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Abstract

We present an approximate Jacobian approach for solving nonlinear, multiphase
flow and transport problems in porous media. A backward Euler time discretization
scheme is used; prior to spatial discretization with a lowest order mixed finite element
method (MFEM). This results in a fully implicit nonlinear algebraic system of equa-
tions. Conventionally, an exact Jacobian construction is employed during the Newton
linearization to obtain a linear system of equations after spatial and temporal discretiza-
tion. This fully coupled, monolithic linear system; usually in pressure and saturation
(or concentration) unknowns, requires specialized preconditioners such as compressed
pressure residual (CPR) or two stage preconditioner. These preconditioners operate
on the linear system to decouple pressure and saturation (or concentration) degrees of
freedom (DOF) in order to use existing linear solvers for positive definite (PD) matrices
such as GMRES, AMG etc. can be used. In this work, we present an alternative to two-
stage preconditioning (or CPR) for solving the aforementioned monolithic system after
Newton linearization. This method relies upon an approximation in the non-linear, fully
discrete, variational formulation resulting in decoupling of the DOFs and consequent
approximate Jacobian construction. The resulting linear system is easily reduced to a
system in pressure DOF circumventing the need for these specialized preconditioners.
Further, the linear system has lesser DOF owing to the elimination of saturation (or
concentration) unknowns. This nonlinear solver is demonstrated to be as accurate as
the exact Jacobian approach, measured in terms of convergence of nonlinear residual
to a desired tolerance for both methods. Our numerical results indicate a consistent
computational speedup by a factor of approximately 1.32 to 4.0 for the two-phase flow
model formulation under consideration. This is related to the DOF of the linear sys-
tems for the approximate and exact Jacobian approaches. For multicomponent flow
and transport this speedup is expected to be directly proportional to the number of
concentration degrees of freedom. A number of field scale numerical simulations are
also presented to demonstrate the e�cacy of this approach for realistic problems.

Keywords. nonlinear solver, Jacobian approximation, mixed finite elements, cell-
centered finite di↵erence, fully-implicit

1 Introduction

Nonlinear processes are a common occurrence for multiphase, flow and transport problems
in sub-surface porous media. These nonlinearities originate from empirical, phenomeno-

1



logical and often mechanistic considerations during the modeling of the physical processes.
Conventionally, after spatial and temporal discretization of the partial di↵erential equations
of the associated model formulation, linearization is necessary to solve the resulting nonlin-
ear system of algebraic equations. The Newton’s method is a well-known nonlinear solver
and has proven quadratic rate of convergence in the vicinity of the solution assuming a
Lipschitz continuity argument. There is an extensive literature dedicated to di↵erent modi-
fications of Newton’s method that address a wide array of issues in solving nonlinear system
of equations (inexact, chord, quasi-Newton, semismooth, etc.), see e.g. [4, 10, 25, 15, 11, 12]
and references therein. The semi-smooth Newton methods, for example, are used for treat-
ing system of non-smooth equations with lower regularity arising from model inequality
constraints, inadvertent roughness due to empirical considerations, or other modeling in-
consistencies. This latter inconsistency is often seen in realistic subsurface reservoirs with
heterogeneous rock properties, where an empirical description of capillary pressure and rel-
ative permeability introduces discontinuities at the interface between di↵erent rock types.

For flow and transport problems in porous media, a backward Euler discretization in
time with an appropriate spatial discretization gives rise to a fully-implicit nonlinear system
of algebraic equations. A nonlinear solver; as described before, is then used to obtain
spatial distributions of desired unknowns (pressure, saturation, concentration etc.) at a
given time. In doing so, the solution available at the previous time, the time-step size,
and the nonlinear solver convergence rates are inherently tied. The primary focus in the
development of computationally e�cient, nonlinear solution strategies is to either increase
the convergence rates (optimally quadratic) or increase time-step sizes although at the cost
of additional numerical di↵usion. However, these two desirable properties are closely related
due to the linearization assumption inherent to the nonlinear solver. A large time-step size
requirement strains this linearization assumption; since an initial estimate from previous
time solutions is not su�ciently close to the final solution, resulting in reduced convergence
rates. Similarly, a requirement on the convergence rate constraints the time-step size. Since
a rigorous derivation relating time-step size and nonlinear convergence rate is not often
achievable in the light of the wide ranging model nonlinearities, we draw our conclusions
based upon observed numerics.

Several approaches have been proposed that aim to alleviate or circumvent some of
these aforementioned issues in favor of overall computational e�ciency. A number of these
approaches [6, 34, 18, 14] improve nonlinear convergence rates; for a given time-step size,
that rely upon modifying the Newton step-size or descent direction or both. These modifi-
cations are either based upon determining an optimal nonlinear step size using line-search
algorithms or altering descent direction (Jacobian) using prior knowledge of the regularity
of functions contributing to the Jacobian. The simplest example of modifying the descent
direction occurs in the case of slightly compressible fluid description where the contribu-
tion of the density derivative with respect to pressure to the Jacobian is often considered
negligible. This latter modification improves the overall e�ciency by neglecting the com-
putationally expensive evaluation of the density derivative. Another such approach, is the
reduced Newton algorithm proposed by [18, 14] that relies upon saturation or concentra-
tion updates in an order determined by pressure potential. The authors report an overall
reduction in computational cost due to larger time-step sizes for which the nonlinear it-
erations converge. However, the sequential nature of potential reordering and consequent
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saturation/concentration updates in this proposed nonlinear solution algorithm might pose
parallel scalability issues.

In this work, we present a nonlinear solver based upon modifying the Newton descent
direction to improve the overall computational e�ciency for numerical reservoir simulations.
Although, this work has been extended for fully implicit, multiphase, compositional flow
[30], the model complexity precludes a fair comparison between the proposed and conven-
tional approaches. We therefore restrict ourselves to a slightly compressible, two phase flow
model for the sake of simplicity. This allows us to compare the di↵erences between the
conventional Newton method (exact Jacobian) and our approach (approximate Jacobian)
both in terms of nonlinear system formulation and consequent numerical benchmarking.
We begin with a description of a two-phase flow model formulation followed by a brief dis-
cussion of a mixed finite element spatial discretization and its relation to the well known
cell-centered finite di↵erence. We then present a � notation relying upon Gâteaux deriva-
tives to linearize the semi-discrete nonlinear partial di↵erential equations obtained after
temporal discretization prior to spatial discretization. This is followed by a detailed discus-
sion on the conventional and proposed approaches. We use this aforementioned � notation
to simplify the description and easily distinguish the di↵erences in Jacobian construction
for the two approaches. Next we describe the nonlinear solvers and preconditioners used in
this work with a brief discussion on the accuracy of the two nonlinear solvers. Finally, we
present extensive numerical experiments for benchmarking the proposed approach against
the conventional method to determine the computational speedup and overall increase in
e�ciency.

2 Model Formulation

We begin by describing the model formulation for immiscible, two-phase, slightly compress-
ible flow in a porous medium which is widely accepted in several porous media communities
such as oil and gas, ground water hydrology and environmental engineering.

