ds = 0 and

∫
∂Ω

(ĝr + ĝs) · ν ds = 0 if Γfess = ∂Ω. (5.6)

We also need to define

VRT,0 = {v ∈ VRT : v · ν = 0 on Γfess},
VS,0 = {v ∈ VS : v = 0 on ∂Ω},

WS,0 =
{
w ∈WS :

∫
Ω

w dx = 0
}
,

and WS,∗ = WS,0 if Γfess = ∂Ω or φ ≡ 0 and WS,∗ = WS otherwise.
Scaled mixed finite element method. Find ṽr,h ∈ VRT,0 + ĝr, q̃f,h ∈WRT, vs,h ∈

VS,0 + ĝs, and qh ∈WS,∗ such that(µf
k0

ṽr,h,ψψψr

)
−
(
q̃f,h, φ

−1/2∇ · (φ1+Θψψψr)
)

= −〈g̃f , φ1/2+Θψψψr · ν〉Γf
nat

∀ψψψr ∈ VRT,0, (5.7)(
φ−1/2∇ · (φ1+Θṽr,h), wf

)
+
( 1

µs(1− φ)
(q̃f,h − φ1/2qh), wf

)
= 0 ∀wf ∈WRT, (5.8)

−(qh,∇ ·ψψψs) + (σ̂σσ(vs,h),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ VS,0, (5.9)

(∇ · vs,h, w)−
( φ1/2

µs(1− φ)
(q̃f,h − φ1/2qh), w

)
= 0 ∀w ∈WS,∗, (5.10)

where the term σ̂σσ is defined by (1.5). While the scaled finite element method is well
defined when φ vanishes due to the condition (4.7), it is important to avoid division by
zero in the implementation. One must evaluate the two divergence terms containing
φ to a negative power in (5.7)–(5.8) at quadrature points. Because the divergence
terms scale with φ to the overall power 1/2+Θ > 0, these terms should be set to zero
when φ vanishes. That is, at a quadrature point where φ = 0, take the value of the
entire term to be zero at that point.

Lemma 4. If (4.7) holds and either WS,∗ = WS,0 or φ is not identically zero, then
there exists a unique solution to the scaled mixed finite element method (5.7)–(5.10).
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Proof. Since the scaled method gives rise to a square linear system when restricted
to bases for the finite element spaces, the existence of a solution is equivalent to
uniqueness. To show uniqueness, set to zero the quantities ĝr, ĝs, g̃f , and g. The
test functions

ψψψr = ṽr,h ∈ VRT,0, wf = q̃f,h ∈WRT, ψψψs = vs,h ∈ VS,0 and w = qh ∈WS,∗,

when substituted into (5.7)–(5.10) and after the equations are added, imply that

µf
k0
‖ṽr,h‖2 +

( 1

µs(1− φ)
(q̃f,h − φ1/2qh), q̃f,h − φ1/2qh

)
+ (σ̂σσ(vs,h),∇vs,h) = 0.

Thus ṽr,h = 0, the estimate (3.8) shows vs,h = 0, and q̃f,h = φ1/2qh.
The discrete version of the inf-sup condition (3.12) holds for the BR and TH Stokes

elements (and any inf-sup stable pair of Stokes elements) with a possibly smaller
constant 0 < γ∗S ≤ γS independent of the mesh spacing parameter h. Therefore there
is some vq,h ∈ {v ∈ VS : v = 0 on ∂Ω} ⊂ VS,0 such that ‖vq,h‖1 = ‖qh − q̄h‖ and

−(qh,∇ · vq,h) ≥ 1
2γ
∗
S‖qh − q̄h‖2, (5.11)

where q̄h =
∫

Ω
qh dx/|Ω|. The choice ψψψs = vq,h in (5.9) shows that qh = q̄h. If

WS,∗ = WS,0, q̄h = 0 and we conclude that qh = q̃h,f = 0. If WS,∗ = WS, then
since q̃f,h = φ1/2q̄h ∈WRT, we conclude that φ, being continuous, must be a positive
constant. Similar to the Stokes case, we can then use the discrete version of the
inf-sup condition (4.20) for the RT spaces and (5.7) to conclude that q̃h = qh = 0.
Uniqueness, and therefore also existence, of a solution is established.

5.3. Stability and convergence of the scaled method. In this subsection,
we assume that the essential Neumann boundary conditions (4.10)–(4.11) are imposed
(i.e., Γfess = ∂Ω). To derive a bound for the error, we first take the difference of (4.13)–
(4.16) and (5.7)–(5.10) and add the resulting equations to see that(µf

k0
(ṽr − ṽr,h),ψψψr

)
−
(
q̃f − q̃f,h, φ−1/2∇ · (φ1+Θψψψr)

)
+
(
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h)), wf

)
+
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), wf − φ1/2w

)
− (q − qh,∇ ·ψψψs) + (σ̂σσ(vs − vs,h),∇ψψψs) + (∇ · (vs − vs,h), w) = 0 (5.12)

for any ψψψr ∈ VRT,0, wf ∈WRT, ψψψs ∈ VS,0, and w ∈WS,0.
Before defining our choice of test functions, we need the usual projection operators

associated with RT0 (or AC0). Let PWRT
: L2(Ω)→WRT denote the L2(Ω)-projection

operator mapping onto the space of piecewise constant functions WRT. Let πRT :
H(div; Ω) ∩ L2+ε(Ω) → VRT (any ε > 0) denote the standard Raviart-Thomas or
Fortin operator that preserves element average divergence and average edge normal
fluxes [32, 17, 34, 3]. We also need the usual H1(Ω)-projection πS : H1(Ω)→ VS and
the L2(Ω)-projection PWS

: L2(Ω)→WS.
Let the function vq,h ∈ VS,0 arise from the discrete version of the inf-sup condi-

tion for Stokes (4.24) (as in (5.11)), normalized so that ‖vq,h‖1 = ‖PWS
q − qh‖ and

satisfying

−(PWS
q − qh,∇ · vq,h) ≥ 1

2γ
∗
S‖PWS

q − qh‖2. (5.13)
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Similar to the test functions taken in (4.26), we take

ψψψr = (ṽr − ṽr,h)− (ṽr − πRTṽr)− (πRTgr − ĝr) ∈ VRT,0,

wf = PWRT
q̃f − q̃f,h + δ1PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]
∈WRT,

ψψψs = (vs − vs,h)− (vs − πSvs)− (πSgs − ĝs) + δ2vq,h ∈ VS,0,

w = PWS
q − qh ∈WS,0,

where δ1 > 0 and δ2 > 0 will be determined below. We remark that the term
multiplying δ1 must be projected back into the discrete space, and so our derivation
is not completely straightforward.