2.1 Phase Conservation Equations

Consider a time interval (0, T ], along with a spatial domain, ⌦ ⇢ Rd, d = 2 or 3 with
boundary @⌦ and outward unit normal n. The mass conservation equation for phase ↵ is

@ (�⇢↵S↵)

@t
+r·u↵ = q↵ in ⌦ ⇥ (0, T ], (1)

where � is the rock porosity and ⇢↵, S↵, u↵ and q↵ are density, saturation, velocity and
source/sink term, respectively of phase ↵. The Darcy velocity is given by,

u↵ = �K⇢↵
kr↵
µ↵

(rp↵ � ⇢↵g) in ⌦ ⇥ (0, T ] (2)

Here, K and g are the rock permeability and gravitational constant, respectively. Further,
kr↵, µ↵ and p↵ are the relative permeability, viscosity and pressure of phase ↵.
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2.2 Initial and Boundary Conditions

Although not restrictive, for the sake of simplicity we assume no flow boundary conditions.

u↵ · n = 0 on @⌦ ⇥ (0, T ] (3)

p↵ = p0↵, S↵ = S0
↵, at ⌦ ⇥ {t = 0} (4)

Here, p0↵, S
0
↵ are the initial conditions for pressure and saturation of phase ↵.

2.3 Constraints and Other Conditions

The phase saturations S↵ are constrained as,
X

↵

S↵ = 1. (5)

We assume capillary pressure and relative permeabilities to be continuous and monotonic
functions of phase saturations. A precise description of the functional forms is avoided to
maintain generality.

pc = f(So) = pw � po (6)

kr↵ = kr↵(S↵) (7)

Further, both oil and water phase are assumed to slightly compressible with phase densities
evaluated using

⇢↵ = ⇢↵,ref exp [cf↵(p↵ � p↵,ref )] . (8)

Here, cf↵ is the compressibility and ⇢↵,ref is the density of phase ↵ at the reference pressure
p↵,ref .

3 MFEM as CCFD

The cell-centered finite di↵erence scheme (CCFD) is well known in flow and transport in
porous medium communities. In this work, we use a mixed finite element method (MFEM)
for spatial discretization related to the CCFD scheme in an e↵ort to assist code portabil-
ity for legacy reservoir simulators. Earlier works [28] show that the mixed finite element
method with the lowest order Raviart-Thomas-Nedelec (RTN) spaces [26, 23] on a rectan-
gular grid reduces to a cell-centered finite di↵erence scheme due to the choice of a numerical
quadrature rule. The MFEM therefore results in the same nonlinear system; after fluxes
are eliminated, as for the CCFD scheme, making the two schemes equivalent. Some results
on superconvergence of this MFEM or CCFD scheme with flux boundary conditions for an
elliptic problem can be found in [22]. An expanded MFEM to handle full tensor permeabil-
ity and general geometry using logically rectangular grids was presented in [2, 3]. Later this
scheme was applied to non-linear, two-phase and black-oil flow problems by [9] and [24],
respectively. Here an auxiliary flux term is introduced to avoid inversion of zero relative
permeabilities. However, for discontinuous permeability tensors the gradient in pressure
and hence the auxiliary flux is also discontinuous wherein a hybrid form of the expanded
mixed method is necessary to recover accuracy.
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A multipoint flux mixed finite element (MFMFE) method was later presented by [33]
to handle non-smooth grids and permeabilities. This scheme avoids Lagrange pressure mul-
tipliers at the discontinuous interfaces introduced by the former expanded MFEM while
preserving the cell-centered structure of the CCFD scheme. The MFMFE scheme can also
handle full tensor permeabilities on logically rectangular distorted hexahedra to capture
general geometries. An expanded form of the MFMFE scheme is then used to avoid in-
version of zero relative permeabilities in the case of non-linear multiphase flow problems.
This MFMFE scheme has been extended to handle complex, non-linear flow and transport
problems including equation of state compositional flow [30]. In this work, we use this
latter MFE scheme for the sake of generalization to more complex flow models and sim-
plicity in outlining the di↵erences between approximate and exact Jacobian appraoches. In
what follows, a two-phase, slightly compressible flow model is used resulting in a nonlinear
algebraic system of equations. Further details regarding this MFE discretization applied to
a two phase flow model formulation can be found in Appendix A.

4 The � Notation

Conventionally, to solve a nonlinear partial di↵erential equation (PDE) system using finite
element methods, one begins with a fully-discrete weak formulation. This is followed by a
linearization step on the resulting nonlinear system of algebraic equations. In contrast, for
the approximate Jacobian approach presented here, Newton linearization is performed on
the discrete-in-time variational formulation before spatial discretization is considered. We
use the � notation when calculating the required derivatives which allows for simplicity of
describing the approximations made in aforementioned method. Although the conventional
method can be used, we consider the latter for the sake of simplicity in comparing the two
formulations. To solve the nonlinear equation F(p) = 0, Newton method solves a sequence
of linear problems,

F 0(pk)�pk = �F(pk),

for �pk = pk+1 � pk, the di↵erence between two consecutive iterates. Here, F 0(p) is the
Fréchet derivative of the operator F . To show the similarities between computing derivatives
of (nonlinear) operators and derivatives of real-valued functions, note that F 0(p) is also the
Gâteaux derivative of F [21]. The latter is a generalization of the classical directional
derivative and is defined as

F 0(p)(�p) := lim
"!0

F(p+ "�p)� F(p)

"
. (9)

We formally write � as an operator that maps F(p) to its Gâteaux derivative in the direction
�p, i.e.

�(F(p)) := F 0(p)(�p). (10)

Note that the � operator is independent of the spatial operators r and r·. Please see
Appendix B for an example to calculate the Gâteaux derivative.
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5 Fully Implicit with Exact Jacobian Construction

We first describe a fully implicit scheme for solving the two-phase flow model formulation
discussed earlier. As described in Section 3, an RTN0 space is used for spatial discretization
with a specific quadrature rule which results in the well-known finite di↵erence scheme.
A backward Euler scheme is used for temporal discretization resulting in a fully-implicit,
nonlinear system of equations. The exact Jacobian construction refers to the Newton lin-
earization of this nonlinear system of equations where the derivatives of the nonlinear terms
with respect to the primary unknowns are evaluated exactly without making any approx-
imations. We later describe an inexact Jacobian construction wherein approximations are
made to facilitate easier elimination of the some of the primary unknowns to derive a reduced
linear system. We select oil phase concentration, co (defined below), oil phase pressure, po,
phase velocities, u↵, and auxiliary phase velocities ũ↵ as the primary unknowns following
by temporal and spatial discretization prior to Newton linearization of the resulting system.
Please note that the phase velocities are taken to be primary unknowns to draw out some
of the necessary details and are eliminated after Newton linearization resulting in a reduced
system with po and co as the unknowns. We suggest that the reader to go over this section
cursorily, returning only to compare the di↵erences between exact and inexact Jacobian
constructions after linearization, as described in Sections 5.2 and 6.2, respectively.

5.1 Time Discrete Variational Formulation

Let us define c↵ as the concentration of phase ↵ as follows,

c↵ = ⇢↵S↵. (11)

Then using backward Euler scheme for time discretization of the two phase mass conserva-
tion equations results in an implicit system in pressure (po), concentration (co) and velocities
(uo, uw) unknowns.

(�c↵)
n+1 � (�c↵)

n

�t
+r·un+1

↵ = qn+1
↵ , (12a)

un+1
o =

✓
�K⇢o

kro
µo

(rpo � ⇢og)

◆n+1

, (12b)

un+1
w =

✓
�K⇢w

krw
µw

(r(p0 � pc)� ⇢wg)

◆n+1

. (12c)

The saturation constraint, Eqn. (5), can be expressed in terms of the unknowns c↵ and po
using Eqn. (11) as, X

↵

c↵
⇢↵

= 1. (12d)

The phase densities (⇢↵) are explicit functions of p↵ whereas the capillary pressure (pc) is an
explicit function of water saturation and can be easily evaluated. To simplify notation we
suppress time index n+1 unless superscript n is explicitly used to denote known quantities
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at the previous time step.

⇣
�⇢w

⇣
1� co

⇢o

⌘⌘
�
⇣
�⇢w

⇣
1� co

⇢o

⌘⌘n

�t
+r·uw = qw (13a)

(�co)� (�co)
n

�t
+r·uo = qo (13b)

uo = �K�o (rpo � ⇢og) (13c)

uw = �K�w (r(p0 � pc)� ⇢wg) (13d)

�↵ = �↵(po, co) = ⇢↵(po)
kr↵(co, po)

µ↵
(13e)

pc = pc(So) = pc(co, po) (13f)

In order to avoid inverting a zero; water and oil relative permeabilities at irreducible and
residual saturations, respectively, we define an auxiliary velocity unknown ũ↵ and rewrite
the constitutive equations or Darcy’s law for each phase ↵ as,

u↵ = �↵ũ↵, ũ↵ = �K (rp↵ � ⇢↵g) . (14)

We define velocity and pressure spaces as V = {v in H(div;⌦) : v · n = 0 on @⌦} and
W ⌘ L2(⌦), respectively. The expanded mixed variational problem is: Given cno and pno
find po 2 W , u↵ 2 V and co 2 W such that,

✓
(�co)� (�co)

n

�t
, w

◆
+ (r·uo, w) = (qo, w) (15a)

0

@
�⇢w

⇣
1� co

⇢o

⌘
�
⇣
�⇢w

⇣
1� co

⇢o

⌘⌘n

�t
, w

1

A+ (r·uw, w) = (qw, w) (15b)

�
K�1ũo,v

�
� (po,r·v) = (⇢og,v) (15c)

�
K�1ũw,v

�
� (po,r·v) = � (pc,r·v) + (⇢wg,v) (15d)

(u↵,v) = (�↵ũ↵,v) (15e)

Here, w 2 W and v 2 V .
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5.2 Linearization

Next we linearize the above system to construct an exact Jacobian. We omit the nonlinear
/Newton iteration counter; represented by the superscript k, for simplicity of description in
the following. The Newton step �ak is then defined as,

�ak = ak+1 � ak. (16)

(��co, w) + (r·�uo, w)�t = � ((�co)� (�co)
n , w)�


(r·uo, w)� (qo, w)

�
�t (17a)

 
�
⇣
� ⇢w

⇢o
�co + cfw⇢w

�
1� co

⇢o

�
�po + ⇢wcfo

co
⇢o

�po
⌘
, w

!
+ (r·�uw, w)�t

=�
"

1

�t

✓
�⇢w

✓
1� co

⇢o

◆
� �⇢w

✓
1� co

⇢o

◆n

, w

◆

+ (r·uw, w)� (qw, w)

#
(17b)

�
K�1�ũo,v

�
� (�po,r·v)� (cfo⇢og�po,v)

= �
⇥�
K�1ũo,v

�
� (po,r·v)� (⇢og,v)

⇤ (17c)

�
K�1�ũw,v

�
� (�po,r·v)�

 
cfw⇢w

"
�po �

@pc
@co

�co

#
g,v

!
+

✓
@pc
@co

�co +
@pc
@po

�po,r · v
◆

= �
⇥�
K�1ũw, v

�
� (po,r·v) + (pc,r·v)� (⇢wg,v)

⇤

(17d)

(�u↵,v)� (�↵�ũ↵,v)�
✓
@�↵

@po
�poũ↵,v

◆
�
✓
@�↵

@co
�coũ↵,v

◆

= �
⇣
(u↵,v)� (�↵ũ↵,v)

⌘ (17e)

For slightly compressible flow models, the contribution of the third term in each of the
Eqns. (17c), (17d), and (17e) is small and is often neglected. We assume that the capillary
pressure at the domain boundaries is zero or,

Z

@⌦
pc v · n = 0, (18)

in the above equations. This is consistent with the physical observation of capillary end
e↵ects in core-flooding experiments due to absence of capillary pressure at the core bound-
aries. Another argument in favor of this assumption comes from subsurface porous me-
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dia considerations where saturation condition and hence capillary pressure at the domain
boundaries are usually not known.

2

4
A B 0 0
0 0 Do BT

⇤o ⇤op ⇤oc I

3

5

2

664

�ũo

�po
�co
�uo

3

775 =

2

4
�R1o

�R2o

�R3o

3

5 (19)

2

4
A B 0 0
0 Cw Dw BT

⇤w ⇤wp ⇤wc I

3

5

2

664

�ũw

�po
�co
�uw

3

775 =

2

4
�R1w

�R2w

�R3w

3

5 (20)

⇣
BT⇤oA

�1B �BT⇤op

⌘
�po +

⇣
Do �BT⇤oc

⌘
�co = BT

⇣
R3o � ⇤oA

�1R1o

⌘
�R2o (21)

⇣
Cw+BT⇤wA

�1B�BT⇤wp

⌘
�po+

⇣
Dw�BT⇤wc

⌘
�co = BT

⇣
R3w�⇤wA

�1R1w

⌘
�R2w (22)

Eqns. (21) and (22) constitute the linear system of equations in unknowns po and co.
The choice of quadrature rules, discussed in previous section, results in di↵erent sparsity
patterns in matrix A; block diagonal for the MFMFE scheme [33], and diagonal for the
CCFD scheme [3]. Similar di↵erences in sparsity patterns also occur in matrices ⇤↵,p/c due
to di↵erences in quadrature rules used for evaluating the integral.

⇤↵ = diag(��↵)

⇤↵a =
h@�↵

@a
ũ↵

i

ij
, a = po or co

Cw = diag
⇣
cfw⇢w

�
1� co

⇢o

�
+ ⇢wcfo

co
⇢o

⌘

Dw = diag
⇣
� �

⇢w
⇢o

⌘

Do = diag
�
�
�

(23)

We abuse the notation by reusing subscripts i and j, used di↵erently in the previous sections,
to denote matrix entries of ⇤a↵.

6 Fully Implicit using Approximate Jacobian Construction

Here, we present an approximate Jacobian construction resulting from the nonlinear system
of algebraic equations after spatial and temporal discretizations as described in the previ-
ous section. This formulation di↵ers in the choice of primary unknowns which are oil phase
pressure, po, saturation of both phases, So and Sw and phase velocities, uo and uw. The
saturation constraint is not used to eliminate one of the saturation unknowns and treated
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as an additional constraint. Again, as described in Section 5, the phase velocities are elimi-
nated here as well after linearization resulting in a reduced linear system. The approximate
Jacobian approach is designed to trivially eliminate phase saturations, with negligible com-
putational overheads, resulting in a reduced linear system in oil phase pressure unknown,
po. In what follows, we first present the temporal and spatial discretizations to arrive at a
nonlinear system of algebraic equations. Thereafter, an approximate Jacobian construction
is described for linearization and consequently the resulting reduced linear system. One
important point to note is that a special two-stage or CPR (Compressed Pressure Resid-
ual) preconditioner is not needed for this linear system in contrast to the exact Jacobian
construction. The numerical results presented in Section 8 later demonstrate the compu-
tational savings owing to the reduced linear system inherent to the approximate Jacobian
construction when compared to the exact Jacobian construction.