Introducing PWRT thrice into (5.12) yields

(µf
k0

(ṽr − ṽr,h),ψψψr

)
−
(
PWRT

q̃f − q̃f,h,PWRT

[
φ−1/2∇ · (φ1+Θψψψr)

])
+
(
PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]
, wf

)
−
(
q̃f − PWRT q̃f , φ

−1/2∇ · (φ1+Θψψψr)
)

+
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), wf − φ1/2w

)
− (q − qh,∇ ·ψψψs) + (σ̂σσ(vs − vs,h),∇ψψψs) + (∇ · (vs − vs,h), w)

= T1 + · · ·+ T8 (respectively) = 0. (5.14)

For the first term in (5.14), we deduce that for some generic constant C > 0,

T1 =
(µf
k0

(ṽr − ṽr,h),ψψψr

)
=
µf
k0
‖ṽr − ṽr,h‖2 −

(µf
k0

(ṽr − ṽr,h), ṽr − πRTṽr + πRTgr − ĝr

)
≥ µf

2k0
‖ṽr − ṽr,h‖2 − C

{
‖ṽr − πRTṽr‖2 + ‖πRTgr − ĝr‖2

}
.

For the next two terms, for any ε > 0,

T2 + T3 = −
(
PWRT q̃f − q̃f,h,PWRT

[
φ−1/2∇ · (φ1+Θψψψr)

])
+
(
PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]
, wf

)
=
(
PWRT

q̃f − q̃f,h,PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr + πRTgr − ĝr)

])
+ δ1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2

≥ δ1
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2 − ε‖PWRT
q̃f − q̃f,h‖2

− C
{∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr))

]∥∥2

+
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(πRTgr − ĝr))

]∥∥2}
.
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Skipping T4 for the moment, the next term is

T5 =
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), wf − φ1/2w

)
=
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), q̃f − q̃f,h − φ1/2(q − qh)

)
−
( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)), q̃f − PWRT q̃f − φ1/2(q − PWSq)

)
+ δ1

( 1

µs(1− φ)
(q̃f − q̃f,h − φ1/2(q − qh)),PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

])
≥ 1

2µs(1− φ∗)
‖q̃f − q̃f,h − φ1/2(q − qh)‖2 − C

{
‖q̃f − PWRT

q̃f‖2

+ ‖q − PWS
q‖2 + δ2

1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2}
.

Noting that w = q − qh − (q − PWS
q), the sixth and eighth terms satisfy

T6 + T8 = −(q − qh,∇ ·ψψψs) + (∇ · (vs − vs,h), w)

= (q − qh,∇ · (vs − πSvs + πSgs − ĝs))− (∇ · (vs − vs,h), q − PWS
q)

− δ2
[
(PWS

q − qh,∇ · vq,h) + (q − PWS
q,∇ · vq,h)

]
.

Recalling (5.13) and that ‖vq,h‖1 = ‖PWS
q − qh‖, we have

T6 + T8 ≥ 1
4δ2γ

∗
S‖PWS

q − qh‖2 − 1
8δ2γ

∗
S‖q − qh‖2 − ε‖∇ · (vs − vs,h)‖2

− C
{
‖q − PWSq‖2 + ‖∇ · (vs − πSvs)‖2 + ‖∇ · (πSgs − ĝs)‖2

}
≥ 1

8δ2γ
∗
S‖q − qh‖2 − ε‖∇ · (vs − vs,h)‖2

− C
{
‖q − PWSq‖2 + ‖∇ · (vs − πSvs)‖2 + ‖∇ · (πSgs − ĝs)‖2

}
.

Finally, for the next to last term, note that ψψψs = πSvs−vs,h−πSgs+ ĝs+δ2vq,h,
so we have from (3.8) that

T7 = (σ̂σσ(vs − vs,h),∇ψψψs)
= (σ̂σσ(πSvs − vs,h − πSgs + ĝs),∇ψψψs) + (σ̂σσ(vs − πSvs + πSgs − ĝs),∇ψψψs)
≥ C1‖πSvs − vs,h − πSgs + ĝs‖21 − 1

2C1‖πSvs − vs,h‖21
− C

{
‖vs − πSvs‖21 + ‖πSgs − ĝs‖21 + δ2

2‖vq,h‖21
}

≥ 1
2C1‖vs − vs,h‖21 − C

{
‖vs − πSvs‖21 + ‖πSgs − ĝs‖21 + δ2

2‖PWS
q − qh‖2

}
.

We turn now to the fourth term T4 in (5.14), which we estimate similarly to a
term in [5, Section 7] for the degenerate Darcy system. That is, we introduce the
projection I − PWRT and compute as follows:

−T4 =
(
q̃f − PWRT

q̃f , φ
−1/2∇ · (φ1+Θψψψr)

)
=
(
q̃f − PWRT q̃f , (I − PWRT)φ−1/2∇ · (φ1+Θψψψr)

)
=
(
q̃f − PWRT

q̃f , (I − PWRT
)φ1/2+Θ∇ ·ψψψr + (I − PWRT

)(1 + Θ)φΘ−1/2∇φ ·ψψψr
)

≤ C‖q̃f − PWRT
q̃f‖
{
‖(I − PWRT

)φ1/2+Θ∇ ·ψψψr‖+ ‖ψψψr‖
}
,
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since we have assumed the bound (4.7) on the term φΘ−1/2∇φ. Because ∇ · ψψψr is
piecewise constant, we have that

‖(I − PWRT
)φ1/2+Θ∇ ·ψψψr‖ ≤ ‖(I − PWRT

)φ1/2+Θ‖L∞(Ω)‖∇ ·ψψψr‖
≤ Ch ‖φ1/2+Θ‖W 1,∞(Ω)‖∇ ·ψψψr‖
≤ Ch ‖∇ ·ψψψr‖,

using [20] for the approximation of the L2-projection in L∞ and (4.7) again. If we
assume that the mesh is quasiuniform, then we can remove the divergence operator
in the final expression at the expense of a power of the mesh spacing h. Thus we have

−T4 ≤ C‖q̃f − PWRT q̃f‖ ‖ψψψr‖
≤ ε‖ṽr − ṽr,h‖2 + C{‖q̃f − PWRT

q̃f‖2 + ‖ṽr − πRTṽr‖2 + ‖πRTgr − ĝr‖2
}
.

Combining these estimates results in

µf
2k0
‖ṽr − ṽr,h‖2 + δ1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2
+ 1

2C1‖vs − vs,h‖21

+
1

2µs(1− φ∗)
‖q̃f − q̃f,h − φ1/2(q − qh)‖2 + 1

4δ2γ
∗
S‖q − qh‖2

≤ ε
{
‖PWRT q̃f − q̃f,h‖2 + ‖∇ · (vs − vs,h)‖2 + ‖ṽr − ṽr,h‖2

}
+ C

{
‖ṽr − πRTṽr‖2 +

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr))

]∥∥2

+ ‖πRTgr − ĝr‖2 +
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(πRTgr − ĝr))

]∥∥2

+ ‖q̃f − PWRT q̃f‖2 + ‖q − PWSq‖2 + δ2
1

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥2

+ ‖vs − πSvs‖21 + ‖πSgs − ĝs‖21 + δ2
2‖PWS

q − qh‖2
}
. (5.15)

Note that

‖q̃f − q̃f,h‖2 ≤ ‖q̃f − q̃f,h − φ1/2(q − qh)‖2 + ‖q − qh‖2.

Therefore, if we take ε, δ1, and δ2 small enough, we have proven the following theorem
and specifically the error bound (5.16).

Theorem 5. Assume that (4.7) holds on the porosity, 0 ≤ φ ≤ φ∗ < 1, the mesh
is quasiuniform, Γfess = ∂Ω, and the extensions gr ∈ Ṽr and gs ∈ Vs satisfy (4.12)
and their approximations satisfy (5.6). Then the difference of the solution to the
scaled formulation (4.13)–(4.16), (1.5), and its finite element approximation satisfy

‖ṽr − ṽr,h‖+
∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − ṽr,h))

]∥∥+ ‖vs − vs,h‖1
+ ‖q̃f − q̃f,h‖+ ‖q − qh‖
≤ C

{
‖ṽr − πRTṽr‖+

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(ṽr − πRTṽr))

]∥∥
+ ‖πRTgr − ĝr‖+

∥∥PWRT

[
φ−1/2∇ · (φ1+Θ(πRTgr − ĝr))

]∥∥
+ ‖q̃f − PWRT

q̃f‖+ ‖q − PWS
q‖+ ‖vs − πSvs‖1 + ‖πSgs − ĝs‖1

}
. (5.16)

If the solution is sufficiently smooth, this bound implies first order convergence.
It also implies stability of the scheme even when the solution is not very smooth.
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6. A Modification for Local Mass Conservation. As in [4], we define a
locally mass conservative implementation of the scaled method by using the quantity
φ̂ = PWRT

φ ∈WRT given by taking the average over each element E ∈ Th, i.e.,

for x ∈ E, φ̂(x) = φ̂E =
1

|E|

∫
E

φdx, (6.1)

where |E| is the area of E. When φ̂|E = φ̂E = 0 vanishes on an element E, φ is
identically zero on E. We modify the two divergence terms in the scaled MFEM
(5.7)–(5.10) by replacing

φ−1/2∇·(φ1+Θv)
∣∣
E

by

{
φ̂
−1/2
E ∇ · (φ1+Θv) if φ̂E 6= 0,

0 if φ̂E = 0.

We also modify the two terms in (5.8) and (5.10) involving the pressure potentials.
These changes make the method locally mass conservative, as we show later.

Locally conservative scaled mixed finite element method. Find ṽr,h ∈ VRT,0 + ĝr,
q̃f,h ∈WRT, vs,h ∈ VS,0 + ĝs, and qh ∈WS,∗ such that(µf

k0
ṽr,h,ψψψr

)
−
(
q̃f,h, φ̂

−1/2∇ · (φ1+Θψψψr)
)

= −〈g̃f , φ1/2+Θψψψr · ν〉Γf
nat

∀ψψψr ∈ VRT,0, (6.2)(
φ̂−1/2∇ · (φ1+Θṽr,h), wf

)
+
( φφ̂−1

µs(1− φ)
(q̃f,h − φ̂1/2qh), wf

)
= 0 ∀wf ∈WRT, (6.3)

−(qh,∇ ·ψψψs) + (σ̂σσ(vs,h),∇ψψψs) = −
(
(1− φ)ρrg,ψψψs

)
∀ψψψs ∈ VS,0, (6.4)

(∇ · vs,h, w)−
( φφ̂−1/2

µs(1− φ)
(q̃f,h − φ̂1/2qh), w

)
= 0 ∀w ∈WS,∗, (6.5)

where the term σ̂σσ is defined by (1.5). On an element E ∈ Th where φ̂E = 0, the three

terms in (6.2)–(6.3), (6.5) involving φ̂−1/2 are set to zero, and in the second term in

(6.3), we interpret φφ̂−1 as one. Furthermore, we define the discrete Darcy velocity
uh ∈ VRT and fluid potential qf,h ∈WRT by their degrees of freedom:

uh · ν|e =
1

|e|

∫
e

φ1+Θ ds ṽr,h · ν|e ∀e ∈ Eh, (6.6)

qf,h|E = φ̂
−1/2
E q̃f,h|E ∀E ∈ Th, (6.7)

wherein we arbitrarily set qf,h|E = 0 if φ̂E = 0.
The existence of a unique solution can be shown in a way completely analogous

to that for the nonconservative scaled MFEM in Section 5. Moreover, one can show
that the locally conservative MFEM is stable, provided that Γfess = ∂Ω. We have no
proof of convergence of the locally conservative method at this time, but the numerical
results show optimal convergence and even superconvergence.

To see local mass conservation of the fluid, let E ∈ Th be any element. With wE
defined in (5.4), the test function wf = φ̂

1/2
E wE ∈WRT in (6.3) gives

µs

∫
E

∇ · (φ1+Θṽr,h) dx+

∫
E

φ

1− φ
(
φ̂−1/2q̃f,h − qh

)
dx = 0.
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Since ṽr · ν and uh · ν are constant on each edge e ⊂ ∂E, we see from (6.6) that∫
E

∇ · (φ1+Θṽr,h) dx =

∫
∂E

φ1+Θṽr,h · ν ds =

∫
∂E

uh · ν ds =

∫
E

∇ · uh dx.

The definition of qf,h (6.7) gives

µs

∫
E

∇ · uh dx+

∫
E

φ

1− φ
(qf,h − qh) dx = 0, (6.8)

which is local mass conservation, i.e., (1.2) holds locally.
We obtain local mass conservation of the solid matrix if we use BR spaces. In

that case, we can take the test function w = wE ∈WBR in (6.5) to see

µs

∫
E

∇ · vs,h dx−
∫
E

φ

1− φ
(
qf,h − qs,h

)
dx = 0,

which is (1.4) holding locally.

7. Implementation of the Methods on Rectangular Meshes. The linear
system corresponding to either of the methods (5.7)–(5.10) or (6.2)–(6.5) has the form

A −Bφ 0 0
BTφ Cf,φ 0 −Cf,s,φ
0 0 Dφ −B
0 −CTf,s,φ BT Cs,φ



ṽr
q̃f
vs
q

 =


aφ
0
bφ
0

 , (7.1)

wherein the solution represents the degrees of freedom of ṽr,h, q̃f,h, vs,h, and qh with
respect to the bases of the finite element spaces. We remark only on the evaluation
of Bφ and Dφ. To avoid approximating derivatives of φ, the matrix Bφ should be
computed using the divergence theorem. For the locally conservative method, for any
element E ∈ Th and edge e ∈ Eh,

Bφ,e,E =
(
φ̂−1/2∇ · (φ1+Θve), wE

)
=

φ̂
−1/2
E

∫
e

φ1+Θ dsve · νE if e ⊂ ∂E and φ̂E 6= 0,

0 if e 6⊂ ∂E or φ̂E = 0.