6.1 Time Discrete Variational Formulation

We use backward Euler scheme for time discretization of the two phase mass conservation
equations resulting in an implicit system in pressure (po), saturations (So, Sw) and velocities
(uo, uw) unknowns. Again, ⇢↵ is an explicit function of p↵ and can be easily evaluated
whereas pc is an explicit function of saturation. As before, to simplify notation we suppress
time index n + 1 unless superscript n is explicitly used to denote known quantities at the
previous time step. The time-discrete form is then given by,

(�⇢↵S↵)� (�⇢↵S↵)
n

�t
+r·u↵ = q↵ (24a)

uo = �K�o (rpo � ⇢og) (24b)

uw = �K�w (r(p0 � pc)� ⇢wg) (24c)

�↵ = �↵(po, S↵) = ⇢↵
kr↵(S↵)

µ↵
(24d)

Again, the expanded mixed variational problem is: Given Sn
↵ and pno find po 2 W , u↵ 2 V

and S↵ 2 W such that,
✓
(�⇢↵S↵)� (�⇢↵S↵)

n

�t
, w

◆
+ (r·u↵, w) = (q↵, w) (25a)

�
K�1ũo,v

�
� (po,r·v) = (⇢og,v) (25b)

�
K�1ũw,v

�
� (po,r·v) = � (pc,r·v) + (⇢wg,v) (25c)

(u↵,v) = (�↵ũ↵,v) (25d)

X

↵

S↵ = 1 (25e)

As before, w 2 W and v 2 V .
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6.2 Linearization

A variant of the chord method is,

ak+1 = ak � (Ak)�1F (ak) (26)

where Ak ⇡ F 0(xk) and can also be viewed as a preconditioned nonlinear Richardson itera-
tion. For more details regarding chord method or its variants along with convergence rates
please read [15].

(�⇢↵�S↵, w)+ (�cf↵⇢↵S↵�po, w) + (r·�u↵, w)�t

= � ((�⇢↵S↵)� (�⇢↵S↵)
n , w)� [(r·u↵, w)� (q↵, w)]�t

(27a)

�
K�1�ũo

�
� (�po,r·v)� (cfo⇢og�po,v)

= �
⇥�
K�1ũo,v

�
� (po,r·v)� (⇢og,v)

⇤ (27b)

�
K�1�ũw, v

�
� (�po,r·v)�

 
cfw⇢w

"
�po �

@pc
@Sw

�Sw

#
g,v

!
+

✓
@pc
@Sw

�Sw +
@pc
@po

�po,r · v
◆

= �
⇥�
K�1ũw, v

�
� (po,r·v) + (pc,r·v)� (⇢wg,v)

⇤

(27c)

(�u↵,v)� (�↵(po, S↵) �ũ↵,v)�
✓
@�↵

@po
�poũ↵,v

◆
�
✓
@�↵

@S↵
�S↵ũ↵,v

◆

= � [(u↵, v)� (�↵(po, S↵) ũ↵,v)]

(27d)

X

↵

�S↵ = �
"
X

↵

S↵ � 1

#
(27e)

The above constitute 7 linear equations in 7 unknowns (po, S↵, u↵, ũ↵). We neglect the
third term in each of the Eqns. (27b) thru (27d) as in the case of exact Jacobian construction
in the previous section. Additionally, we also neglect the fourth term in each of the Eqns.
(27c) and (27d) to construct our approximate Jacobian. These additional approximations
allow us to eliminate the saturation unknowns (S↵) in favor of the pressure unknowns (po)
as shown below. In matrix form this linear system can be expressed as,

2

4
A B 0 0

0 bC↵
bD↵ BT

⇤↵ 0 0 I

3

5

2

664

�ũ↵

�po
�S↵

�u↵

3

775 =

2

64
� bR1↵

� bR2↵

� bR3↵

3

75 . (28)

Eliminating ũ↵, u↵ from Eqns. (27a) using Eqns. (27b), (27c) and (27d) we obtain a
system of linear equations in po and S↵.

⇤↵ = diag(��↵)

bC↵ = diag
�
�cf↵⇢↵S↵

�

bD↵ = diag
�
�⇢↵

�
(29)
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� bC↵ +BT⇤↵A
�1B

�
�po + bD↵�S↵ = BT

� bR3↵ � ⇤↵A
�1 bR1↵

�
�R2↵ (30)

�S↵ =
⇣
bD↵

⌘�1 ⇣
BT

� bR3↵ � ⇤↵A
�1 bR1↵

�
� bR2↵ �

� bC↵ +BT⇤↵A
�1B

�
�po

⌘
(31)

Eqns. (30) and (31) are two equations in three unknowns �po, �So and, �Sw. Since D↵ is a
diagonal matrix, it can be easily inverted to express �S↵ in terms of �po. Substituting these
�S↵ in Eqn. (27e), we obtain a further reduced linear system of equations in �po only.

X

↵

⇣
bD↵

⌘�1 ⇣ bC↵ +BT⇤↵A
�1B

⌘
�po =

"
X

↵

S↵ � 1

#

+
X

↵

⇣
bD↵

⌘�1 ⇣
BT

� bR3↵ � ⇤↵A
�1 bR1↵

�
� bR2↵

⌘

(32)
The nonlinear residuals (R↵) for the exact (Eqns. (21) and (22)), and approximate

Jacobian (Eqns. (30)) approaches converge to the same solution. The convergence criteria
is kept the same for the two approaches and requires that a max norm of the phase residuals
R↵ is less than a desired tolerance ✏. Hence there is no loss of accuracy, in terms of mass
conservation, due to the aforementioned approximation. The only di↵erence is that the
time step sizes; for nonlinear convergence, are usually larger for the former than the latter.
Furthermore, the approximate Jacobian requires more number of nonlinear iterations when
compared to the exact approach. However, the computational times of the former remain
lower than the latter approach.

7 Linear Solvers and Preconditioners

The monolithic linear system obtained using the exact Jacobian approach is sparse, highly
non-symmetric, ill-conditioned, and contains blocks with di↵erent nature. Particularly ef-
fective approach to solve it is to use the Generalized Minimum RESidual (GMRES) method
[29] with two-stage preconditioning that decouples the pressure and saturation (or concen-
tration) variables for each grid block [32, 16, 9, 20, 19, 7]. There are several decoupling
techniques where the matrix is transformed such that the pressure-concentration block (or
submatrix) has zero diagonal [20]. The two predominantly used matrix transformations are
the Constraint Pressure Reduction (CPR) [32] and the Householder reflection [13].

As mentioned earlier, the CPR or two-stage preconditioner locally decouples pressure
and concentration using matrix operations. This results in lower triangular sub-matrices
that is reduced to a diagonal matrix assuming the o↵-diagonal terms after the aforemen-
tioned matrix operation are small. The monolithic system is then reduced and solved using
conventional linear solvers for definite systems (e.g. GMRES) to obtain an update in the
pressure and saturation unknowns. On the other hand, the approximate Jacobian approach
makes an approximation at the nonlinear level; during linearization of the algebraic system,
prior to the construction of the linear monolithic system. These approximations allow us
to diagonalize these sub-matrices at the cost of additional nonlinear iterations. In our nu-
merical experiments, we observe that the computational cost of these additional nonlinear
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iterations for the approximate approach are consistently less than the costs incurred by the
two-stage preconditioner for the exact approach.

For our numerical simulations, for exact Jacobian approach we use two-stage precon-
ditioned GMRES method with Householder reflection [13] to decouple the pressure and
concentration variables. We then employ 4 di↵erent preconditioners for the pressure block:
multilevel incomplete LU (MLILU) [5], algebraic multigrid (AMG) [27, 31], and their two-
stage preconditioner versions using the line successive over-relaxation (LSOR) as a smoother
in the vertical direction (MLILU2 and AMG2). The last two methods are considered since
they balance the major computational cost of the initialization of the pressure multilevel
preconditioners. For the concentration block we use a block Gauss–Seidel preconditioner.
For more details, see [19]. For the approximate Jacobian approach, we have only pressure
variables and the system is positive definite, so there is no need to employ two-stage precon-
ditioner. Here we simply use a GMRES solver with the above 4 preconditioners, MLILU,
MLILU2, AMG, and AMG2.

8 Numerical Results

In this section, we present a number of numerical results to benchmark and compare the
proposed approximate Jacobian approach against the conventional exact Jacobian method.
These numerical experiments are performed using our in-house reservoir simulator IPARS
(Integrated Parallel Accurate Reservoir Simulator). A number of user specifications are
required for initial, minimum, and maximum time-step sizes during simulation run. The
maximum permissible nonlinear iterations; for the nonlinear solve, are taken to be 15.
When these iterations are exceeded the time-step size is reduced by a half for the following
time-steps. A successful non-linear solve with iterations below the aforementioned iteration
threshold results in an augmentation in the time-step size for the next non-linear solve. This
is a fairly standard practice in commercial reservoir simulators for computational e�ciency.
Figure 1 shows a schematic of time-step size reduction and augmentation used in a number
of commercial reservoir simulators. Here, � and ↵ are the time-step size reduction and
augmentation factors, respectively.

Convergence

�tn+1 = ��tn�tn+1 = ��tn

0 < � < 10 < � < 1

�tn+1 = ↵�tn�tn+1 = ↵�tn

↵ > 1↵ > 1

Time-step reduction Time-step increase

Yes No

�tn�tn

Figure 1: Flow-chart for time step size variation with nonlinear convergence
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8.1 Quarter Five Spot Pattern

We present a comparison of CPU runtimes for the two approaches using a quarter five spot
well pattern. The computational domain is 80ft⇥100ft⇥100ft discretized using 4⇥50⇥50
elements. The reservoir properties are taken to be homogeneous with an isotropic, diagonal
permeability tensor of 10 mD and a porosity of 0.2. Further, the oil and water phase
densities and compressibilities are 56 and 62 lb/ft3, and 10�4 and 10�6, respectively. The
gravity vector is taken to be going into the plane of paper in Figure 3 with an initial
condition of 1000 psi and 0.2 for the pressure and saturation, respectively. The numerical
simulations are performed for a total of 500 days for all of the cases described in this
subsection. Figure 2 shows the relative permeability and capillary pressure curves used in
this numerical experiment.
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Figure 2: Relative permeability (left) and capillary pressures (right) as function of water
saturation for the quarter five spot pattern.

We consider four cases with increasing time-step sizes to identify computational speedups
obtained. Case 1 uses a maximum time-step size of 0.2 days for which we observed one
or two additional nonlinear iterations for the approximate approach when compared to the
exact approach. A larger maximum time-step size of 1.0 day results in substantial increase in
additional nonlinear iterations however, the computational speedup is not a↵ected adversely.
Please note that Cases 1 and 2 were chosen such that the aforementioned time-step cuts
do not occur throughout the simulation run. Table 2 shows the time-step reduction and
augmentation factors used for each of the four comparison cases. The check mark indicates
that no time-step cuts were observed. A maximum time-step size of 5 days was used for
Case 3 where time-step cuts were observed for the approximate approach. Finally, Case 4
uses a time-step size of 10 days with time-step cuts observed for both exact and approximate
approaches.
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Table 1: Comparison of total and linear solver CPU times for Exact and Approximate
approaches

Exact Approximate
Total time Solver time Total time Solver time

Case 1 307.2 288.2 74.6 47.3
Case 2 137.6 132.2 34.6 25.1
Case 3 87.3 85.3 40.6 34.4
Case 4 79.1 77.3 28.5 23.6

A computational speedup of approximately 4 times was observed for cases 1 thru 4;
as shown in table 1, and is primarily due to a reduction in computational overheads for
the linear solver. Figure 3 shows the saturation profile after 500 days of continuous water
injection for the exact (left) and approximate (right) approaches. Further, figures 4 and 5
show the spatial distributions of the absolute value of the di↵erence in saturation profiles
(error norm); after 500 days, obtained from the two approaches for Case 1 thru 4.

Table 2: Nonlinear solver convergence for Exact and Approximate approaches with varying
time-step sizes

↵ � �tmin �tmax Exact Approximate
Case 1 1.0 0.5 0.1 0.2 X X
Case 2 1.01 0.5 0.1 1.0 X X
Case 3 1.05 0.5 0.1 5.0 X -
Case 4 1.05 0.5 0.1 10.0 - -

Figure 3: Matching saturation profiles at the end of 500 days for exact (left) and approxi-
mate (right) Jacobian approaches.
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Figure 4: Absolute of saturation di↵erence for test Cases 1 (left) and 2 (right) at the end
of 500 days.

Figure 5: Absolute of saturation di↵erence for test Cases 3 (left) and 4 (right) at the end
of 500 days.

Please note that the di↵erences in the absolute values of the saturation distributions for
Cases 3 and 4 are expected due to di↵erences in time-step cuts between exact and approxi-
mate approaches. These di↵erences arise due to unequal numerical di↵usion introduced by
di↵erent time-step sizes. In fact, as we go from Case 1 to 4 in Figures 4 and 5 the saturation
di↵erence between the two approaches increases. However, for each of these approaches the
nonlinear residuals converge to the same relative, nonlinear tolerance of 1⇥10�8. Since large
time-step sizes also introduce large numerical di↵usions, in what follows we have selected
appropriate maximum time-step sizes that allow us to compare the two approaches while
avoiding unreasonably di↵use solutions. We do not report the production oil rates, water
cuts and cumulative recoveries as these aforementioned di↵erences are almost negligible and
cannot be identified using these plots.

8.2 Kueper Sandbox Problem

Next, we use a modified Kueper sandbox problem with strong counter-current flow due
to capillary pressure and density di↵erences. The setup contains four di↵erent rock types
with di↵erent capillary pressure and relative permeability curves defined using Brooks-
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Corey model. The computational domain is 50cm⇥70cm⇥1cm uniformly discretized using
50⇥70⇥1 elements. In this numerical experiment, we use the computational domain along
with rock and reservoir properties as described in the original work by [17]. Figure 6 shows
a schematic of the Kueper sandbox problem with four di↵erent rock types (or sand-packs)
with di↵erent relative permeability and capillary pressure curves.