A similar expression is used for the nonconservative scaled MFEM of Section 5. The
matrix Dφ is symmetric, and the (k, `) entry is computed using (1.5) as

Dφ,k,` = (σ̂σσ(vs,k),∇ψψψs,`) = 2µs
[(

(1− φ)Dvs,k,Dψψψs,`
)
− 1

3

(
(1− φ)∇ · vs,k,∇ ·ψψψs,`

)]
.

We can simplify the implementation when Ω is a union of rectangular subdomains
in one, two, or three dimensions, and Th is a rectangular finite element mesh. We
modify either method by approximating the first integral in (5.7) or (6.2) using what
is known as mass lumping. The integral is approximated by a trapezoidal quadrature
rule (·, ·)Q, so that for any two edges e, f ∈ Eh,

Ae,f =
(µf
k0

ve,vf

)
Q

=
µf
2k0
|Ee|δe,f , (7.2)

where Ee is the element or union of two elements that have e as an edge. This
approximation diagonalizes A and enables us to eliminate the scaled relative velocity
using the Schur complement from the first row of (7.1),

ṽr = A−1(Bφq̃f + aφ).
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What remains is a Stokes-like system with two pressure potentials. One can further
eliminate vs = D−1

φ (Bq + bφ) to obtain(
BTφA

−1Bφ + Cf,φ −Cf,s,φ
−CTf,s,φ BTD−1

φ B + Cs,φ

)(
q̃f
q

)
=

(
−BTφA−1aφ
−BTD−1

φ bφ

)
, (7.3)

but the matrix BTD−1
φ B is not easily formed. Nevertheless, one can apply this matrix

and therefore solve a Schur complement system for the two pressure potentials. The
system can be preconditioned by a diagonal preconditioner, using any good precondi-
tioners for the two diagonal blocks, and solved by conjugate gradients. See, e.g., the
block preconditioner defined in [33].

8. Numerical Results in One Dimension. In this section we present nu-
merical results for the new locally conservative scaled mixed finite element method
(6.2)–(6.5) for the Darcy-Stokes equations by simulating a compacting column in one
dimension.

Consider a mantle column [30] for z ∈ [−L,L] with no flow through the top and
bottom boundaries, i.e.,

vs(−L) = vs(L) = u(−L) = u(L) = 0, (8.1)

and also with the fluid potential scale set so that

qf (0) = 0. (8.2)

In order to reveal the qualitative nature of the equations for the compacting column,
we non-dimensionalize using the compaction length scale [27]

Lc =

(
k0µs
µf

)1/2

≈ 105 to 3× 106 m. (8.3)

Define the dimensionless variables

x = Lc x̌,

qf = |ρr|gLc q̌f , qs = |ρr|gLc q̌s,

u =
k0|ρr|g
µf

ǔ, vs =
k0|ρr|g
µf

v̌s.

By reducing to the vertical dimension, using (2.10), and dropping the check accent
marks, (1.1)–(1.5) become, after some manipulation,

u+ φ2+2Θq′f = 0, (8.4)

u′ + φ(qf − qs) = 0, (8.5)

[qs − 1
3 (1− 4φ)v′s]

′ = 1− φ, (8.6)

v′s − φ(qf − qs) = 0. (8.7)

Note that in a one-dimensional problem, there is no distinction between shear defor-
mation and compaction.

Where φ > 0, we can reduce the system to a single equation in terms of u as
follows. First, (8.5) and (8.7) imply that v′s = −u′ and qs = u′/φ+qf . Equation (8.4)
gives q′f = −φ−2−2Θu. Finally, (8.6) reduces to

φ2+2Θ
(3 + φ− 4φ2

3φ
u′
)′
− u = φ2+2Θ(1− φ). (8.8)

On an open interval where φ = 0, the equations reduce to u = 0, q′s = 1, and v′s = 0.
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8.1. Closed form solutions. We will conduct tests of a compacting column
problem using the three porosity functions

φ0(z) = φ0, (8.9)

φJ(z) =

{
φ− if z ≤ 0,

φ+ if z > 0,
(8.10)

φ2(z) =

{
0 if z ≤ 0,

φ+z
2 if z > 0,

(8.11)

where φ0 > 0 and φ− 6= φ+ gives a discontinuous jump in φJ. Note that φ0 and φ2

satisfy the condition (4.7), since in fact φ
Θ−1/2
2 ∇φ2 = 2φ+z

2Θ for z > 0 is indeed in
L∞(Ω). However, φJ does not satisfy this condition.

8.1.1. Constant porosity. Taking the constant porosity φ(z) = φ0 > 0, (8.8)
reduces to

R−2u′′ − u = φ2+2Θ
0 (1− φ0),

where

R = R(φ0) =
(3 + φ0 − 4φ2

0

3
φ1+2Θ

0

)−1/2

.

Solving the differential equation with the potential scale condition (8.2) gives the full
solution in terms of the constants a and b as

u = −φ2+2Θ
0 (1− φ0)

[
1 + a cosh(Rz) + b sinh(Rz)

]
, (8.12)

qf = (1− φ0)

{
z − b

R
+

1

R

[
a sinh(Rz) + b cosh(Rz)

]}
, (8.13)

qs = (1− φ0)

{
z − b

R
+

1− 4φ0

3 + φ0 − 4φ2
0

φ0

R

[
a sinh(Rz) + b cosh(Rz)

]}
. (8.14)

The boundary conditions (8.1) imply that

vs = −u, a = − 1

cosh(RL)
, and b = 0. (8.15)

8.1.2. Discontinuous porosity. For the discontinuous porosity φ = φJ given
in (8.10), we can solve (8.8) on each subdomain where φ is constant. If both φ+ and
φ− are positive, the result is (8.12)–(8.14), i.e.,

u± = φ2+2Θ
± (1− φ±)

[
1 + a± cosh(R±z) + b± sinh(R±z)

]
. (8.16)

For the equations (8.4)–(8.7) to make sense at the interface z = 0, the functions
for which we take derivatives must be continuous. The scale condition (8.2) enforces
continuity of qf . However, we must impose continuity at z = 0 on u (and thereby on
vs) and on the quantity

qs(0)− 1

3
(1− 4φ) v′s(0) =

( 1

φ
+

1

3
(1− 4φ)

)
u′(0)

= R−2φ−2−2Θ u′(0). (8.17)
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With the boundary condition (8.1), i.e., u±(±L) = 0, we have four conditions that
determine a± and b±. Letting F± = φ2+2Θ

± (1 − φ±), the coefficients are determined
by solving the relatively simple linear system

cosh(R+L) 0 sinh(R+L) 0
0 cosh(R−L) 0 − sinh(R−L)
F+ −F− 0 0
0 0 R−(1− φ+) −R+(1− φ−)



a+

a−
b+
b−

 =


−1
−1

F− −F+

0

 .
(8.18)

In the case that φ− = 0 but φ+ > 0, the solution to (8.8) is (8.12)–(8.14) for
z > 0, but for z < 0, u = vs = 0 (i.e., a− = b− = 0) and qs = z + c−. The interface
conditions imply that

a+ = −1, b+ =
cosh(R+L)− 1

sinh(R+L)
, and c− = −b+(1− φ+)/R+. (8.19)

Finally, if φ− > 0 and φ+ = 0, then

a− = −1 b− =
1− cosh(R−L)

sinh(R−L)
and c+ = −b−(1− φ−)/R−, (8.20)

where (8.12)–(8.14) gives the solution for z < 0 and for z > 0, u = vs = 0 (i.e.,
a+ = b+ = 0) and qs = z + c+.

8.1.3. Quadratic porosity approximation. The final closed form solution is
an approximation to the system. Set Θ = 0 and take φ(z) = φ2(z) from (8.11).
Working on z > 0, the differential equation (8.8) reduces to

φ2
+z

4
(3 + φ+z

2 − 4φ2
+z

4

3φ+z2
u′
)′
− u = φ2

+z
4(1− φ+z

2).

Assuming that φ = φ+z
2 � 1, we retain only the lowest order terms, i.e., we approx-

imate this equation as

φ+z
4(z−2u′)′ − u = φ2

+z
4,

which reduces to the Euler equation

φ+z
2 u′′ − 2φ+z u

′ − u = φ2
+z

4.

The Euler exponents satisfy φ+r(r − 3)− 1 = 0, which are

r1 =
3 +

√
9 + 4/φ+

2
> 3 and r2 =

3−
√

9 + 4/φ+

2
< 0,

and the solution to the homogeneous equation is U = Azr1 +Bzr2 . Since the solution
is well-behaved, B = 0. If φ+ 6= 1/4, variation of parameters and the boundary
condition u(L) = 0 give the solution for z > 0 as

u = −vs =
φ2

+

1− 4φ+

(
L4−r1 zr1 − z4

)
, (8.21)

qf =
1

1− 4φ+

(
z − L4−r1 zr1−3

r1 − 3

)
, (8.22)

qs = z. (8.23)

For z < 0 where φ = 0, the solution is u = vs = 0. Moreover, qs = z, using the
continuity condition (8.17) and noting that u′(0) = 0.
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Fig. 8.1. Constant porosity (8.9) with φ0 = 0.04. The computed solution as thick dashed
lines, and the closed form solution as thin, solid dark lines. Shown are the porosity φ (phi), u,
vs = −u, qf , and qs, as well as the scaled ṽr and q̃f .

8.2. Verification of the scaled method. In this subsection we present numer-
ical results for the locally conservative scaled mixed method (6.2)–(6.5) and its mass
lumped approximation using (7.2). We use the BR spaces for the Stokes part of the
system. Note that in one dimension, the velocity part of the RT and BR spaces reduce
to piecewise continuous linear functions, and the pressure part is the set of piecewise
discontinuous constant functions. The theoretical bound in Theorem 5 would guar-
antee a convergence rate of O(h) for the potentials and velocities, provided φ satisfies
(4.7).

We simulate the dimensionless compacting column test (8.1)–(8.2), (8.4)–(8.7)
using the three porosity functions (8.9)–(8.11) defined above. In all tests, we take
L = 2, so that the domain extends four compaction lengths, and we fix Θ = 0. Each
problem is solved on a uniform mesh of n cells. Our computer code is based on the
deal.II software library [11].

We chose above to fix the pressure scale of q̃f by imposing (8.2) in the interior
of the domain. This works well for the closed form solution. However, it does not set
the scale properly in our numerical implementation of the problems. Instead, we set
the pressure scale of q at the point where it achieves its maximum value. Moreover,
in the two cases where the porosity degenerates, we also set the scale of q at the point
where it achieves its minimum value.

8.2.1. Constant porosity tests. For the first set of tests, we take the constant
porosity φ(z) = φ0 = 0.04. This problem tests the overall performance of the code
when there is no degeneracy in the porosity. The computed and closed form solutions
using n = 80 are shown in Fig. 8.1, although the former is so accurate that it obscures
the latter.

In Table 8.1 we give the relative errors of the potentials as measured in the
L2-norm for both the scaled mixed method and its mass lumped approximation.
The optimal rates of convergence O(h) are observed for q̃f , qf , and q. We also
measured the errors in the discrete L2 norm, which is the usual L2-norm but evaluated
using the midpoint quadrature rule. This is a norm for which one might expect to
see superconvergence. Indeed, we see superconvergence for all three potentials. On
coarser meshes we see O(h3/2) for the fluid potentials and O(h) for the mixture, but
on fine meshes the rates rise to O(h2) for all three variables. Similar superconvergence
results hold for the mass lumped approximation.
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Table 8.1
Constant porosity potential errors. Relative L2 errors and convergence rates for the

potentials. We show results for the scaled mixed method, the mass lumped approximation, and the
scaled mixed method but using the discrete L2-norm given by using the midpoint rule.

q̃f qf q

n L2 error rate L2 error rate L2 error rate
Scaled mixed method

20 1.428e-02 1.00 3.237e-02 1.00 3.435e-02 1.00
40 7.139e-03 1.00 1.618e-02 1.00 1.717e-02 1.00
80 3.569e-03 1.00 8.090e-03 1.00 8.581e-03 1.00

160 1.784e-03 1.00 4.044e-03 1.00 4.290e-03 1.00
Mass lumped method

20 1.427e-02 1.00 3.236e-02 1.00 3.434e-02 1.00
40 7.139e-03 1.00 1.618e-02 1.00 1.717e-02 1.00
80 3.569e-03 1.00 8.090e-03 1.00 8.581e-03 1.00

160 1.784e-03 1.00 4.044e-03 1.00 4.290e-03 1.00
Scaled mixed method, discrete norm (midpoint rule)

20 8.597e-04 1.46 1.949e-03 1.46 1.411e-03 0.91
40 2.794e-04 1.62 6.334e-04 1.62 5.422e-04 1.38
80 8.263e-05 1.76 1.873e-04 1.76 1.708e-04 1.67

160 2.271e-05 1.86 5.149e-05 1.86 4.813e-05 1.83
320 5.972e-06 1.93 1.354e-05 1.93 1.279e-05 1.91
640 1.532e-06 1.96 3.472e-06 1.96 3.297e-06 1.96

Table 8.2
Constant porosity velocity errors. Relative L2 errors and convergence rates for the veloc-

ities using the scaled mixed method and the mass lumped approximation.