Source

3

4
3

3

4

44
4

11

1 1

2 2

1 1

Figure 6: Rock type distribution for the Kueper sandbox problem.

The initial conditions for pressure and water saturation are taken to be 0.2 and 100 psi,
respectively. We assume a no-flow boundary condition on the entire domain. A pressure
specified injection well is place at the top-middle of the computational domain with 5
equidistant pressure specified production (or boundary) wells each at the left and right
boundaries of the domain to mimic the original Kueper sandbox problem. The injection
and production well pressure specification is set at 100.1 psi and 100 psi, respectively. The
pressure di↵erence between the source and sink is purposely kept small (at 0.1 psi) so that
the flow is mostly gravity and capillary pressure dominated.

Figure 7: Matching saturation profiles at the end of 0.005 days for exact (left) and approx-
imate Jacobian approaches

The numerical simulations are ran for a total duration of 0.005 days (or 7.2 minutes) for
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both exact and approximate Jacobian approaches. The initial, minimum, and maximum
time-step sizes for the two approaches are kept the same and are taken to be 10�8, 10�8, and
10�5, respectively. Further, the time-step augmentation and reduction factors are taken to
be 0.5 and 1.01, respectively. We observed nonlinear iteration failures; leading to time-step
cuts, occurring at di↵erent times for both the approaches. Figure 7 shows the saturation
profiles at the end of 0.005 days for the exact (left) and approximate (right) Jacobian
approaches. Further, Figure 8 shows the absolute di↵erence in the saturation profiles at the
same time. The total and linear solver times are 1300.755 and 1207.336, respectively for
the exact approach, and 604.923 and 508.230, respectively for the approximate approach.
As can be seen, the speedup obtained by approximate Jacobian approach is approximately
2.15 times and is primarily due to reduced computational overheads for the linear solver.
These numerical results demonstrate that the solution accuracy of the approximate against
the exact approach.

Figure 8: Absolute of saturation di↵erence at the end of 0.005 days between exact and
approximate Jacobian approaches

8.3 Brugge Field Water Flooding

We now consider a field scale water flooding scenario with reservoir geometry, rock proper-
ties, and well placement taken from the Brugge field history matching study [8]. The rock
properties are heterogeneous and include distributions of permeability and porosity as well
as di↵erent rock types with varying relative permeability and capillary pressure descrip-
tions. The numerical reservoir model consists of 7172 grid elements with no-flow external
boundaries. The reader is referred to [8] for further details regarding reservoir property
description. The fluid densities are taken to be 56.0 and 62.6 lb/ft3 with viscosities 1.0
and 1.29 cP for the oil and water phases, respectively. Further, the water and oil phase
compressibilities are 3⇥10�6 and 9.26⇥10�6 psi�1, respectively. The initial conditions for
pressure and saturation are evaluated using an equilibrium calculations consistent with the
estimated original oil in place.

The Brugge field scenario consists of 10 injection and 20 production wells with bottom-
hole pressure specification of 4000 psi and 2000 psi, respectively. These modified specifica-
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tions are chosen to prevent well-shut down during the simulation run for both exact and
approximate Jacobian approaches. Additionally, the gravity vector is taken to be in the
positive x direction as shown in Figure 9. The numerical simulations are performed for a to-
tal of 7301 days or approximately 20 years with initial, minimum, and maximum time-step
sizes of 0.1, 0.1, and 10 days, respectively. The time-step size augmentation and reduction
factors are further taken to be 1.1 and 0.5, respectively. The total and linear solver CPU
times are observed to be 98.481 and 88.234, and 74.044 and 50.577, respectively for the
exact and approximate Jacobian approaches. The approximate approach is therefore 1.32
times faster than the exact Jacobian approach.

Figure 9: Matching saturation profiles at the end of 7301 days for exact (left) and approx-
imate Jacobian approaches

Figure 10: Absolute of saturation di↵erence at the end of 7301 days between exact and
approximate Jacobian approaches

19



Figure 9 shows the saturation profiles after 7301 days obtained using exact (left) and ap-
proximate (right) Jacobian approaches. The absolute di↵erences in saturation distributions
at the end of the simulation is also show in Figure 10. As mentioned before, although the
nonlinear solver tolerances for the two approaches are the same, the di↵erences occur due
to di↵erences in time-step cuts and augmentations during the simulation run. The order of
magnitude of these di↵erences remain the same during the simulation run.

8.4 Stuttgart Field Water Flooding

Next, we consider another field scale water flooding case with reservoir geometry obtained
using the Stuttgart field. The computational domain in this problem models the Johansen
formation o↵ the coast of Norway and is a stair-stepped approximation of the original field.
It is discretized into 12166 grid elements with no flow boundary conditions as before. The
heterogeneous porosity and permeability distributions are obtained from the original dataset
which can be downloaded at [1]. The capillary pressure is assumed to be identically zero with
oil and water phase relative permeability variation with water saturation shown in Figure
11. A single pressure specified injection well is considered in the centre of the reservoir
domain with a bottom-hole pressure specification of 7000 psi. Further, 34 production wells
are placed equidistantly at the external reservoir boundaries with bottom-hole pressure
specifications ranging from 3953 to 4841 psi. The fluid densities are 62.6 and 56. lb/ft3

with viscosities 0.5 and 2.0 cP and compressibilities 1⇥10�6 and 1⇥10�4 psi�1 for the
water and oil phases, respectively. The initial conditions are specified at 7000 psi and 0.2
for the initial pressure and water saturation, respectively.
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Figure 11: Oil and water phase relative permeability curves for the Stuttgart field case.

The numerical simulation is performed for a total duration of 4000 days; approximately
11 years, with initial, minimum, and maximum time-step sizes of 0.2, 0.2 and 5.0, respec-
tively. Again the time-step size reduction and augmentation factors are kept the same as
before at 0.5 and 1.1, respectively. The total and linear solver CPU times are observed to
be 206.755 and 188.465, and 59.757 and 42.836, respectively for the exact and approximate
Jacobian approaches. A computational speedup of 3.5 times is obtained for the approx-
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imate approach and can be easily observed from the computational savings in the linear
solver time. Figure 12 shows the water saturation distributions; after 200 days, using exact
(left) and approximate (right) Jacobian appraoches. The absolute di↵erences in the two
saturation distributions is also shown in Figure 13.