ṽf u vs
n L2 error rate L2 error rate L2 error rate

Scaled mixed method
20 1.147e-03 1.82 4.897e-05 1.82 4.897e-05 1.82
40 2.972e-04 1.95 1.269e-05 1.95 1.269e-05 1.95
80 7.500e-05 1.99 3.203e-06 1.99 3.203e-06 1.99

160 1.879e-05 2.00 8.027e-07 2.00 8.027e-07 2.00
Mass lumped method

20 1.650e-03 1.72 7.047e-05 1.72 7.047e-05 1.72
40 4.381e-04 1.91 1.871e-05 1.91 1.871e-05 1.91
80 1.113e-04 1.98 4.753e-06 1.98 4.753e-06 1.98

160 2.794e-05 1.99 1.193e-06 1.99 1.193e-06 1.99

In Table 8.2 we give the relative errors of the velocities in the L2-norm for both
the scaled mixed method and its mass lumped approximation. The velocities are
approximated by piecewise linears, so the optimal rates of convergence would be
O(h2). This is precisely what is observed for each of the velocities ṽf , u, and vs.

8.2.2. Discontinuous porosity tests. For the next set of tests, we use the
discontinuous porosity function (8.10) with φ− = 0 and φ+ = 0.04. Not only is there
a jump in porosity, but it is also degenerate for z < 0. Note that the discontinuity
will land on a mesh point if we use an even number of mesh cells n, and it will land
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Fig. 8.2. Discontinuous porosity (8.10) with φ− = 0 and φ+ = 0.04. The computed solution
as thick dashed lines, and the closed form solution as thin, solid dark lines. Shown are the porosity
φ (phi), u, vs = −u, qf , and qs, as well as the scaled ṽr and q̃f .

in the center of a cell when n is odd.
The computed and closed form solutions using n = 80 are shown in Figure 8.2.

Note that the discontinuity in qs is clearly evident (and approximated well). Note
also that the computed solution ṽr has some difficulty near z = 0 where the porosity
is discontinuous. This difficulty is not seen in u and vs, since compared to ṽr, these
velocities are multiplied by φ. Overall, the computed solution is an excellent match
to the closed form one.

In Table 8.3 we give convergence results for the potentials using the scaled mixed
method. The mass lumped approximation has nearly identical results. Even though
φ does not satisfy the condition (4.7) and is in fact discontinuous, we see good con-
vergence results. When n is even and the grid resolves the discontinuity in φ, we see
optimal convergence rates O(h) for all three potentials and superconvergence O(h2)
when using the discrete norm.

When n is odd and the discontinuity in φ is not resolved, we see some degradation
in the convergence rate for q and no superconvergence in the discrete norm. To
test whether the error near the discontinuity pollutes the solution, we computed the
interior errors. These are given by computing the error in all cells of the mesh except
the five near the discontinuity. That is, we restrict the domain of integration of the
L2-norm to be interior to where φ is smooth by removing the center cell and its two
neighbors on each side. This mesh dependent norm shows good O(h) convergence,
and so indeed the error is localized to the region of the discontinuity. We do not,
however, observe superconvergence in the discrete interior norm when n is odd.

The errors in the velocities are given in Table 8.4. We see good rates of con-
vergence when n is even, being O(h2) for all cases except the scaled method’s ṽf ,
which is still O(h3/2). When n is odd, we observe O(h) convergence (we show only
the scaled method, but the mass lumped approximation is similar).

8.2.3. Quadratic porosity tests. For the final set of tests, we use the quadratic
porosity function (8.11) with φ+ = 0.001, i.e., φ2(z) = 0.001 z2 for z > 0 and φ2(z) = 0
for z ≤ 0. The maximal value of φ is φ(2) = 0.004, so the analytic solution (8.21)–
(8.23) should approximate the true solution reasonably well, at least if n is not too
large.

The computed and closed form solutions using n = 80 are shown in Figure 8.3.
Note that there is a boundary layer near z = 2 in the velocities that is difficult to
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Table 8.3
Discontinuous porosity potential errors. Relative L2 errors and convergence rates for

the potentials. We show results for the scaled mixed method, including two cases using the discrete
L2-norm given by using the midpoint rule, and one case with the L2-norm restricted to the interior
(i.e., away from the discontinuity). When n is even, the discontinuity is at a computational mesh
point, but not when n is odd.

q̃f qf q

n L2 error rate L2 error rate L2 error rate
Scaled mixed method, n even

20 1.040e-02 1.00 2.852e-02 1.00 3.622e-02 1.00
40 5.202e-03 1.00 1.426e-02 1.00 1.811e-02 1.00
80 2.601e-03 1.00 7.133e-03 1.00 9.055e-03 1.00

160 1.301e-03 1.00 3.567e-03 1.00 4.527e-03 1.00
Scaled mixed method, n odd

21 9.961e-03 0.98 2.744e-02 0.98 3.955e-02 0.87
41 5.140e-03 0.99 1.416e-02 0.99 2.321e-02 0.80
81 2.611e-03 0.99 7.184e-03 1.00 1.428e-02 0.71

161 1.316e-03 1.00 3.615e-03 1.00 9.218e-03 0.64
Scaled mixed method, n even, discrete norm (midpoint rule)
20 9.536e-04 1.64 2.615e-03 1.64 1.231e-04 1.46
40 2.529e-04 1.91 6.935e-04 1.91 3.860e-05 1.67
80 6.225e-05 2.02 1.707e-04 2.02 1.102e-05 1.81

160 1.505e-05 2.05 4.128e-05 2.05 2.964e-06 1.89
Scaled mixed method, n odd, discrete norm (midpoint rule)
21 1.553e-03 0.50 5.136e-03 0.39 2.691e-02 0.52
41 9.191e-04 0.78 2.912e-03 0.85 1.917e-02 0.51
81 4.900e-04 0.92 1.473e-03 1.00 1.361e-02 0.50

161 2.512e-04 0.97 7.263e-04 1.03 9.647e-03 0.50
Scaled mixed method, n odd, interior

21 9.126e-03 0.68 2.502e-02 0.68 3.016e-02 0.74
41 4.983e-03 0.90 1.367e-02 0.90 1.658e-02 0.89
81 2.572e-03 0.97 7.052e-03 0.97 8.670e-03 0.95

161 1.304e-03 0.99 3.576e-03 0.99 4.431e-03 0.98

resolve, but the computed and closed form solutions agree quite well.

The convergence results for the potentials and velocities are given in Tables 8.5
and 8.6. We give only results for the scaled method, since the mass lumped ap-
proximation gives nearly identical results. We expect convergence only while the
approximate true solution is adequate. Indeed, we see some degradation of the results
as n becomes too fine. The potentials converge to O(h); however, the discrete norm
does not display superconvergence for this test problem (however, the errors are much
smaller, as can be seen in Table 8.5). The rates of convergence for the velocities are
at least O(h), and may approach O(h2) before the grid becomes too fine.

8.3. Condition number as positive φ tends to zero. We now turn our at-
tention to the nondegenerate problem, so that we can solve the system of equations
using all four of our mixed finite element formulations: the standard, expanded, sym-
metric, and scaled formulations. We consider the same three nonconstant porosities
(8.9)–(8.11), but add a small positive constant φε > 0 to each. In this test we take



Mixed Methods for Two-Phase Darcy-Stokes Mixtures 29

Table 8.4
Discontinuous porosity velocity errors. Relative L2 errors and convergence rates for the

velocities. We show results for the scaled mixed method and the mass lumped approximation using
(7.2). When n is even, the discontinuity is at a computational mesh point, but not when n is odd.

ṽf u vs
n L2 error rate L2 error rate L2 error rate

Scaled mixed method, n even
10 7.364e-03 — 1.700e-04 — 1.700e-04 —
20 2.929e-03 1.33 4.714e-05 1.85 4.714e-05 1.85
40 1.116e-03 1.39 1.213e-05 1.96 1.213e-05 1.96
80 4.120e-04 1.44 3.090e-06 1.97 3.090e-06 1.97

160 1.491e-04 1.47 7.850e-07 1.98 7.850e-07 1.98
Mass lumped method, n even

10 5.608e-03 — 2.341e-04 — 2.341e-04 —
20 1.695e-03 1.73 7.076e-05 1.73 7.076e-05 1.73
40 4.499e-04 1.91 1.878e-05 1.91 1.878e-05 1.91
80 1.143e-04 1.98 4.770e-06 1.98 4.770e-06 1.98

160 2.869e-05 1.99 1.197e-06 1.99 1.197e-06 1.99
Scaled mixed method, n odd

11 4.417e-03 — 2.027e-04 — 2.027e-04 —
21 2.027e-03 1.20 9.004e-05 1.25 9.004e-05 1.25
41 1.055e-03 0.98 4.524e-05 1.03 4.524e-05 1.03
81 5.614e-04 0.93 2.368e-05 0.95 2.368e-05 0.95

161 2.925e-04 0.95 1.227e-05 0.96 1.227e-05 0.96

0 0.002 0.004

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

phi

­1E­05 0 1E­05

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

tr_u_x

tr_vs_x

u_x

vs_x

­2 0 2

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

tr_qf

tr_qs

qf

qs

­0.002 0

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

tr_sc_vr_x

sc_vr_x

0 0.05 0.1

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

tr_sc_qf

sc_qf

Fig. 8.3. Quadratic porosity (8.11) with φ+ = 0.001. The computed solution as thick dashed
lines, and the closed form solution as thin, solid dark lines. Shown are the porosity φ (phi), u,
vs = −u, qf , and qs, as well as the scaled ṽr and q̃f .

φε → 0+ and observe the condition number of the linear system that is solved by each
formulation.

In Fig. 8.4 we show a graph of the results of one of the porosity functions (all
three show nearly identical behavior). The condition number of each method increases
rapidly as φε → 0 with the exception of the scaled method, which remains stable.
Indeed, as we saw in the previous section, the scaled method works well even when
the porosity is identically zero in parts of the domain.
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Table 8.5
Quadratic porosity potential errors. Relative L2 errors and convergence rates for the

potentials for the scaled mixed method, including two cases using the discrete L2-norm given by
using the midpoint rule. When n is even, the transition to positive porosity is at a computational
mesh point, but not when n is odd.

q̃f qf q

n L2 error rate L2 error rate L2 error rate
Scaled mixed method, n even

20 5.326e-03 1.01 3.037e-02 1.01 3.490e-02 1.00
40 2.656e-03 1.00 1.520e-02 1.00 1.747e-02 1.00
80 1.329e-03 1.00 7.667e-03 0.99 8.768e-03 0.99

160 6.675e-04 0.99 3.963e-03 0.95 4.457e-03 0.98
Scaled mixed method, n odd

21 5.070e-03 1.01 2.893e-02 1.01 3.324e-02 1.00
41 2.592e-03 1.00 1.484e-02 1.00 1.704e-02 1.00
81 1.313e-03 1.00 7.575e-03 0.99 8.660e-03 0.99

161 6.634e-04 0.99 3.940e-03 0.95 4.430e-03 0.98
Scaled mixed method, n even, discrete norm (midpoint rule)
20 2.649e-04 0.65 1.979e-03 0.57 7.769e-04 -0.27
40 1.236e-04 1.10 1.243e-03 0.67 8.537e-04 -0.14
80 7.927e-05 0.64 1.135e-03 0.13 8.961e-04 -0.07

160 7.481e-05 0.08 1.152e-03 -0.02 9.191e-04 -0.04
Scaled mixed method, n odd, discrete norm (midpoint rule)
21 2.524e-04 0.68 1.886e-03 0.64 7.529e-04 -0.32
41 1.204e-04 1.11 1.215e-03 0.66 8.390e-04 -0.16
81 7.903e-05 0.62 1.125e-03 0.11 8.880e-04 -0.08

161 7.481e-05 0.08 1.147e-03 -0.03 9.148e-04 -0.04

Table 8.6
Quadratic porosity velocity errors. Relative L2 errors and convergence rates for the ve-

locities for the scaled mixed method. When n is even, the transition to positive porosity is at a
computational mesh point, but not when n is odd.

ṽf u vs
n L2 error rate L2 error rate L2 error rate

Scaled mixed method, n even
20 3.663e-04 1.23 1.546e-06 1.14 1.546e-06 1.14
40 1.166e-04 1.65 5.104e-07 1.60 5.104e-07 1.60
80 3.252e-05 1.84 1.429e-07 1.84 1.429e-07 1.84

160 1.079e-05 1.59 4.342e-08 1.72 4.342e-08 1.72
Scaled mixed method, n odd

21 3.408e-04 1.27 1.444e-06 1.19 1.444e-06 1.19
41 1.115e-04 1.67 4.886e-07 1.62 4.886e-07 1.62
81 3.179e-05 1.84 1.397e-07 1.84 1.397e-07 1.84

161 1.071e-05 1.58 4.304e-08 1.71 4.304e-08 1.71

9. Numerical Results in Two Dimensions. In this section we present nu-
merical results for the mass lumped approximation of the scaled mixed method (6.2)–
(6.5), (7.2). We use the TH spaces for the Stokes part of the system and the deal.II
software library [11]. We choose a two-dimensional problem related to simulation of
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Fig. 8.4. Compacting column. Condition numbers for the standard, expanded, symmetric, and
scaled formulations as φε → 0+, for the porosities defined in (8.9)–(8.11) plus φε.
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Fig. 9.1. MOR-like example with zero porosity. We show the solid matrix potential qs as a
contour in Kg/(m·s2) and the velocity vs as streamlines.