Figure 12: Matching saturation profiles at the end of 200 days for exact (left) and approx-
imate Jacobian approaches

Figure 13: Absolute of saturation di↵erence at the end of 200 days between exact and
approximate Jacobian approaches

9 Conclusions

We presented an approximate Jacobian construction as an alternative to the conventional
Newton method; with exact Jacobian construction, as a nonlinear solver. The proposed
approach is a fully implicit, nonlinear solver for coupled multiphase flow and transport
problems that is easier to implement compared to the conventional method since it does not
require construction of tedious contributions to the Jacobian matrix. The approximation is
made in an e↵ort to diagonalize a few sub-matrices in the monolithic system allowing trivial
elimination (Schur complement) of the saturation unknowns. The resulting reduced system
in the pressure unknown is a positive definite matrix that can be solved using conventional
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linear solvers such as GMRES with AMG preconditioner. Our numerical results indicated
computational speedups ranging from 1.32 to 4 times when the approximate Jacobian con-
struction is used as opposed to the exact Jacobian construction. The results consistently
indicate a large computational cost reduction in the linear solver resulting in overall gain
in e�ciency. The exact Jacobian approach converges for larger time-steps and requires
lesser nonlinear iterations for a given time-step size when compared to our approach. How-
ever, the overall computational gain in the linear solver times with approximate Jacobian
construction allows it to surpass the conventional method during our extensive numerical
benchmarking. We demonstrate computational speedups for a wide range of numerical
experiments considering heterogeneous rock properties such as permeability, porosity, cap-
illary pressure, and relatively permeability. The Kueper sandbox problem demonstrates
the capability of the approximate Jacobian approach in solving multiphase, counter-current
flow problems dominated by capillary pressure and buoyancy forces.
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A Appendix

We present here details on the quadrature rules discussed in Section 3 and their use to
reduce equations (25) to a 5-point cell-centered pressure system. The derivation is shown
only for the case d = 2; the generalization to d = 3 is straightforward. We use relatively
standard cell-centered finite di↵erence notation. Let us consider a rectangular grid with
grid points denoted by

(xi+1/2, yj+1/2), i = 0, · · · , Nx, j = 0, · · · , Ny,

and then define

hxi = xi+1/2 � xi�1/2, i = 1, · · · , Nx,

hyj = yj+1/2 � yj�1/2, j = 1, · · · , Ny.

An element is denoted by Ei,j with |Ei,j | being its measure (area for d = 2 or volume for
d = 3). An edge of the grid is represented by ei+1/2,j (or ei,j+1/2) and |ei+1/2,j | stands
for its length/area. With each edge ei+1/2,j we associate one basis vector from the RTN0

space, with one of the components a“hat” function and the other one zero. We denote this
function by 'i+1/2,j (dotted blue in Figure 14) and define it by

'i+1/2,j =

8
>>><

>>>:

x� xi�1/2

|Ei,j |
, on Ei,j ,

xi+3/2 � x

|Ei+1,j |
, on Ei+1,j .

(33)
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Note that, by construction

'm+1/2,j(ei+1/2,j) =

8
><

>:

1

|ei+1/2,j |
, m = i,

0, m 6= i.

(34)

xi-1/2 xi+1/2 y j-1
/2

y j-1
/2

''i+1/2,j''i-1/2,j

Ei-1,j Ei,j Ei+1,j

Figure 14: ”Hat” functions associated with edges ei�1/2,j and ei+1/2,j

In y-direction, functions
�
'i,j+1/2

 
are defined in a similar fashion. For basis of the

pressure component of the RTN0 space, we make the choice

wi,j =

(
1, on Ei,j ,

0, otherwise.

We approximate
(K�1uh,vh) ⇡ (K�1uh,vh)TM. (35)

where, as in [3], (·, ·)M and (·, ·)T represents the mid-point and trapezoidal rules of integra-
tion, respectively (in each of the co-ordinate direction) and for v,q 2 Rd,

(v,q)TM =

⇢
(v1, q1)T⇥M + (v2, q2)M⇥T if d = 2,
(v1, q1)T⇥M⇥M + (v2, q2)M⇥T⇥M + (v3, q3)M⇥M⇥T if d = 3.

(36)

In order to evaluate the integrals in Eqn. (25), we first calculate ('i±1/2,j ,'i+1/2,j)TM using
the quadrature rules (36):

('i+1/2,j ,'i+1/2,j)TM =
1

2
|Ei,j |

✓
02 +

1

|ei+1/2,j |2

◆
+

1

2
|Ei+1,j |

✓
1

|ei+1/2,j |2
+ 02

◆

=
hxi

2 |ei+1/2,j |
+

hxi+1

2 |ei+1/2,j |
=

hxi + hxi+1

2 |ei+1/2,j |
, (37)

('i�1/2,j ,'i+1/2,j)TM =
1

2
|Ei,j |

✓
1

|ei�1/2,j |
.0 + 0.

1

|ei+1/2,j |

◆
= 0. (38)
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Note that using a similar argument, we get ('i+3/2,j ,'i+1/2,j)TM = 0. The solution of

Eqn. (25) can be written in 2d as u↵ = [ux↵ , u
y
↵]

T , ũ↵ = [ũx↵ , ũ
y
↵]

T , po, and S↵ with ↵ = o, w,
where

ux↵ =
NxX

m=0

NyX

n=1

U↵
m+1/2,n 'm+1/2,n uy↵ =

NxX

m=1

NyX

n=0

U↵
m,n+1/2 'm,n+1/2 (39a)

ũx↵ =
NxX

m=0

NyX

n=1

Ũ↵
m+1/2,n 'm+1/2,n ũy↵ =

NxX

m=1

NyX

n=0

Ũ↵
m,n+1/2 'm,n+1/2 (39b)

po =
NxX

m=1

NyX

n=1

Pm,nwm,n S↵ =
NxX

m=1

NyX

n=1

S↵
m,nwm,n. (39c)

First, we plug w = wi,j in Eqn. (25a). The first term trivially becomes

(�⇢↵S↵, wi,j) =

0

@�⇢↵(p↵)

NyX

n=1

S↵
m,nwm,n), wi,j

1

A

=

Z

Ei,j

�⇢↵(p↵) (S
↵
i,j wi,j)wi,j = �⇢↵(p↵)S

↵
i,j |Ei,j |. (40)

After applying divergence theorem and using (39) and (34), we get

(r·u↵, wi,j) =

Z

Ei,j

r·u↵ =

Z

@Ei,j

u↵ · nEi,j

=

Z

ei+1/2,j

ux↵ �
Z

ei�1/2,j

ux↵ +

Z

ei,j+1/2

uy↵ �
Z

ei,j�1/2

uy↵

=

Z

ei+1/2,j

U↵
i+1/2,j

|ei+1/2,j |
�
Z

ei�1/2,j

U↵
i�1/2,j

|ei�1/2,j |
+

Z

ei,j+1/2

U↵
i,j+1/2

|ei,j+1/2|
�
Z

ei,j�1/2

U↵
i,j�1/2

|ei,j�1/2|

= U↵
i+1/2,j � U↵

i�1/2,j + U↵
i,j+1/2 � U↵

i,j�1/2. (41)

If we define q↵i,j =

Z

Ei,j

q↵, then Eqn. (25a) reads:

�⇢↵(p↵)S↵
i,j �

⇣
⇢↵(p↵)S↵

i,j

⌘n

�t
|Ei,j |+ U↵

i+1/2,j � U↵
i�1/2,j + U↵

i,j+1/2 � U↵
i,j�1/2 = q↵i,j . (42)

We next denote by Ki,j =


kxi,j 0
0 kyi,j

�
the rock permeability on element Ei,j and we plug a

basis vector, say v =
⇥
'i+1/2,j , 0

⇤T
, in Eqn. (25c) and using the quadrature rules (36) we

get:

(K�1ũw,v) ⇡ (K�1ũw,v)TM = ((kx)�1ũx
w,'i+1/2,j)TM

=
i+1X

m=i�1

Ũw
m+1/2,j((k

x)�1'm+1/2,j ,'i+1/2,j)TM, (43)
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where the only non-zero terms in the above sum, except at the external boundaries, are the
ones for which 'm+1/2,n is non-zero on Ei,j or Ei+1,j . Following (37) and (38), we obtain

((kx)�1'i+1/2,j ,'i+1/2,j)TM =
1

2
|Ei,j |

 
02 +

(kxi,j)
�1

|ei+1/2,j |2

!
+

1

2
|Ei+1,j |

 
(kxi+1,j)

�1

|ei+1/2,j |2
+ 02

!

=
hxi

2 |ei+1/2,j |kxi,j
+

hxi+1

2 |ei+1/2,j |kxi+1,j

(44)

=
1

2 |ei+1/2,j |

 
hxi
kxi,j

+
hxi+1

kxi+1,j

!
,

((kx)�1'i�1/2,j ,'i+1/2,j)TM =
1

2
|Ei,j |

 
(kxi,j)

�1

|ei�1/2,j |
.0 + 0.

1

|ei+1/2,j |

!
= 0. (45)

Putting together (43)-(45) results in

(K�1ũw,v)TM =
1

2 |ei+1/2,j |

 
hxi
kxi,j

+
hxi+1

kxi+1,j

!
Ũw
i+1/2,j , (46)

i.e., after Newton linearization, the approximate matrix A in system (28) has only one
non-zero entry in the row corresponding to the velocity unknown �Ũw

i+1/2,j , resulting in a
diagonal matrix. Please note that the entries of this matrix are weighted harmonic average
of the permeabilities adjacent to an element edge, as can be seen in Eqn. (46). It is trivial
to see that,

@

@x
'i+1/2,j =

8
>>><

>>>:

1

|Ei,j |
, on Ei,j ,

�1

|Ei+1,j |
, on Ei+1,j ,

so the second term in Eqn. (25c) becomes

(po,r·v) =
✓
Pi,j ,

1

|Ei,j |

◆

Ei,j

+

✓
Pi+1,j ,

�1

|Ei+1,j |

◆

Ei+1,j

= Pi,j � Pi+1,j . (47)

That means that the matrix B in system (28) has (at most) two non-zero entries, 1 and -1,
in the row corresponding to the velocity through face ei+1/2,j , at the columns corresponding
to pressure at the two adjacent elements Ei,j and Ei+1,j . Using the same argument, the
capillary pressure term in Eqn. (25c) can be written as:

(pc,r·v) =
✓
pc(Sw),

1

|Ei,j |

◆

Ei,j

+

✓
pc(Sw),

�1

|Ei+1,j |

◆

Ei+1,j

= pc(S
w
i,j)� pc(S

w
i+1,j). (48)
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Next, to express the term due to gravity in Eqn. (25c), we write g = [gx , gy]T , so:

(⇢wg,v) ⇡ (⇢wg,v)TM = (⇢wg
x,'i+1/2,j)TM

=
gx

2
|Ei,j |

✓
0 +

⇢w(Pi,j � pc(Sw
i,j))

|ei+1/2,j |2

◆
+

1

2
|Ei+1,j |

✓
⇢w(Pi+1,j � pc(Sw

i+1,j))

|ei+1/2,j |2
+ 0

◆

=
1

2
gx
h
hxi ⇢w

�
Pi,j � pc(S

w
i,j)

�
+ hxi+1 ⇢w

�
Pi+1,j � pc(S

w
i+1,j)

�i
. (49)

Putting together (46)-(49), the water phase mass balance equation (25c) with v =
⇥
'i+1/2,j , 0

⇤T

reads:

1

2 |ei+1/2,j |

 
hxi
kxi,j

+
hxi+1

kxi+1,j

!
Ũw
i+1/2,j � Pi,j + Pi+1,j = �pc(S

w
i,j) + pc(S

w
i+1,j)

+
1

2
gx
h
hxi ⇢w

�
Pi,j � pc(S

w
i,j)

�
+ hxi+1 ⇢w

�
Pi+1,j � pc(S

w
i+1,j)

�i
. (50)

Following the same arguments, the oil phase mass balance equation (25b) with the same
basis vector v is now

1

2 |ei+1/2,j |

 
hxi
kxi,j

+
hxi+1

kxi+1,j

!
Ũo
i+1/2,j � Pi,j + Pi+1,j =

1

2
gx
⇥
hxi ⇢o (Pi,j) + hxi+1 ⇢o (Pi+1,j)

⇤
.

(51)

We now turn our attention to the auxiliary in system (25). Plugging v =
⇥
'i+1/2,j , 0

⇤T
in

the left-hand side of Eqn. (25d), we get:

(u↵,v) ⇡ (u↵,v)TM = (ux↵,'i+1/2,j)TM

=
i+1X

m=i�1

U↵
m+1/2,j('m+1/2,j ,'i+1/2,j)TM =

hxi + hxi+1

2 |ei+1/2,j |
U↵
i+1/2,j . (52)

Lastly, for the second term in Eqn. (25d) we use the standard choice of upwind mobility in
combination with the trapezoidal-midpoint rule (36) to obtain:

(�↵ũ↵,v) ⇡ (�⇤
↵ũ,v)TM =

hxi + hxi+1

2 |ei+1/2,j |
�↵,⇤
i+1/2,jŨ

↵
i+1/2,j , (53)

which results in the simplified form

U↵
i+1/2,j = �↵,⇤

i+1/2,jŨ
↵
i+1/2,j . (54)

Here, the upwind mobility is defined as

�↵,⇤
i+1/2,j = ⇢↵,⇤i+1/2,j

kr↵,⇤i+1/2,j

µ↵
=

8
>>><

>>>:

1

2µ↵

⇣
⇢↵i,j + ⇢↵i+1,j

⌘
kr↵(S↵

i,j), if Ũ↵
i+1/2,j > 0,

1

2µ↵

⇣
⇢↵i,j + ⇢↵i+1,j

⌘
kr↵(S↵

i+1,j), otherwise,

(55)

where
⇢oi,j = ⇢o(Pi,j), ⇢wi,j = ⇢w

�
Pi,j � pc(S

w
i,j)

�
.
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B Appendix

Let us consider an operator of the form

F(p) = r·
�
⇢(p)Krp

�
,

where ⇢ = ⇢(p) is given. Using (9), the Gâteaux derivative of F(p) at p and in the direction
�p is:

F 0(p)�p = lim
"!0

1

"

n
r·
⇣
⇢(p+ "�p)Kr(p+ "�p)

⌘
�r·

�
⇢(p)Krp

�o

= lim
"!0

1

"
r·
n⇥

⇢(p) + ⇢0(p)"�p+O("2)
⇤ ⇥
Krp+ "Kr�p

⇤
� ⇢(p)Krp

o

= lim
"!0

1

"
r·
n
"⇢0(p)�pKrp+ "⇢(p)Kr�p+O("2)

o

= r·
�
⇢0(p)�pKrp+ ⇢(p)Kr�p

�

Here we used a Taylor expansion for the function ⇢ as well as the linearity of the operators
r, r·, and multiplication by K. Using the short-hand notation of the � operator, we can
rewrite this as

�
�
r·
�
⇢(p)Krp

��
= r·

�
⇢0(p)�pKrp+ ⇢(p)Kr�p

�
,

that resembles the derivative of a real-valued function.
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