the mantle near a mid-ocean ridge (MOR).
If porosity is constant, φ = φ0, and one sets ∇ · u = ∇ · vs = 0, then (1.1)–(1.5)

can be solved in an infinite quarter-plane {x > 0, z > 0} [37]. This problem describes
viscous corner flow if, at the top of the mantle {z = 0}, one sets the MOR spreading
rate as a boundary condition vs · τ = vs · x̂ = U0, and on the ridge axis {x = 0}, one
sets the symmetry condition vf · ν = vf · ẑ = 0 and ∂vs/∂x = 0. The solution is

q = qs = qf = (1− φ0)
( 4µsU0

π(x2 + z2)
+ |ρr| g

)
z, (9.1)

vs =
2U0

π(x2 + z2)

(tan−1(x/z) (x2 + z2)− xz
−z2

)
, (9.2)

u =
k0(1− φ0)φ2+2Θ

0

µf

{ 4µsU0

π(x2 + z2)2

(
2xz

z2 − x2

)
+ ρrg

}
. (9.3)

We solve the full system of equations (i.e., the unmodified (1.1)–(1.5)) on a rect-
angular domain {(x, z) : −160 km < x < 160 km, 0 < z < 160 km}. The MOR is at
(0, 0). We take the physical quantities defined in Table 2.1, using a permeability of
10−8 m2, Θ = 0, and U0 = 10−9 m/s = 3.1536 cm/yr. We use boundary conditions de-
fined by the corner flow problem. We impose the nonhomogeneous essential boundary
condition defined by (9.2) on the Stokes velocity vs and the nonhomogeneous natural
boundary condition defined by (9.1) on the potential q = qf . However, to avoid the
singularity at the corner, we translate x to x − ` when x < 0 and x + ` when x > 0
before evaluating (9.1)–(9.2), where ` = 20 km. We use a mesh of 160× 80 elements.

In Fig. 9.1 we show the Stokes solution using φ = 0. Note that the mantle flows
up to the MOR and outward from there. There is no melt in this computation,
although our code solves for the Darcy system as well as the Stokes system. Rather
than normalizing the average of q to zero, we set a single point to zero.
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Fig. 9.2. MOR-like example. We show the porosity and the solutions (vs, qs) to the Stokes
system, (ṽr, q̃f ) to the scaled Darcy system, and (u, qf ) to the Darcy system. The porosity and
potentials in Kg/(m·s2) are shown as contours, the relative velocity ṽr as arrows, and the other
velocities as streamlines.

We then set a nonvanishing porosity by the formula

φ(x, z) =

0.05
(120 km− z

120 km

)2(
1− |x|

z + `

)
if z ≤ 120 km and |x| ≤ z + `,

0 otherwise,
(9.4)

where we took ` = 20 km.

In Fig. 9.2, we show the porosity and the solutions (vs, qs) to the Stokes system,
(ṽr, q̃f ) to the scaled Darcy system, and (u, qf ) to the Darcy system. The form of
the solution is dictated by our (arbitrary) choice of φ. The scaled and unscaled Darcy
solution shows fluid melt rising and focusing into the MOR, and some melt leaving
the domain to form new crust. The Stokes solution varies significantly from the case
in Fig. 9.1 where there is no melt. The solid matrix rises at the bottom, but it falls
at the top near the MOR to compensate for the rise of fluid melt to the surface. We
note that the scaled potential q̃f is much smoother than qf . The porosity vanishes
in a significant portion of the domain; nevertheless, there is no difficulty solving the
system accurately.

10. Conclusions. We developed a mathematically well-posed, mixed variational
framework for McKenzie’s equations governing the mechanics of a mixture of molten
and solid materials [29], assuming that the porosity φ is given and satisfies the hy-
pothesis (4.7). Our formulation handles the regions where there are two phases (i.e.,
the mixture variable φ > 0) as well as the mathematically degenerate regions where
there is only the single solid matrix phase (i.e., φ = 0). The formulation is based
on a careful scaling of the Darcy variables by powers of the porosity [5]. We also
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discussed three other standard formulations, but φ must be positive simply for these
formulations to be well-defined.

We defined a mixed finite element method (MFEM) based on our scaled varia-
tional formulation and proved its stability and optimal order convergence. We also
presented a modification that is locally mass conservative, and a modification involv-
ing mass lumping (7.2) to simplify and increase solver efficiency of the implementation
on rectangular meshes.

Numerical results of a one-dimensional compacting column with various porosity
functions showed an excellent match to the closed form solutions for φ0 and φJ, as
well as a good match to the approximate solution for φ2. Degeneracies in the porosity
posed no difficulties for the simulations; in fact, the condition number of the linear
system is nearly insensitive to degeneracies in φ. The results showed that the method
indeed achieves optimal convergence and that the mass lumping approximation does
not degrade the results in any way.

The nondegenerate constant porosity example showed O(h) convergence for the
potentials and superconvergence of order O(h2) when measured in the discrete mid-
point rule norm. The velocity achieved the optimal O(h2) convergence for this one-
dimensional problem. The degenerate, quadratic porosity example also showed op-
timal O(h) convergence of the potentials and perhaps O(h2) convergence of the ve-
locities, regardless of whether the computational mesh resolved the point where φ
transitions from zero to positive.

The degenerate and discontinuous porosity example had an interesting set of
results. Even though the porosity does not satisfy (4.7), the MFEM achieved good,
but not necessarily optimal, convergence in all cases. When the computational mesh
resolved the transition point of φ, we saw O(h) convergence for the potentials and
superconvergence of order O(h2) when measured in the discrete midpoint rule norm.
We also saw O(h3/2) convergence for ṽr and O(h2) convergence for u and vs. The
mass lumped approximation actually improved the convergence to O(h2) for all three
velocities. However, when the computational mesh did not resolve the transition point
in φ, we saw O(h) convergence for the potentials q̃f and qf , but only O(h1/2) for q.
The discrete norm did not help, but we did verify that the main errors were localized
to a region near φ2 the transition point, since removing the error there led to O(h)
convergence for all three potentials. The velocities converged to order O(h). This
example suggests that the condition (4.7) may not be strictly necessary.

In the full model of mantle dynamics, the porosity evolves and so must be approx-
imated. In a finite element or discontinuous Galerkin method, one would naturally
approximate φ by continuous or discontinuous polynomials on each element of the
computational mesh. Any jumps in the porosity will then naturally lie on the bound-
aries of the elements, and so we would expect our method to perform well.

A two-dimensional test example akin to a mid ocean ridge showed the strong
effect that melt can have on the velocity field. Even though the porosity vanished
in much of the domain, our locally conservative scaled finite element method showed
good results. Using the mass lumped approximation, the method easily reduces to
a single Stokes system with two potentials, and the efficiency of the linear solver is
fairly insensitive to the absence of melt. We believe that our method is highly suited
to realistic problems of the mechanics of mantle dynamics, and that it can be used
effectively as a component of the full mantle dynamics problem.
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